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In the present paper, the output performances of the functionally graded

flexoelectric-piezoelectric (FGFP) energy harvesting subjected to an external

harmonic excitation, considering the effect of piezoelectric polarization

direction, are addressed. Based on the Euler-Bernoulli beam model and

generalized Hamiltonian principle, the dynamic governing equations and the

corresponding boundary conditions of the functionally graded flexoelectric-

piezoelectric energy harvesting are obtained. The natural frequency equation

and the closed-form analytical expressions of electromechanical responses are

further deduced. The numerical results show that the output performance of

the functionally graded flexoelectric-piezoelectric energy harvesting is

dependent on the piezoelectric polarization direction, gradient index and

structure size. At the nanoscale, the flexoelectric effect dominates the

output performances; however, at the microscale, the gradient piezoelectric

effect dominates the output performances. At transition scales, from nano to

micro, the output performances are very small sometimes, where, in some case,

the gradient piezoelectric effect and flexoelectric effect cancel each other. The

present study reveals the importance of the piezoelectric polarization direction

and gradient index on the output performance of the functionally graded

flexoelectric-piezoelectric energy harvesting from nano to micro scales.

KEYWORDS

functionally gradedmaterial, energy harvesting, polarization direction, flexoelectricity
and piezoelectricity, electromechanical responses

Introduction

With the rapid development of nanotechnology, a large number of small electronic

devices such as sensors, actuators and wireless transmitters have been integrated into

every corner of the world for health monitoring, environmental protection, remote

controls and wireless transmission (Hudak and Amatucci, 2008). These devices require

only a small amount of electricity, and there is waste energy in the environment where

micro-nano devices work. Converting ambient energy into electricity to power micro-

nano devices is considered a promising approach, which has the advantages of small size,
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long life, no pollution and high energy density (Zi and Wang,

2017). In addition, some important system-level and circuit-level

works about micro-scale energy harvesting have been reported

(Chao et al., 2007; Lu et al., 2011). Piezoelectric and flexoelectric

effects are ubiquitous in a wide variety of materials (Ma and

Cross, 2001). Piezoelectric effect is described as the asymmetric

shift of charges or ions of piezoelectric materials when subjected

to mechanical strain (Sezer and Koç, 2021), which only exists in

non-centrosymmetric dielectric materials. The flexoelectric effect

is defined as the coupling between strain gradients and electrical

polarization (Fu and Cross, 2007; Deng, 2017), which exists in all

dielectrics and exhibits strong size-dependent properties at the

nanoscale (Yan et al., 2013). Therefore, it is necessary to consider

the flexoelectric effect in analyzing the electromechanical

coupling of dielectrics at the nanoscale. Even in some micro-

electromechanical systems or almost all nano-electromechanical

systems, flexoelectric materials can replace piezoelectric

materials (Zhang et al., 2014).

Recently, a series of studies have been conducted on the

electromechanical coupling of nanobeams or nanoplates with

flexoelectric effect. Cross (2006) firstly measured the flexoelectric

coefficients of ferroelectric, incipient ferroelectric and relaxor

ferroelectric perovskites by quasi-static and low frequency

dynamic techniques. Majdoub et al. (2008) firstly discussed the

electromechanical coupling responses of the nano-beams with strain

gradient using molecular dynamics and linear piezoelectric theory.

Their results showed that the piezoelectric and flexoelectric effects

exhibit a non-linear interaction in piezoelectric materials. Shen and

Hu (2010) established a theoretical framework including the

electrostatic force, flexoelectricity, and surface effects through the

variational principle of dielectrics. Based on the extended linear

piezoelectric theory and Timoshenko beam model, Yan and Jiang

(2013a), Yan and Jiang (2013b) found that the flexoelectric effect has

a significant influence on the static bending and free vibration of

simply supported piezoelectric nanobeams, and the flexoelectric

effect is also sensitive to themechanical boundary conditions and the

direction of the applied electric field. Liang et al. (2014) investigated

the influence of surface effect and flexoelectricity on the buckling

and vibration of piezoelectric nanowires based on a continuum

framework and the Euler-Bernoulli beam hypothesis. They detected

that the effective Young’s modulus and bending rigidity are

enhanced by flexoelectricity. Zhang et al. (2014) analyzed the

influence of flexoelectric effect on the vibration behavior of

piezoelectric nanoplate. Deng et al. (2014) discussed the

flexoelectric energy harvester in the nanoscale based on the

internal energy density. They solved the electromechanical

frequency responses using the assumed-modes method. Wang

and Wang (2016) developed an analytical model incorporating

flexoelectric effect for nanoscale unimorph piezoelectric energy

harvesters. In their analysis, when the thickness of the

piezoelectric layer is small, the flexoelectric effect has a great

influence on the voltage output and power output. Zhou et al.

(2017) investigated the electromechanical coupling response of

piezoelectric nanobeams with different electrical boundary

conditions, in which the results showed that flexoelectricity effect

has significant influence on stiffness and induced electric potential of

the nanobeam. Moura and Erturk (2017) applied the distributed-

parameter method to discuss the flexoelectric energy harvesters in

elastic dielectrics. Zhao et al. (2019) studied the non-linear bending

and free vibration of Timoshenko piezoelectric nanobeam

incorporating flexoelectricity and surface effect. Their results

indicated that strain gradient elastic effect, flexoelectricity, surface

effect and applied electric voltage have significant influences on the

non-linear mechanical behaviors of nanobeam. Su et al. (2019a)

simulated the flexoelectric energy harvesting under the harmonic

mechanical excitation. In the work, the closed-form voltage output,

power density, and mechanical vibration response were obtained,

which exhibit significant scale effects at the nanoscale. The above

studies mainly focus on monolayer nanostructures, in which the

piezoelectric effect can be ignored (Zhou et al., 2017). However, the

micro-nano systems, constructing the bilayer or multilayer

structures, always exhibit both piezoelectricity and flexoelectricity.

