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It is evident that preparing materials, casting samples, curing, and testing all

need time and money. The construction sector will benefit if these problems

can be handled using cutting-edge techniques like machine learning. Also, a

material’s ultrasonic pulse velocity (UPV) is affected by various variables, and it

is difficult to study their combined effect experimentally. This research used

machine learning to assess the UPV and SHapley Additive ExPlanations

techniques to study the impact of input parameters of hybrid fiber-

reinforced concrete modified with nano-silica (HFRNSC). Three ML

algorithms were employed, i.e., gradient boosting regressor, adaptive

boosting regressor, and extreme gradient boosting, for ultrasonic pulse

velocity evaluation. The accuracy of machine learning models was

measured via the coefficient of determination (R2), k-fold analysis,

statistical tests, and comparing the predicted and actual ultrasonic pulse

velocity. This study determined that the gradient boosting and adaptive

boosting models had a good level of accuracy for ultrasonic pulse velocity,

but the extreme gradient boosting method estimated the ultrasonic pulse

velocity of HFRNSCs with a greater degree of precision. Also, from the

statistical checks and k-fold approach, it was discovered that the extreme

gradient boosting method is more exact in estimating the ultrasonic pulse

velocity of HFRNSCs. The SHapley Additive ExPlanations analysis revealed that

the age of the specimen and nano-silica had a greater positive impact on the

ultrasonic pulse velocity of HFRNSCs, whereas the coarse aggregate to fine

aggregate ratio had a negative impact. In addition, fiber volume was found to

have both positive and negative effects. By aiding the development of rapid

and low-cost methods for determining material properties and the influence

of input parameters, the construction industry may profit from the use of such

technologies.
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1 Introduction

Concrete is a commonly used building material (AMIN et al.,

2019; KHAN et al., 2022F; KHAN et al., 2022G). To lower the

brittleness of concrete, scholars are investigating fiber-reinforced

concrete (FRC), which is significantly more ductile than

conventional concrete (KHAN et al., 2018; LI AND DENG,

2021; XIE et al., 2021; ZAID et al., 2021). The onset of

concrete failure is the emergence of cracks (CAO et al., 2019;

XUPENG et al., 2021). The introduction of hybrid FRC, which is

comprised of multiple fibers (glass, steel, and polypropylene), is

proposed to enhance the mechanical performance and energy

absorption capacity of concrete (CAO et al., 2018A; HUANG

et al., 2021; XUE AND YILMAZ, 2022; ZHAO et al., 2022).

Fibers restrict the growth of cracks in concrete, thereby allowing

structural elements to withstand greater deformations following

the development of early cracks (cao et al., 2018B; ABIRAMI

et al., 2020; CHUN et al., 2022; ZHANG et al., 2022).

Nanoparticles, such as nano-silica (NS), have been shown to

fill holes in cement paste and improve the mechanical

performance and durability of concrete (BAHARI et al., 2016;

CAO et al., 2020; MURAD, 2021; KHAN et al., 2022E).

Consequently, using nanoparticles in FRC might result in a

material with enhanced performance that is perfect for

constructing durable, high-performance structures (HAO

et al., 2021). NS decreases the setting time of the mix and

increases its early-age strength. A crucial characteristic of NS

is its nanostructure, which offers an exceptionally greater specific

surface area (SSA) and thus works as an aggregate-cement binder

(WANG et al., 2018). The strong pozzolanic effect of NS is due to

its nanoparticle size (ARDALAN et al., 2017; YING et al., 2017).

The interfacial transition zone (ITZ), which is considered a weak

region in concrete, is also strengthened because these

nanoparticles cover all gaps and voids, hence decreasing

permeability (XU et al., 2017; SHARKAWI et al., 2018). NS is

a highly effective ingredient for accelerating the hydration and

producing more calcium-silicate-hydrate (C-S-H) gel in

concrete, which is responsible for the achievement of concrete

strength (NIEWIADOMSKI et al., 2017; NORHASRI et al., 2017;

MOHAMMED et al., 2018; REN et al., 2018; ZAHIRI AND

ESKANDARI-NADDAF, 2019). In cementitious materials, the

quantity of portlandite-Ca(OH)2 reduces when NS and Ca(OH)2
combine to form a denser product (MASSANA et al., 2018).

