AUTHOR=Wu Yu , Li Youjie , Luo Ruilong , Zhang Zhonggang , Wang Fang , Zhao Bingxiong , Yang Chao , Zhang Jinfei , Gaidai Oleg TITLE=Failure analysis on fully-transparent deep-sea pressure hulls used at 2,500 m depth JOURNAL=Frontiers in Materials VOLUME=9 YEAR=2023 URL=https://www.frontiersin.org/journals/materials/articles/10.3389/fmats.2022.1099610 DOI=10.3389/fmats.2022.1099610 ISSN=2296-8016 ABSTRACT=
Fully-transparent deep-sea pressure hulls have been attracted attention in recent years with the increasing demand for underwater observation. So far, public researches on design rule and failure modes for fully-transparent deep-sea pressure hulls are limited and the relevant experience cannot meet the requirements of new cabin design. In this study, the compression test is carried on, in which the material samples are subjected to quasi-static compressive load until failure in tests at different loading rates, and the hyperelastic finite element model is established in LS-DYNA software to simulate the failure process. Simulation results of material properties in finite element analysis on the cylindrical samples are compared with the experimental data, including the characteristic points of the mechanical properties in elastic stage and hardening stage, the ultimate load and failure mode of the samples. Mesh convergence analysis is conducted, and the appropriate mesh quality is accordingly selected in simulation of fully-transparent deep-sea pressure hulls. An equation for prediction of instability-type failure is described, which is derivation based on the classical analytical expression of elastic instability, thus, when 5 times of safety factor is taken, the wall thickness of the pressure hull is calculated to be