Erturk and Imman (2008) derived the distributed parameter

electromechanical model to analyze the unimorph piezoelectric

energy harvester based on a uniform composite the Euler-

Bernoulli beam. Li et al. (2014a) proposed a size-dependent

model of a three-layer microbeam including a flexoelectric

dielectric layer. Both the static bending and free vibration

problems of cantilever and simply supported microbeams were

studied. Abdollahi and Arias (2015) numerically analyzed the

interplay between piezoelectricity and flexoelectricity in flexural

sensors and actuators. They found that flexoelectricity could

reduce or enhance the effective piezoelectric effect and

electromechanical coupling, which is dependent on the structure

design. Qi et al. (2016) established the bending model of an electro-

elastic bilayer nanobeam. Their results demonstrated that both the

strain gradient elastic effect and the flexoelectric effect significantly

affect the deflection of the nanobeam. Su et al. (2019b) examined the

electromechanical response of bilayer piezoelectric sensors due to

flexoelectricity and strain gradient elasticity. The flexoelectric effect

can significantly enhance the electrical performance of bilayer

piezoelectric sensors at the nanoscale. Interestingly, the

piezoelectric polarization direction of the piezoelectric layer also

affects the electromechanical response of the system. Rojas et al.

(2021) studied the output of piezoelectric only, flexoelectric only,

and combined electromechanical configurations over various scales.

Their results revealed that the combined system outperforms either

piezoelectric only or flexoelectric only configuration from nano to

micro scales. Fu and Zhang (2022) established a size-dependent

bilayer piezoelectric microbeam model considering the strain

gradient effect based on the modified piezoelectric theory. Fu and

Zhou (2021) suggested a size-dependent model of the laminated

microbeam partially covered by the flexoelectric layer, which solved

the static bending problem of the beam under uniform load and

voltage. All the above studies are static or dynamic

electromechanical coupling analysis of mono-layer or multi-layer
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nanostructures. However, there are some studies on improving the

effective flexoelectric effect through structural design or uneven

distribution of materials. The introduction of functionally graded

materials (FGMs) to improvematerial properties is a very useful and

sensible approach (Ma and Lee, 2012; Ke et al., 2014). Combining

flexoelectricity and simple functional grading, Mbarki et al. (2014)

quantitatively demonstrated the possibility of achieving apparent

piezoelectric materials with large and temperature-stable

electromechanical coupling above the Curie temperature. Rafiee

et al. (2014) addressed the non-linear analysis of energy harvesting,

which is composed of FG piezoelectric carbon nanotube reinforced

composite plates, under combined thermal and mechanical

loadings. The results showed that temperature variation and

material distribution have a great effect on the amplitude of

vibration and the average harvested power. Li and Pan (2015)

numerically solved the static bending and free vibration problems

of FG piezoelectric microplates based on the modified couple-stress

theories. Kumar et al. (2018) demonstrated the induced

flexoelectricity in dielectric FGMs due to non-uniform Youngs’s

modulus along the thickness. Their results showed that the optimum

gradient index of FGMs can greatly enhance the output voltage. Chu

et al. (2018), Chu et al. (2019) discussed the flexoelectric effect in FG

composite piezoelectric nanobeams and FG flexoelectric

nanocylinders. The results revealed that the static bending, free

vibration behavior and electromechanical properties can be

significantly influenced by the given FG configuration with

graded material parameters. Furthermore, based on the non-local

simplified strain gradient elasticity theory, Chu et al. (2020) analyzed

the thermally induced non-linear dynamic behaviors of FG

flexoelectric nanobeams, in which the thermally induced bending

amplitude and non-linear frequency were discussed. Nan et al.

(2020) studied the static bending and free vibration problem of

porous FG piezoelectric nanobeams and indicated the gradient

index, porosity distribution, external electrical voltage,

flexoelectric effect and boundary conditions have significant

effects on the static deformation and natural frequency of the

nanobeams. Recently, Chen et al. (2021) analyzed the mechanical

and electrical properties of FG flexoelectric sensors under different

electrical boundary conditions. The results showed that the

flexoelectric effect, piezoelectric effect, and gradient distribution

have considerable influences on the electromechanical

performance of the FG flexoelectric sensors. Moreover, the non-

uniform piezoelectricity and piezoelectric polarization direction will

play a leading role in the induced electric potential at a large scale.

The flexoelectric effect will dominate the induced electric potential at

the nano scale. However, it is important to clearly explain the

interaction between the piezoelectricity and flexoelectricity in the

FGFP energy harvesting. To the best of our knowledge, the effects of

piezoelectric polarization direction, flexoelectric-piezoelectric

distribution and gradient index on the FGFP energy harvesting

have not been studied clearly. The closed-form analytical solutions

for the FGFP energy harvesting have not been reported, which will

be easy to understand and apply in practice.

The main goal of the present paper is to investigate the

influence of piezoelectric effect, flexoelectric effect and gradient

index on the FGFP energy harvesting at various scales. A FGFP

energy harvesting with a tip mass has been analyzed using the

coupled distributed-parameter model. Applying FGMs in the form

of exponential distribution, based on electric Gibbs free energy and

generalized Hamilton’s variational principle, the natural frequency

equation under different electrical conditions and the closed-form

analytical expressions of output performances under base

excitations are derived. The effects of the piezoelectric

polarization direction and gradient index on the performance

of FGFP energy harvesting are discussed in detail.