Certain prior research suggests that replacing NS for up to 4% of

the cement can improve the material’s durability and strength

under adverse conditions like corrosion and high temperatures

(ERDEM et al., 2018; MAHAPATRA AND BARAI, 2019). The

excessive quantity of NS might cause particle aggregation due to

non-uniform dispersal, thus reducing workability (ZAREEI et al.,

2019). To improve the macroscopic characteristics and

performance of cementitious composites, several nanoparticles

are utilized as additives, and NS has become frequent among

these nanoparticles. Notwithstanding, the limited practical

applications of NS in the building industry are a result of

their higher costs, which are approximately 1,000 times more

expensive than ordinary cement (RECHES, 2018; FANG et al.,

2021).

From the standpoint of evaluating the structural health of

concrete structures, ultrasonic pulse velocity (UPV) has been

identified as an essential measure (BOLBOREA et al., 2021;

KARIMAEI et al., 2021). Numerous research was conducted

to comprehend the correlation between UPV and concrete

compressive strength (YAN et al., 2021; ZHANG AND

ASLANI, 2021). Similarly to compressive strength, the UPV of

concrete likewise increases with age and is inversely related to the

pore volume in the matrix (KOU et al., 2012). The rate of change

of UPV with time may be utilized not only to estimate the setting

of a mix but also to show distinct phases of microstructural

changes in the matrix (LATIF AL-MUFTI AND FRIED, 2012;

BARLUENGA et al., 2015). It was also shown that UPV is

impacted by microstructural differences in the mortar and

may be utilized to efficiently assess sand concentration in a

mortar (MOLERO et al., 2009). Additionally, the UPV of

concrete was explored to identify deterioration within the

concrete (OULD NAFFA et al., 2002; LENCIS et al., 2021).

In two ways, the UPV test findings of FRC vary from those of

plain concrete. Firstly, since the observed velocity is directly

related to the concentration of the medium through which it is

propagated, the insertion of different fibers might vary the

density of the concrete and, therefore, the UPV findings

(ASHRAFIAN et al., 2018). For instance, recent studies

observed that the UPV of steel FRC was higher than the plain

concrete; however, the UPV of FRC with low-density fibers, like

polyphenylene sulfide or recycled polyethylene terephthalate,

was less than plain concrete (RAHMANI et al., 2013;

SADEGHI NIK AND LOTFI OMRAN, 2013). Secondly, the

introduction of varying amounts of fibers might affect the

concrete’s compaction level and, subsequently, its porosity (LI

et al., 2022A; QIN et al., 2022; ZHENG et al., 2022). Previously, it

was demonstrated that the slightly increased porosity of concrete

resulting from the integration of 1% fibers by volume reduced the

UPV of FRC samples, including polypropylene and steel fibers,

by 4% and 3%, respectively (SUKONTASUKKUL et al., 2010).

The number of parameters impacting concrete and the length of

time necessary to establish the characteristics of hardened

concrete motivate the search for alternate estimation

techniques. UPV, which relies on ultrasonic wave speed

transmission through the matrix, has been used to determine
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the characteristics of hardened concrete (TRTNIK et al., 2009;

HUANG et al., 2011; DÜĞENCI et al., 2015; MOBINI et al.,

2015). As previously demonstrated, the UPV of concrete mixes is

an excellent indicator of their mechanical characteristics,

including compressive and flexural strength and modulus of

elasticity (TRTNIK et al., 2009). Large, thin, and difficult-to-

access elements make it difficult to assess the UPV of the

concrete. Not only do data-driven models assist minimize the

time and expense of testing by supplying designers with vital

data, but they also aid in avoiding complications that emerge

during the assessment of the many hardened characteristics of

FRC. The progress of innovative formula-based models with high

precision to forecast this essential attribute can greatly minimize

concrete waste by reducing the number of trial mixes necessary to

get the ideal blend (KHAN et al., 2022H). Artificial intelligence-

based practices, like machine learning (ML), are among the

highly modern prediction procedures used in the present issue

area (NAFEES et al., 2021; KHAN et al., 2022A; NAFEES et al.,

2022A; NAFEES et al., 2022B; ILYAS et al., 2022). These methods

imitate results based on the input dataset, and resultant models

are validated by testing. The utilization of ML techniques to

anticipate the characteristics of construction materials is gaining

prominence (SHAFABAKHSH et al., 2015; AWOYERA et al.,

2020; KHAN et al., 2022D). The most of past ML-based

researches centered on estimating the strength of traditional

concrete (QI et al., 2022; SHAH et al., 2022; SHARMA et al.,

2022), while few research has been published on predicting the

UPV of FRC. Therefore, it is vital to study the effectiveness of ML

methods in estimating the UPV of FRC.

This research utilized the data sample to estimate the UPV of

hybrid fiber-reinforced concrete modified with NS, hereinafter

called HFRNSC, by employing ML methods. Three ML methods

from boosting family were employed, i.e., gradient boosting

regressor (GBR), Adaptive boosting regressor (ABR), and

extreme gradient boosting (XGB), to achieve the study’s aims.

Coefficient of determination (R2), k-fold technique, statistical

tests, and comparing estimated and actual results were used to

assess and evaluate the performance of each model. It is obvious

that conducting experiments requires a great deal of time, money,

and effort due to the necessity of gathering materials, casting

samples, curing, and testing. These issues might be resolved using

cutting-edge methods like ML, which will be a benefit for the

building industry. Moreover, the UPV and strength of HFRNSCs

depend on a number of factors, and it is challenging to measure

their combined influence using experimental methods. The

influencing factors include fiber volume (Vf), coarse aggregate

to fine aggregate ratio (CA/FA), superplasticizer to binder ratio

(SP/B), water to binder ratio (w/b), NS, and age of specimen ((A).

To investigate the relationship between the input characteristics

and the UPV of HFRNSCs, a SHapley Additive exExplanations

(SHAP) analysis was conducted. The literature may be mined for

a data sample to use with ML methods. As a result, the

information gathered may be used to run ML methods,

estimate material characteristics, and evaluate the influence of

input factors. In this work, a dataset was used to evaluate the

performance of several ML methods for predicting the UPV of

HFRNSCs and to determine the relative importance of various

input variables in producing accurate predictions.

2 Materials and methods

In order to get desired findings, ML methods require a wide

collection of input variables (SUFIAN et al., 2021). For this

purpose, a literature search was performed using six input

parameters, including Vf, CA/FA, w/b, NS, SP/B, and the age

of the specimen. To avoid bias, data samples were collected

arbitrarily from previous studies (SADRMOMTAZI AND

FASIHI, 2010; ASHRAFIAN et al., 2018), and data points

containing UPV results were collected for algorithm

execution. In this research, 132 data samples were recorded

from the literature and employed to train ML techniques. The

combination’s proportions and the desired outcome were

considered when obtaining the data since models called for

similar input variables for each mixture to estimate the

required results. Three types of fiber, including glass, steel,

and polypropylene, were used in the samples as hybrid fibers.

The length and diameter of steel fibers were 36 mm and 0.7 mm,

respectively, while the length and diameter of polypropylene and

glass fibers were 12 mm and 0.1 mm, respectively. For the ML

algorithms to run, all six features were used as inputs, with UPV

serving as the result. The statistical details of inputs and

outcomes are summarized in Table 1. The standard deviation,

maximum, and minimum, show the range of values, whereas the

mode, mean, and median show the basic tendencies.

The UPV of HFRNSCs was analyzed by employing published

research data. The goals of the study were attained by employing

ML strategies using Python code and Spyder (version 5.1.5) tool

from the Anaconda Navigator software. The UPV of HFRNSCs

was evaluated using GBR, ABR, and XGB ML techniques. In

practice, these ML techniques are typically employed to

approximate outputs from given inputs (YUAN et al., 2022).

ML techniques are being employed to predict the strength,

durability, and temperature resistance of materials (AMIN

et al., 2022; KHAN et al., 2022C). Nevertheless, there are

some limitations associated with the use of ML methods.

Specifically, challenges associated with dataset generation,

model validation, and model deployment, as reported by (LI

et al., 2022B). The allocation of testing and training data samples

utilized for the model was 30% and 70%, respectively. The

precision of a model may be noted from the R2 value of the

predicted result. Values closer to zero imply more variance,

whereas values closer to one indicate that the prediction

model and experimental findings are nearly completely

matched (AHMAD et al., 2022). The k-fold method and

statistical measures, including mean absolute error (MAE),
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root mean squared error (RMSE) and mean absolute percentage

error (MAPE), were employed to measure the exactness of a

model. The sequence of study methods is shown in Figure 1. The

subsequent sub-sections elaborate on the ML techniques and

validation strategies that were put to use in this study.

2.1 Gradient boosting regressor (GBR)

The GBR ensemble method of regression and classification

was first proposed by FRIEDMAN (2001). GBR is similar to

other boosting techniques, except it can only be used for

regression. As can be seen in Figure 2, the strategy

randomly selects repetitions from the training set and then

verifies them using the base model. As a result, preventing

overfitting may be achieved by arbitrarily subsampling the

training data sample, which can increase GBR’s accuracy and

speed. The rate of regression to fit tends to increase as the

sample size of the training data decreases. Tuning factors for

GBR include the shrinkage rate and n-trees, where n-trees is

the total number of trees produced. In this case, n trees are not

a small enough number; therefore, the learning rate

(shrinkage factor) is applied to each expansion tree

individually.