Governing equation and boundary
conditions of the FGFP energy
harvesting

Figure 1 shows the schematic of the FGFP energy harvesting

considered in the present study with length L, width B, thickness h,

and a tip mass Mt of side length d. The cantilever beam is made

from a mixture of two isotropic linear elastic constituents BaTiO3

and PVDF. The top and bottom surfaces of the beam are completely

covered with electrode layers, in which the thickness and stiffness of

the electrode layers are negligible relative to the cantilever beam. The

top and bottom surface electrodes are connected by an external

resistanceR, ignoring the resistance of the beam itself. The Cartesian

coordinate system ox1x2 is set on the mid-plane of the beam

(x3 � 0). It is assumed that the piezoelectric polarization

direction of the FGFP energy harvesting is parallel to the x3

direction. The end of the beam is fixed on a base that can move

along the x3 direction, where the base displacement is wb(t). The
cantilever beam is excited by the moving of the base to produce a

FIGURE 1
A schematic configuration of the FGFP energy harvesting
with a tip mass under the base excitation.
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corresponding vibration response. Free charges are generated on the

top and bottom surface electrodes to form an output electric

potential due to the electromechanical coupling effect.

It is assumed that the top surface (x3 � h
2) of the beam is

BaTiO3-rich while the bottom surface (x3 � −h
2) is PVDF-rich.

The variation of material properties along the thickness of the

beam is defined as an exponential gradient distribution as:

N x3( ) � N0 exp α
2x3 + h

2h
( )[ ] (1)

where theN(x3) is the effective material properties along the x3

direction.N0 denotes the material parameter value of the bottom

material PVDF. α is the gradient index of material properties,

which is used to describe the property gradation profiles of the

beam, i.e., α � 0 corresponds to an isotropic homogeneous beam.

The effective elastic modulus c(x3), effective dielectric coefficient
a(x3), effective piezoelectric coefficient e(x3), effective

flexoelectric coefficient μ(x3) and effective density ρ(x3) of

the beam are given as follows (Chen et al., 2021):

c x3( ) � c1111e
α1

2x3+h
2h( )

a x3( ) � a33e
α2

2x3+h
2h( )

e x3( ) � e311e
α3

2x3+h
2h( )

μ x3( ) � μ3113e
α4

2x3+h
2h( )

ρ x3( ) � ρ0e
α5

2x3+h
2h( )

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(2)

For the slender beam, combined with the small deformation

assumption for Euler-Bernoulli beams, it can be assumed that the

mechanical displacement vector u of the FGFP energy harvesting

can be written as:

u � − x3 − l( ) zw
zx1

, 0, w{ } (3)

where w is the deflection of the cantilever beam. The symmetry

breaking of the FGFP energy harvesting makes the position of the

physical neutral layer not coincide with the geometric mid-plane,

where l denotes the deviation between the physical neutral layer and

the geometric mid-plane. It can be determined using the formula

(Zhang and Zhou, 2008; Chu et al., 2018; Chen et al., 2021):

l �
∫

A
c x3( )x3dA

∫
A
c x3( )dA

(4)

where A is the cross section of the FGFP energy harvesting. The

non-trivial strains ε11 and strain gradients of the FGFP energy

harvesting are obtained as follows:

ε11 � − x3 − l( ) z
2w

zx2
1

, ε11,1 � − x3 − l( ) z
3w

zx3
1

, ε11,3 � −z
2w

zx2
1

(5)

For the slender beam structure, the strain gradient in the axial

direction ε11,1 is smaller than that in the transverse direction ε11,3,

so it can be ignored. Similarly, it is reasonable to consider only the

electric field E3 along the x3 direction and ignore the electric field

E1 along the x1 direction (Wang and Feng, 2010; Li et al., 2014b).

Under the assumption of infinitely small deformation, the

constitutive equation of the FGFP energy harvesting can be

derived as (Zhou et al., 2017; Chen et al., 2021):

σ11 � c x3( )ε11 − e x3( )E3

σ113 � −μ x3( )E3

D3 � a x3( )E3 + e x3( )ε11 + μ x3( )ε11,3
(6)

where σ11 is the non-zero stress, σ113 is the higher order stress,

which is caused by the electric field due to the flexoelectric effect,

and D3 is the electric displacement.

For simplicity, the dielectric coefficient, piezoelectric coefficient

and flexoelectric coefficient of the FGFP energy harvesting have the

same gradient distribution, which means α2 � α3 � α4 � α. The

relationship between electric field and electric potential Φ is

expressed as E3 � − zΦ
zx3

. There is no free charge inside the FGFP

energy harvesting, then the electric displacement should satisfy

Gauss’s law: D3,3 � 0. Combining Eq. 6, we obtain:

z2Φ

zx2
3

� −α
h

zΦ

zx3
− x3

α

h

e311
a33

z2w

zx2
1

− 1 − αl

h
( ) e311

a33
+ α

h

μ3113
a33

[ ] z2w

zx2
1

(7)
Considering the surface electrical boundary conditions

Φ(x1, x3 � h
2, t) � ψ1(x1, t) and Φ(x1, x3 � −h

2, t) � ψ2(x1, t).
The electric potential Φ and electric field E3 inside the FGFP

energy harvesting can be evaluated as:

Φ x1, x3, t( ) � −r x3( )ψ x1, t( )

+ nhr x3( ) +mx2
3 + nx3( ) z2w

zx2
1

+ C x1, t( )

E3 x1, x3, t( ) � −α
h
ψ x1, t( )r x3( )

+ αnr x3( ) − 2mx3 − n( ) z
2w

zx2
1

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(8)

where ψ(x1, t) � ψ1(x1, t) − ψ2(x1, t) is the electric potential

difference between the top and bottom electrodes, which is

the voltage generated by the electromechanical coupling effect.