TABLE 1 Statistical parameters of input and output parameters.

Parameter Vf (%) CA/FA W/b NS (kg/m3) SP/B Age (days) UPV (km/s)

Mean 0.23 0.88 0.39 23.95 0.02 40.76 5.23

Standard Error 0.02 0.00 0.00 1.61 0.00 3.00 0.02

Median 0.20 0.87 0.39 24.00 0.02 28.00 5.23

Mode 0.20 0.87 0.39 0.00 0.02 7.00 5.15

Standard Deviation 0.20 0.01 0.01 18.50 0.00 34.48 0.22

Minimum 0.00 0.87 0.39 0.00 0.02 7.00 4.49

Maximum 0.90 0.91 0.43 49.60 0.03 90.00 5.61

FIGURE 1
Flowchart of research methods.
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2.2 Adaptive boosting regressor (ABR)

Figure 3 depicts the procedure for making an ABR-based

estimation. The term “multi-classifiers” refers to the ensemble

that is created when many algorithms are combined. An

educational community of about a thousand people working

together to find a solution to the situation. Ensemble learning,

effectively a supervised ML methodology, is one way to tackle

ABR. In adaptive boosting, weights are linked to each occurrence,

with greater weights attached to examples that were incorrectly

categorized. It is common practice in supervised machine

learning to employ boosting algorithms in order to mitigate

bias and reduce variance. Assisting struggling pupils through the

use of ensemble strategies. It takes in as many decision trees as

you like during the training process. Incorrectly classified data

inside the core model are revealed during the decision tree

building phase. Another model uses the same set of data

records as inputs. This process would continue until enough

number of novice learners were produced. For problems

involving binary classification, ABR facilitates the growth of

the decision tree’s operational capabilities. It’s also used to

make the ML model more efficient. It’s a great tool for those

who study slowly. These ensemble methods see extensive use in

the field of materials science, particularly in the

estimation of concrete’s mechanical properties (YANG et al.,

2022).

2.3 Extreme gradient boosting (XGB)

The XGB technique was developed by CHEN AND

GUESTRIN (2016) and is regarded as a trustworthy tool for

FIGURE 2
Structure of GBR training method (YAO et al., 2019).

FIGURE 3
Structure of ABR training method (WANG et al., 2021).
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FIGURE 4
Schematic illustration of XGB procedure (AMJAD et al., 2022).

FIGURE 5
K-fold validation process.
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data science scholars since it uses a tree-based ensemble learning

approach. XGB is built on the GBR architecture, which involves

using several functions to estimate outcomes according to Eq. 1

(FRIEDMAN, 2001).

�yi � y0i + η∑n

K�1f k Ui( ). (1)

The anticipated output is represented by �yi with ith data

and Ui as the variable vector; η represents the estimator

quantity in connection with separate tree structures next to

each fk With k ranging from 1 to n; and y0i is the null

hypothesis represents the learning rate to improve the

accuracy of the model, as well as the connection of new

trees to prevent overfitting. Building a model with

minimum overfitting is a significant difficulty in ML. The

training phase of the XGB model is assessed in a

complementary manner.

According to Eq. 1, at the kth level, the kth predictor is

associated with the model and the prediction of kth y−ki is

calculated using the expected output y−(k−1)i , with the

respective produced fk against the kth corresponding predictor

supplied in Eq. 2.

y−ki � y− k−1( )
i + ηfk (2)

Where fk is leave’s weight formed by minimizing the kth tree

factual task Eq. 3.

fobj � γZ +∑Z

a�1 gaωa + 1
2

ha + λ( )ω2
a[ ] (3)

Where leaf node fraction is indicated by Z, complexity factor

by γ, constant coefficient by λ, and leaf weight by ω2
a, λ and γ

are controlling parameters used to prevent overfitting and

enhance the model. ha and ga are the summation factors for the

whole data sample associated with the prior and initial

gradient leaf loss functions, respectively. For the

construction of the kth tree, a leaf is divided into many

leaves. Such a system is implemented using gain

parameters, as shown in Eq. 4.

FIGURE 6
GBR model: (A) Relationship amongst actual and estimated
UPV; (B) Dispersal of actual and estimated UPV and error values.