And C(x1, t) is an unknown function related to x1 and t. r(x3),
m, and n are functions introduced to simplify the expression of

the equation, which is:

n � le311 − μ3113
a33

, m � − e311
2a33

, r x3( ) � e−
αx3
h

e
α
2 − e−

α
2

(9)
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Substituting Eq. 8 into Eq. 6, the stress, higher order stress,

and electric displacement of the FGFP energy harvesting can be

written as:

σ11 � c x3( )ε11 + αe x3( )ψ
h

r x3( )

−e x3( ) αnr x3( ) − 2mx3 − n( ) z
2w

zx2
1

σ113 � μ x3( ) αr x3( )ψ
h

− μ x3( )

αnr x3( ) − 2mx3 − n( ) z
2w

zx2
1

D3 � −a x3( ) αr x3( )ψ
h

+ a x3( ) αnr x3( ) − 2mx3 − n( )

d2w

dx2
1

+ e x3( )ε11 + μ x3( )ε11,3

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(10)

For a dielectric material with flexoelectricity and

piezoelectricity, a linearized extension of piezoelectric theory

has been used. Considering the coupling relationship between

the strain gradient and the electric field strength, the electric

Gibbs free energy density function U can be written as (Hu and

Shen, 2009; Zhou et al., 2017):

U � 1
2
σ ijεij + 1

2
σ ijkεij,k + 1

2
DiEi (11)

Combining Eqs. 5, 8 and 10, The electric Gibbs free energy

density function can be expanded as:

U � 1
2
k x3( ) z2w

zx2
1

( )2

− i x3( )ψ
h

z2w

zx2
1

− α2a x3( )r2 x3( ) ψ
2

2h2
(12)

where k(x3) and i(x3) are functions of x3 introduced to simplify

the equation, and the expressions are:

k x3( ) � c x3( ) − 4me x3( ) − 4m2a x3( )[ ]x2
3 − (2lc x3( ) − 4mle x3( ) + 2ne x3( )[

+4mna x3( ) + 4mμ x3( ) − 2αne x3( )r x3( ) − 4αmna x3( )r x3( )]x3

+ c x3( )l2 − 2αnle x3( )r x3( ) + 2nle x3( ) + 2αnμ x3( )r x3( ) − 2nμ x3( )
− α2n2a x3( )r2 x3( ) − n2a x3( ) + 2αn2a x3( )r x3( )

i x3( ) � αr x3( ) e x3( ) x3 − l( ) + μ x3( ) − a x3( )[
αnr x3( ) − 2mx3 − n( )] (13)

The generalized Hamiltonian principle of the FGFP energy

harvesting can be expressed as follows (Liang et al., 2015; Su

et al., 2019a):

δ∫T

0
K − G +W( )dt � 0 (14)

where δ is the variational operator, K, G and W are the total

kinetic energy, total electrical Gibbs free energy, and external

work, respectively. Assuming no external body forces and electric

field for the FGFP energy harvesting showing in Figure 1, Eq. 14

can be written as:

K � ∫
v

1
2
ρ _wm| |2 dv + 1

2
Mt

zw

zt
+ zwb

zt

∣∣∣∣∣∣∣
∣∣∣∣∣∣∣2 + 1

2
It
z _wm

zx1

∣∣∣∣∣∣∣
∣∣∣∣∣∣∣
2( ) ∣∣∣∣∣∣∣∣ x1�L

G � ∫
v

Udv

W � ∮
S
ϖψdS

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩
(15)

wherewm(x1, t) � wb(t) + w(x1, t) is the absolute displacement of

the FGFP energy harvesting in the x3 direction, and w(x1, t) is the
deflection of the cantilever beam (relative to the base). It is the

moment of inertia of the tip mass, and for a cube it can be expressed

as It � 1
6Mtd2 +Mt(d+h2 )2. ϖ is the surface charge density on the

surface electrodes, v � L × B × h is the volume of the beam, and S is

the area of the top and bottom surfaces of the beam.

Using Eqs. 12, 15, the variational expression of total electric

Gibbs free energy of the FGFP energy harvesting can be written

as (Su et al., 2019a):

δ∫T

0
dt∫

v

Udv �∫T

0
∫L

0
Yep

z4w

zx4
1

− CpfB

2
z2ψ

zx2
1

( )δw[
−B Cpf

2
z2w

zx2
1

+ Q

h2
ψ( )δψ]dx1 dt

+∫T

0
Yep

z2w

zx2
1

− CpfB

2
ψ( )δ zw

zx1
( )∣∣∣∣∣∣∣∣

x1�L

dt −∫T

0
Yep

z3w

zx3
1

− CpfB

2
zψ

zx1
( )δw∣∣∣∣∣∣∣∣

x1�L
dt

(16)
where three parameters have been introduced. Yep is the effective

bending rigidity of the FGFP energy harvesting, which is related to

the gradient index, dielectric coefficient, elastic modulus,

piezoelectric coefficient, and flexoelectric coefficient of materials.