FIGURE 7
ABR model: (A) Relationship amongst actual and estimated
UPV; (B) Dispersal of actual and estimated UPV and error values.
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G � 1
2

O2
L

PL + λ +
O2

R

PR + λ +
OL +OR( )2
PL + PR + λ[ ] (4)

Where gain parameters are represented by G, the right and left

leaves are designated by PR and OR and PL & OL, respectively.

In general, the division criterion is assumed while the

approximation of the gain parameter to zero. λ is a

regulating variable that is indirectly reliant on gain settings.

For instance, a bigger regularization value might significantly

reduce the gain parameter, hence stopping the leaf

convolution process. However, the performance of the

model when incorporating training data would also be

diminished. Figure 4 depicts the fundamental level-wise

structure of the XGB tree model.

2.4 Validation of models

The ML algorithms were verified using statistical tests and

k-fold approaches. The k-fold technique is commonly used to

assess a model’s performance by randomly dividing samples of

relevant data into 10 groups (AHMAD et al., 2021). Figure 5

illustrates how nine classes are utilized to train ML models,

whereas just one is used for testing. The ML method performs

better when errors are lower, and R2 is higher. In addition, this

approach needs to be repeated 10 times, which results in the model’s

exceptional accuracy. Errors assessment (MAE, RMSE, and MAPE)

was also used statistically to assess the accuracy of eachMLmethod.

Statistical analysis was performed on the projections made by the

ML approaches using Eqs 5–7, which were obtained from prior

work (ASLAM et al., 2020; FAROOQ et al., 2021).

MAE � 1
n
∑n

i�1 Pi − Ti| | (5)

RMSE �
�����������∑ Pi − Ti( )2

n

√
(6)

MAPE � 100%
n

∑n

i�1
Pi − Ti| |
Ti

(7)

where n = number of data points, Pi = predicted findings, and

Ti = actual results.

3 Results and analysis

3.1 GBR model

Figure 6 shows the outcomes of the GBR model for

estimating the HFRNSC’s UPV. Figure 6A displays the

relation among actual and estimated UPV. The GBR approach

estimated UPV with a moderate level of accuracy and divergence

among actual and estimated findings. The R2 of 0.78 suggests that

the GBR method for calculating the UPV of HFRNSCs is

satisfactory, and the actual and estimated results reasonably

agree. Figure 6B presents the actual, estimated, and error

values distribution for the GBR model. The error values

varied up to 0.200 km/s, with a mean of 0.070 km/s.

Additionally, the percentage variance of errors was evaluated,

and it was found that 47.5% of the error readings were lower than

0.05 km/s, 22.5% fell among 0.05–0.1 km/s, and 30.0% were

higher than 0.1 km/s. The analysis of errors indicated that the

GBR strategy estimated the UPV of HFRNSCs reasonably.

FIGURE 8
XGB model: (A) Relationship amongst actual and estimated
UPV; (B) Dispersal of actual and estimated UPV and error values.

TABLE 2 Error assessments of the build ML-based models using statistical
tests.

Model MAE (km/s) MAPE (%) RMSE (km/s)

GBR 0.070 1.30 0.093

ABR 0.061 1.20 0.077

XGB 0.047 0.90 0.062
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3.2 ABR model

Figure 7 presents the findings of the ABR model in

forecasting the UPV of the HFRNSCs. The relation amongst

actual and forecasted UPV is seen in Figure 7A. In comparison

with the GBR approach, the ABR technique produced more

accurate results and the minimum difference among actual and

estimated findings. Compared to other models, the ABR model

is more precise, as seen by its R2 score of 0.85. The distribution

of real, estimated, and error values generated by the ABR

approach are depicted in Figure 7B. The lowest error was

0.002 km/s, the mean error was 0.061 km/s, and the highest

error was 0.200 km/s. The distribution of error values was:

47.5% were below 0.05 km/s, 35.0% were between 0.05 and

0.1 km/s, and 17.5% were over 0.1 km/s. Since the ABR model

had a smaller deviation of errors, it was concluded that it was

more accurate than the GBR model. Due to the usage of an

endless number of decision trees during training and its initial

decision tree’s emphasis on incorrectly categorized input, the

ABR model achieves better accuracy. Another model also

makes use of the same data. This process is repeated until

enough number of basic learners have been created.

Additionally, ABR improves the effectiveness of decision

trees for classifying data into two categories.