Cpf is defined as the flexo-piezoelectric coupling coefficient relating

to the gradient index, piezoelectric and flexoelectric coefficients,

which determines the electromechanical coupling performance of

the FGFP energy harvesting. Parameter Q is a function of x3

introduced to simplify the equation. Their expressions are:

Yep � B ∫
h
2

−h
2

k x3( )dx3, Cpf � 2
h
∫
h
2

−h
2

i x3( )dx3, Q � α2 ∫
h
2

−h
2

a x3( )r2 x3( )dx3

(17)
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Further substituting Eqs. 15, 16 into Eq. 14, the generalized

Hamiltonian variational equation of the FGFP energy harvesting

can be derived:

∫T

0
∫
v

ρ €w + €wb( )δw dv +Mt €wbδ x1 − L( )δw⎡⎢⎢⎢⎢⎢⎣ ⎤⎥⎥⎥⎥⎥⎦dt
+ ∫T

0
dt∫L

0
Yep

z4w

zx4
1

− CpfB

2
z2ψ

zx2
1

( )δw − B
Cpf

2
z2w

zx2
1

+ Q

h
ψ( )δψ[ ]dx1

+ ∫T

0
Yep

z2w

zx2
1

− CpfB

2
ψ + It

z3w

zx1zt
2( )δ zw

zx1
( )∣∣∣∣∣∣∣∣

x1�L
dt

− ∫T

0
Yep

z3w

zx3
1

− CpfB

2
zψ

zx1
−Mt

z2w

zt2
( )δw|x1�L dt − ∫T

0
∫
S

ϖδψdS dt

� 0

(18)

where δ(x1) is the Dirac delta function. Since δw in Eq. 18 can be

chosen arbitrarily, the undamped electromechanical coupling dynamic

governing equation of the FGFP energy harvesting can be written as:

Yep
z4w

zx4
1

+ M +Mtδ x1 − L( )[ ] z
2wb

zt2

+M z2w

zt2
− CpfB

2
z2ψ

zx2
1

� 0 (19)

where M � ρBh is the mass per unit length of the beam.

However, damping in real structures is an important and

complex issue. Two damping effects are considered in this

paper: viscous air damping (external damping) and strain-rate

damping (internal damping) (Erturk and Inman, 2011; Deng

et al., 2014). With the damping effects, the electromechanical

dynamic Equation 19 can be represented by Eq. 20:

Yep
z4w

zx4
1

+ M +Mtδ x1 − L( )[ ] z
2wb

zt2
+M

z2w

zt2
− CpfB

2
z2ψ

zx2
1

+ cs
z5w

zx4
1zt

+ ca
zw

zt
� 0

(20)

where ca is the viscous air damping coefficient and cs is the strain-

rate damping coefficient. Both of them satisfy the proportional

damping criterion and they are mathematically convenient for

the modal analysis (Erturk and Inman, 2011).

Similarly, δψ in Eq. 18 can also be chosen arbitrarily, so the

FGFP energy harvesting also have the following relationship:

∫L

0
ϖ + Cpf

2
z2w

zx2
1

+ Qψ

h2
( )dx1 � 0 (21)

When the external load resistor R is connected to the top and

bottom surface electrodes of the FGFP energy harvesting, the

electric current must be equal to the change of the average output

positive charge per unit time, i.e., ψR � −1
h ∫

v

_ϖdv. Using Eq. 21 and
combining Gauss’s law (Erturk and Inman, 2011; Deng et al.,

2014; Su et al., 2019a), the circuit equation can be obtained as:

∫L

0

BQ

h2
_ψdx1 + ψ

R
� −∫L

0

CpfB

2
z3w

zx2
1zt

dx1 (22)

where _ψ represents the first derivative of ψ with respect to time.

In the same way, the electromechanical coupling boundary

conditions of FGFP energy harvesting can be obtained:

w 0( ) � 0

zw

zx1

∣∣∣∣∣∣∣ x1�0 � 0

Yep
z2w

zx2
1

− CpfB

2
ψ + It

z3w

zx1zt2
( ) ∣∣∣∣∣∣∣∣ x1�L � 0

Yep
z3w

zx3
1

− CpfB

2
zψ

zx1
−Mt

z2w

zt2
( ) ∣∣∣∣∣∣∣∣ x1�L � 0

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(23)

Free vibration responses of the FGFP
energy harvesting

Natural frequency of the FGFP energy
harvesting under the electrical open
circuit condition

In this section, the free vibration of the FGFP energy harvesting

under the electrical open circuit condition is investigated. The top

and bottom surfaces of the cantilever beam are equipotential bodies

because they are covered with electrodes. Hence, the electric

potential difference ψ(x1, t) independent of x1 is a function of

time t only. The base excitation wb(t) is zero during the free

vibration, so the Eq. 20 could be simplified as:

Yep
z4w

zx4
1

+M
z2w

zt2
� 0 (24)

Correspondingly, Eq. 23 could be rewritten as:

w 0( ) � 0

zw

zx1

∣∣∣∣∣∣∣ x1�0 � 0

Yep
z2w

zx2
1

− CpfB

2
ψ + It

z3w

zx1zt2
( ) ∣∣∣∣∣∣∣∣ x1�L � 0

Yep
z3w

zx3
1

−Mt
z2w

zt2
( ) ∣∣∣∣∣∣∣∣ x1�L � 0

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(25)

when the FGFP energy harvesting is bending, the surface charge

will be redistributed on the electrodes. However, the total charge

should remain zero, then Eq. 21 could be simplified to:

∫L

0

Cpf

2
z2w

zx2
1

+ Q

h2
ψ( )dx1 � 0 (26)

And substituting Eq. 26 into the third equation of Eq. 25, the

complete mechanical boundary condition can be obtained:
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Yep
z2w

zx2
1

+ Cpf
2Bh2

4QL
zw

zx1
+ It

z3w

zx1zt2
( )∣∣∣∣∣∣∣∣

x1�L
� 0 (27)

The separated variable method is employed to solve the

natural frequency of the FGFP energy harvesting. Considering

the form of Eq. 24, its solution can be set as:

w x1, t( ) � ∅ x1( )η t( ) (28)
∅ x1( ) � C1 cos

β

L
x1 + C2 sin

β

L
x1 + C3 cos h

β

L
x1 + C4 sin h

β

L
x1

η t( ) � C5e
jλt

⎧⎪⎪⎪⎨⎪⎪⎪⎩
(29)

where ∅(x1) is the modal vibration pattern, η(t) is the

generalized coordinate, C1, C2, C3, C4 and C5 are parameters

independent of x1 and t, β is the eigenvalue of the structural

vibration, λ is the circular frequency of the natural vibration of

the FGFP energy harvesting, and j is the imaginary root.

Substituting Eqs. 28, 29 into Eqs. 24, 25, the following

governing equations and boundary conditions can be obtained:

d4∅ x1( )
dx4

1

− λ2
M

Yep
∅ x1( ) � 0 (30)

∅ 0( ) � 0

d∅ x1( )
dx1

∣∣∣∣∣∣∣ x1�0 � 0

Yep
d2∅ x1( )

dx2
1

+ Cpf
2Bh2

4QL
− Itλ

2( ) d∅ x1( )
dx1

[ ] ∣∣∣∣∣∣∣∣ x1�L � 0

Yep
d3∅ x1( )

dx3
1

∣∣∣∣∣∣∣∣ x1�L + λ2Mt∅ L( ) � 0

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(31)

From the Eq. 30, λo � λ � β2
���
Yep

ML4

√
can be obtained, which is

the circular frequency of the natural vibration of the FGFP energy

harvesting under the electrical open circuit condition. After

substituting Eq. 29 into Eq. 31, we can get:

C1A1 + C2A2 � 0
C1A3 + C2A4 � 0

{ (32)

where A1, A2, A3 and A4 are:

A1 � Cpf
2Bh2

4QL
− Itλ

2( ) sin β + sin hβ( ) + Yep
β

L
( ) cos β + cos hβ( )[ ]

A2 � Cpf
2Bh2

4QL
− Itλ

2( ) cos hβ − cos β( ) + Yep
β

L
( ) sin β + sin hβ( )[ ]

A3 � Yep
β

L
( )3

sin β − sin hβ( ) + λ2Mt cos β − cos hβ( )[ ]
A4 � − Yep

β

L
( )3

cos β + cos hβ( ) + λ2Mt −sin β + sin hβ( )[ ]

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩
(33)

To ensure that Eq. 32 has the non-zero solution, the

corresponding coefficient determinant of Eq. 32 should be

equal to zero. The characteristic equation of the natural

frequency of the FGFP energy harvesting in the open circuit

condition is:

Yep
Cpf

2Bh2

4QL
− Itλ

2( ) β

L
( )3

sin hβ cos β + cos hβ sin β( )
+ Yep( )2 β

L
( )4

1 + cos β cos hβ( ) + λ2Mt
Cpf

2Bh2

4QL
− Itλ

2( )
cos β cos hβ − 1( ) + λ2MtYep

β

L
( ) sin hβ cos β − sin β cos hβ( ) � 0

(34)

Equation 34 is a transcendental equation about the

eigenvalue β, which can be solved numerically.

Natural frequency of the FGFP energy
harvesting under the electrical short
circuit condition

For the electrical short circuit condition, the top and

bottom surface electrodes of the beam are connected by

wires, and the induced potential between the top and

bottom surface electrodes is zero. Hence, the governing

equation and boundary constraints of free vibration are

simplified as:

d4∅ x1( )
dx4

1

− λ2
M

Yep
∅ x1( ) � 0 (35)

∅ 0( ) � 0

d∅ x1( )
dx1

∣∣∣∣∣∣∣ x1�0 � 0

Yep
d2∅ x1( )

dx2
1

− λ2It
d∅ x1( )
dx1

[ ] ∣∣∣∣∣∣∣∣ x1�L � 0

Yep
d3∅ x1( )

dx3
1

∣∣∣∣∣∣∣∣ x1�L + λ2Mt∅ L( ) � 0

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(36)

Similarly, the circular frequency of system vibration in

the electrical short circuit condition is λs � λ � β2
���
Yep

ML4

√
. The

characteristic equation of the natural frequency in this

case is:

1 + cos β cosh β + β
Mt

mL
cos β sinh β − sin β cosh β( )

− β3It
ML3 cosh β sin β + sinh β cos β( )

+β
4MtIt
M2L4 1 − cos β cosh β( ) � 0 (37)
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Electromechanical coupling responses of
the FGFP energy harvesting

The vibration response of the FGFP energy harvesting can be

written as a linear combination of series of vibration modes:

w x1, t( ) � ∑∞
r�1
wr x1, t( ) � ∑∞

r�1
∅r x1( )ηr t( ) (38)

where ∅r(x1) is the mass normalized eigenfunction of the rth

vibrational mode, which should satisfy the electrical short-circuit

condition. ηr(t) is the modal mechanical response coefficient in

the modal coordinate. The eigenfunction ∅r(x1) could be

obtained from Eqs. 35, 36 as follows:

∅r x1( ) � Xr cos
βr
L
x1 − cos h

βr
L
x1( ) + r sin

βr
L
x1 − sin h

βr
L
x1( )[ ]

� Xr
�∅ r x1( ) (39)

where r � −A3
A4
, βr is the rth root of the transcendental

characteristic Eq. 37, and Xr is the modal amplitude constant,

which could be solved by normalizing the eigenfunction using

the following orthogonality condition:

∫L

0
∅s x1( )M∅r x1( )dx1 + ∅s x1( )Mt∅r x1( )[ ]|x1�L

+ d∅s x1( )
dx1

It
d∅r x1( )
dx1

[ ]∣∣∣∣∣∣∣∣
x1�L

� δrs

∫L

0

d2∅s x1( )
dx2

1

Yep
d2∅r x1( )

dx2
1

dx1 � λ2rδrs (40)

where δrs is the Kronecker delta, the modal amplitude constant

Xr can be expressed as:

Xr � ∫L

0

�∅ 2
r x1( )Mdx1 + �∅ 2

r L( )Mt + It
d∅r x1( )
dx1

( )2 ∣∣∣∣∣∣∣∣∣ x1�L]}−1
2⎡⎣⎧⎨⎩

(41)
It should be noted that the output electric potential difference

ψ(x1, t) of the FGFP energy harvesting is independent of x1, so

the spatial derivative of ψ would vanish in Eq. 20. Erturk and

Inman (2011) remained it in the dynamic equation by setting

ψ � ψ(x1, t) � V(t)[(H(x1) −H(x1 − L)], where V(t) is the

output voltage of the FGFP energy harvesting, and H(x1) is

the Heaviside function. The electromechanical coupling dynamic

governing equations of the FGFP energy harvesting in modal

coordinates can be expressed as:

d2ηr t( )
dt2

+ λ2rηr t( ) + 2ξrλr
dηr t( )
dt

− ∫L

0

CpfB

2
V t( )∅r x1( ) dδ x1( )

dx1
− dδ x1 − L( )

dx1
[ ]dx1 � yr,

BQL

h2
dV t( )
dt

+ V t( )
R

� −∑∞
r�1
Or

dηr t( )
dt

(42)

where yr � −[M∫L
0
∅r(x1)dx1 +Mt∅r(L)] d2wb(t)

dt2 ,

Or � CpfB
2

d∅r(x1)
dx1

|x1�L. ξr is the modal damping ratio of the rth

including the air viscous damping coefficient ca and the strain

rate damping coefficient cs (Erturk and Inman, 2011; Tang and

Wang, 2017; Su et al., 2019a).

It is assumed that the fixed end of the energy harvesting is

excited by a translational displacement in the transverse

direction. The external excitation is a harmonic form with a

circular frequency ω, i.e., wb(t) � W0ejωt, where W0 is the

amplitude of the base vibration. According to the small

deformation and linear system assumption, the output voltage

response and the modal mechanical response of the FGFP energy

harvesting can be set asV(t) � V0ejωt and ηr(t) � H0ejωt, where

V0 and H0 are both generally complex numbers. Hence, Eq. 42

can be written as:

λ2r − ω2( ) + 2ξrλrjω[ ]H0 − V0Or � Yr

BQL

h2
jω + 1

R
( )V0 + jω∑∞

r�1
OrH0 � 0

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩ (43)

where Yr � W0ω2[M∫L
0
∅r(x1)dx1 +Mt∅r(L)] is the

amplitude of the modal mechanical force function. Solving Eq.

43, The analytical modal expressions of voltage V(t) can be

represented as follows:

V t( ) �
−jω∑∞

r�1
OrYr

λ2r − ω2( ) + 2jωξrλr
1
R
+ BQL

h2
jω( ) +∑∞

r�1
jωO2

r

λ2r − ω2( ) + 2jωξrλr

ejωt (44)

Numerical results and discussion

Effect of the piezoelectric polarization
direction on electromechanical coupling
coefficient

To assess the effect of the piezoelectric polarization direction

on performance of the FGFP energy harvesting, we simply

change the piezoelectric coefficient to positive or negative,

which expresses the opposite polarization direction. The

piezoelectric coefficient of the FGFP energy harvesting Ⅰ is set
to a negative value, and the corresponding top and bottom

parameters are eBΙ � −4.4 C/m2, ePΙ � −0.44C/m2. The

piezoelectric coefficient of the FGFP energy harvesting Ⅱ is set

to a positive value, and the corresponding top and bottom

parameters are eBΠ � 4.4C/m2, ePΠ � 0.44C/m2, respectively

(Zhou et al., 2017; Su et al., 2019a). Here, B and P in the

subscript represent BaTiO3 and PVDF materials, respectively.