3.3 XGB model

Figure 8 exhibits the results of the XGB method to foretell

the UPV of HFRNSCs. A connection among actual and

forecasted UPV is shown in Figure 8A. The XGB method

produced the fewest discrepancies amongst real and

anticipated data as compared to the other models used. The

higher R2 of 0.90 for the XGB model reflects its improved

accuracy. The XGB method’s actual, estimated, and errors are

shown in Figure 8B. The average error was calculated to be

0.047 km/s, while the maximum error was calculated to be

0.179 km/s. Nearly 65.0% of the errors were found to be less

than 0.05 km/s, 20.0% were found to be between 0.05 and

0.1 km/s, and 15.0% were found to be larger than 0.1 km/s.

The error distribution showed that the XGB model was more

accurate than the GBR and ABR models. But the accuracy of

the other models used is equally satisfactory. The XGB model

is more precise because it employs a tree-based ensemble

learning strategy that optimizes output by generating

submodels.

3.4 Model’s validation

Table 2 displays the results of the error evaluations (MAE,

RMSE, and MAPE) utilizing the aforementioned Eqs.s 5-7 for

UPV estimation models. The MAE for predicting UPVs were

found to be 0.070 km/s for GBR, 0.061 km/s for ABR, and

0.047 km/s for XGB. According to the calculations, the MAPE

for GBR was 1.30%, ABR was 1.20%, and XGB was 0.90%. In

addition, it was found that the RMSE for GBR, ABR, and XGB

were 0.093, 0.077, and 0.062 km/s, respectively. These

evaluations also showed that the XGB method had a lower

error rate than the GBR and the ABR, making it more exact.

Table 3 displays the results of calculating the k-fold method’s

validity using R2, RMSE, and MAE. The k-fold analysis for the

UPV prediction was compared using the various ML approaches

used, and the results are depicted in Figure 9, Figure 10, and

Figure 11. The MAE for the UPV estimation using the GBR

method ranged from 0.07 to 0.18 km/s, with a mean of 0.10 km/s.

The MAE for the ABR model was 0.06–0.10 km/s, with an

average of 0.08 km/s. The XGB model had an MAE

TABLE 3 K-fold analysis results.

Fold no. GBR ABR XGB

MAE (km/s) RMSE (km/s) R2 MAE (km/s) RMSE (km/s) R2 MAE (km/s) RMSE (km/s) R2

1 0.09 0.10 0.74 0.08 0.11 0.72 0.07 0.07 0.76

2 0.07 0.09 0.63 0.06 0.09 0.63 0.08 0.07 0.82

3 0.11 0.12 0.61 0.09 0.12 0.58 0.09 0.08 0.71

4 0.09 0.11 0.57 0.08 0.10 0.65 0.08 0.10 0.90

5 0.10 0.08 0.72 0.10 0.08 0.78 0.05 0.07 0.83

6 0.09 0.09 0.64 0.08 0.08 0.81 0.05 0.07 0.85

7 0.07 0.19 0.73 0.07 0.09 0.84 0.07 0.11 0.86

8 0.18 0.29 0.32 0.06 0.15 0.76 0.09 0.17 0.39

9 0.07 0.14 0.78 0.07 0.22 0.85 0.06 0.06 0.88

10 0.16 0.19 0.45 0.08 0.13 0.33 0.05 0.18 0.52
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distribution from 0.05 to 0.09 km/s, with an average of 0.07 km/s.

Similar results were found when comparing the RMSE of the

GBR, ABR, and XGB methods. The average RMSE for GBR,

ABR, and XGB was 0.14, 0.12, and 0.10 km/s, respectively.

However, the average R2 values for GBR, ABR, and XGB were

0.62, 0.70, and 0.75, respectively. The XGB model predicted the

UPV of HFRNSCs with the fewest errors, and the highest R2 was

the most reliable. However, both the ABR and GBR models

achieved reasonable levels of accuracy. Therefore, all of the

models might be used to precisely evaluate the UPV of

HFRNSCs.

3.5 Impact of input features on UPV

This study looked at how different input characteristics

affected the UPV of HFRNSCs. SHAP tree explainer is used

across the board to include local SHAP explanations into a

more comprehensive narrative of global feature impacts.

Input-by-input, the violin SHAP plot shows how

HFRNSCs’ UPV responds to all stimuli (see Figure 12).

The x-axis represents the final SHAP value after all

parameters have been adjusted, and the y-axis represents

the contribution of each individual parameter. The positive

correlation among the age of specimen A) and UPV of

HFRNSCs was bigger than that of any other characteristic

(more red points on the positive side). It was determined that

UPV rises as specimen age A) rise. It was also demonstrated

that the impact of NS on the UPV was more positive. It might

be because NS acts as a filler, decreasing the porosity of the

matrix and leading to an increase in UPV. In contrast, it was

shown that CA/FA had a larger negative effect on UPV,

suggesting that CA/FA should be kept low to get a higher

UPV. One probable explanation is that UPV is inversely

FIGURE 9
MAE values for all models from the k-fold analysis.

FIGURE 10
RMSE values for all models from the k-fold analysis.

FIGURE 11
R2 values for all models from the k-fold analysis.
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proportional to matrix porosity (MOHAMMED AND

RAHMAN, 2016); thus, when CA/FA increases, UPV

decreases. It was shown that Vf had both positive and

negative effects, suggesting that utilizing Vf up to an

optimal amount can improve the UPV but that at larger Vf

concentrations, the UPV would decrease. The impact of SP/B

and w/b could not be determined due to the absence of input

value variation in the used dataset. Using a bigger data sample

with more varied input features can better interpret their

impact.

Figure 13 displays the relation amongst prominent input

parameters and their effect on the UPV of HFRNSCs.

Figure 13A shows the interaction of specimen age A). The

plot demonstrates that as the specimen age A) increases, the

UPV rises and mainly interacts with the NS. It can be

established that with increasing age, the reaction between NS

and Ca(OH)2 takes place, resulting in the formation of dense

microstructure, increasing the UPV of the sample. Likewise,

incorporating NS in FRC has a favorable effect on UPV

(Figure 13B) and interacts mostly with specimen age A).

However, utilizing NS up to the optimal quantity will help

improve the UPV of HFRNSCs. Hence, NS may be employed in

the range of 30–40 kg/m3 to achieve higher UPV. Furthermore,

as depicted in Figure 13C, increasing CA/FA has a detrimental

effect on UPV. Therefore, the CA/FA should be maintained

lower to get a higher UPV. The UPV of the HFRNSC is also

affected by Vf, as shown in Figure 13D. UPV rises with Vf

concentration up to 0.5%, then drops and largely interacts with

the NS. For getting a high UPV for HFRNSC under these

FIGURE 13
Interaction of input parameters and their impact on UPV: (A) Age of specimen; (B)Nano-silica; (C) Coarse aggregate to fine aggregate ratio; (D)
Fiber volume.

FIGURE 12
SHAP plot signifying the effect of input features on UPV.
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circumstances while employing the same components as in the

current study, a Vf of almost 0.5% is ideal. These findings

heavily rely on the nature of the inputs used and the scope of the

dataset used in this analysis. Depending on the parameters and

data used, the results may change.

4 Discussions

In this study, GBR, ABR, and XGB ML methods were

utilized to evaluate the HFRNSCs’ UPV. Each method was

tested for precision to determine which one was the most

reliable indicator. The XGB approach yielded more precise

findings, with an R2 of 0.90, for UPV prediction than the

GBR and ABR methods, which had R2 of 0.78 and 0.85,

respectively. The error readings provided additional proof of

the XGB method’s better accuracy. The error analysis reveals

that the XGB models had a better agreement between real and

estimated values than the GBR and ABR methods. Table 4 is

generated to compare the optimum ML methods of the present

study with the literature. Previous studies have proven the XGB

method’s superior accuracy in forecasting the strength of

cementitious materials (FAROOQ et al., 2021; KHAN et al.,

2022b; ZHENG et al., 2022). Similarly, the ABR method was

also noted to be the best suitable in several studies (AL-

HASHEM et al., 2022; ANJUM et al., 2022; SHANG et al.,

2022; WANG et al., 2022).

Additionally, k-fold and statistical methods were utilized to

evaluate the models’ precision. The accuracy of a model

increases when the R2 is high and the degrees of divergence

(MAE, RMSE, and MAPE) are minimum. Because the

precision of an ML approach is so dependent on the

amount of inputs and data samples used to run algorithms

(FAROOQ et al., 2021), it is challenging to define and suggest

FIGURE 14
Distribution of R2 for the XGB UPV and FS models.

TABLE 4 Best ML techniques recommended in past studies.

Study Material studied Properties predicted ML method used Best ML technique
reported

ZHENG et al. (2022) Steel fiber -reinforced
concrete

Flexural strength GBR, random forest, and XGB XGB

KHAN et al. (2022b) Geopolymer concrete Compressive strength Support vector machine, GBR, and XGB XGB

WANG et al. (2022) Geopolymer concrete Compressive strength Decision tree, ABR, and random forest ABR

SHANG et al. (2022) Recycled aggregate
concrete

Compressive and split-tensile
strength

Decision tree and ABR ABR

AL-HASHEM et al.
(2022)

Steel fiber-reinforced
concrete

Compressive and flexural
strength

Multiple-layer perceptron neural network
and ABR

ABR

ANJUM et al. (2022) Fiber reinforced concrete Compressive strength Bagging, random forest, GBR, and ABR ABR
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the best ML technique for prediction in different fields of

research. With ensemble ML techniques, the weak learner is

used over and over again to build submodels that are trained

on the data sample and then fine-tuned to improve accuracy.

In this way, the ensemble ML models produce more precise

results than any of the individual models could have on their

own. The variation in R2 for the GBR, ABR, and XGB

submodels is displayed in Figure 14. For GBR submodels,

R2 varied from 0.762 to 0.781, with a mean of 0.769. The

average R2 for the ABR models was 0.825, with a range of

0.773–0.853. Furthermore, the XGB submodels’ R2 ranged

from 0.870 to 0.902, with an average of 0.893. Based on

these results, it can be said that the XGB submodels are the

most accurate of the three. More specifically, a SHAP analysis

was run to learn how various input factors affected the UPV of

HFRNSCs and how they interacted with one another. In a

greater positive correlation with the UPV of the HFRNSC,

specimen age was shown to be a highly useful parameter. The

impact of NS on the UPV was also revealed to be more

beneficial. It could be relied on by the filler action of NS,

which lowers matrix porosity and ultimately raises UPV.

However, it was shown that the impact of CA/FA on UPV

was more adverse, indicating that a low CA/FA must be

maintained to get a higher UPV. Also, it was determined

that Vf had both positive and negative effects, suggesting that

utilizing Vf up to an optimum amount can improve the UPV,

while at larger Vf contents, the UPV may decline. The

increasing matrix porosity, which is inversely correlated

with matrix porosity (MOHAMMED AND RAHMAN,

2016), may cause decreased UPV at greater CA/FA and Vf.

Because of the dearth of alteration in SP/B and w/b in the

dataset used, their influence was unclear, and a broader data

sample with more inputs and variations might result in better

findings.

5 Conclusion

This research aimed to expand the knowledge on how

machine learning (ML) models might be used to estimate

the ultrasonic pulse velocity (UPV) of hybrid fiber-

reinforced concrete modified with nano-silica (HFRNSCs).

Three ML methods, including gradient boosting regressor

(GBR), adaptive boosting regressor (ABR), and extreme

gradient boosting (XGB), were used to evaluate the UPV.

Also, SHapley Additive ExPlanations (SHAP) analysis was

performed to examine the effect of input features on the

UPV of HFRNSCs. The conclusions of this research are as

follows:

• Modeling methods showed that the GBR and ABR

techniques had a satisfactory level of accuracy with an

R2 of 0.78 and 0.85 for UPV estimation, respectively, while

the XGBmethod had a better level of accuracy with an R2 of

0.90 for UPV prediction.

• The average difference among actual and estimated

UPV (error) in GBR, ABR, and XGB techniques was

found to be 0.070, 0.061, and 0.047 km/s, respectively.

The error analysis also validated the reasonable

accuracy of the GBR and ABR approaches and the

superior precision of the XGB model in predicting

the UPV of HFRNSCs.

• The SHAP analysis showed that specimen age was a crucial

parameter, with a superior positive relationship to the

material’s UPV. It was also discovered that the effect of

nano-silica (NS) on the UPV was more favorable. Non-

etheless, it was discovered that the effect of coarse aggregate

to fine aggregate ratio (CA/FA) on UPV was more negative,

indicating that a low CA/FA must be maintained to increase

UPV. In addition, it was revealed that fiber volume (Vf) had

both positive and negative impacts, suggesting that

incorporating Vf up to the optimal level can increase the

UPV; however, at higher Vf concentrations, the UPVmay fall.

• The construction sector will benefit from the

development of more efficient and cost-effective

methods for assessing material properties and the

influence of different factors by using novel methods

like ML and SHAP analysis.

This study utilized data for which controlled-environment

experiments were conducted (laboratory). It is proposed that in

future research, actual on-site circumstances, such as humidity,

temperature, curing, etc., should be integrated into the

modeling phase in order to investigate their effect on the

material’s strength.
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