The other parameters of BaTiO3 are the same as follows (Hong

et al., 2010; Hahn et al., 2021): flexoelectric coefficient

μB � 10−6 C/m2, dielectric coefficient aB � 12.48 nC/V ·m,

elastic modulus cB � 131GPa, and density

ρB � 6.017 × 103 kg/m3. The other material parameters of
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PVDF are set as (Poddar and Ducharme, 2013; Lu et al., 2016):

flexoelectric coefficient μP � 10−7 C/m2, dielectric coefficient

aP � 1.248 nC/V ·m, elastic modulus cP � 3.7GPa, and

density ρP � 1.78 × 103 kg/m3. Based on the above parameter

values, the gradient index can be obtained by Eq. 2:

α1 � 3.567, α2 � α3 � α4 � 2.302, α5 � 1.218. When the

gradient index is infinitely close to zero, the functionally

graded beam will become a uniform PVDF beam. Over the

entire frequency range, when the thickness of the beam is

changed, the length/width/thickness aspect ratio is set to be

100:10:1. The side length of the tip mass is taken as d � B,

and the massMt is taken asM × L × 0.2. The damping ratios are

given by ξ1 � ξ2 � 0.0285, and the two damping coefficients (cs
and ca) can be obtained (Erturk and Inman, 2011). All the

simulation results are given inform of Frequency Response

Functions (FRFs) for convenience, which are normalized by

the base excitation acceleration €wb � ω2W0ejωt. Meanwhile,

the excitation acceleration has been normalized according to

the gravitational acceleration: g � 9.81m/s2.

The normalized bending stiffness of the FGFP energy

harvesting is defined as Yep/EI, where EI is the bending

stiffness of the FG dielectric beam (e � 0, μ � 0). The

variation of the normalized bending rigidity with thickness is

shown in Figure 2A. The normalized bending stiffness of the FG

energy harvesting with piezoelectric effect only is about 1.014,

and does not change with the thickness, which indicates that the

gradient piezoelectric effect has limited improvement on the

bending stiffness of the dielectric beam. The normalized

bending stiffness of the FG energy harvesting with

flexoelectric effect only and the FGFP energy harvesting Ⅱ
(piezoelectric coefficient is positive) decrease with increasing

thickness, and tends to 1 and 1.014 respectively at large scale,

which indicates that the flexoelectric effect have significant size

dependence and there exists a strong coupling effect between

flexoelectricity and gradient piezoelectricity. The normalized

bending stiffness of the FGFP energy harvesting Ⅰ (piezoelectric
coefficient is negative) firstly decreases then increases with

decreasing thickness, which approaches 1 as the thickness is

about 0.68 μm. The normalized bending stiffness of FGFP

energy harvesting Ⅱ is always the largest, which can be

regarded as the result of the superposition of the gradient

piezoelectric effect and flexoelectric effect. Hence, the FGFP

energy harvesting Ⅱ has the strongest resistance to bending

deformation and the corresponding natural frequency is also

the highest. The flexo-piezoelectric coupling coefficient Cpf is a

very important coupling parameter in the FGFP energy

harvesting, which reflects the interplay between piezoelectric

and flexoelectric effects and determines the output

electromechanical performance of the FGFP energy

harvesting. Cpf also reflects the coupling relationship

between the mechanical energy and electric energy of the

FGFP energy harvesting. The variation of Cpf with the

thickness for two types of the FGFP energy harvesting is

given in Figure 2B. Cpf of the FGFP energy harvesting Ⅰ is
always positive and gradually increases with increasing

thickness. This indicates that the piezoelectric effect is

always enhance the electromechanical coupling of the FGFP

energy harvesting. However, Cpf of the FGFP energy harvesting

Ⅱ gradually decreases with increasing thickness and is equal to

0 when the thickness is 1.3 μm. This implies that the

piezoelectric effect would weaken the electromechanical

coupling of the FGFP energy harvesting in a certain range.

FIGURE 2
(A) Variation of Yep/EI as a function of the beam thickness for two types of the FGFP energy harvesting; (B) Variation of Cpf as a function of the
beam thickness for two types of the FGFP energy harvesting.
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Free vibration analysis of the FGFP energy
harvesting

The natural frequency of the FGFP energy harvesting is a

very important physical performance. The variation of natural

frequencies (f � λ/2π) of two types of FGFP energy harvesting

with the beam thickness under the electrical open circuit (fo)

and electrical short circuit (fs) conditions are shown in

Figure 3. The natural frequencies of the FGFP energy

harvesting Ⅰ and Ⅱ both increase with decreasing thickness.

The natural frequencies of the FGFP energy harvesting Ⅱ are

greater than that of the FGFP energy harvesting Ⅰ regardless of
the electrical open circuit or short circuit condition, because the

difference of piezoelectric coefficients causes the effective

bending rigidity Yep of the FGFP energy harvesting Ⅱ to be

greater than that of the FGFP energy harvesting Ⅰ (Chen et al.,

2021). For both types of the FGFP energy harvesting, the

natural frequency with the open circuit condition is higher

than that of the short circuit condition, because under the open

circuit condition, the induced potential generated by the

electromechanical coupling resistances to bending

deformation and enhances the apparent bending stiffness of

the beam.

The natural frequency shift of beams is an important

parameter for judging electromechanical coupling

performance of the FGFP energy harvesting (Su et al.,

2019a). Here, the effective natural frequency shift of the

FGFP energy harvesting is defined as: F � fo/fs. Figure 4.

Plots the curves of the effective natural frequency shift F as a

function of the beam thickness. The results show that F

increases with decreasing thickness, and when the thickness

decreases to a certain critical value, F tends to a saturation

value. F tends to 1 as the thickness becomes large, which

means the electromechanical effect is very weak and the

influence of the induced electric potential on the bending

deformation is very small at the largescale. At transition

scales, from nano to micro, F is greatly affected by the

beam thickness. F of the FGFP energy harvesting Ⅰ is

higher than that of the FGFP energy harvesting Ⅱ with the

same beam thickness because, for the FGFP energy harvesting

Ⅰ, the induced electric potential is higher owing to the

enhancement of flexoelectric and piezoelectric effects and

fs is smaller due to the effective bending rigidity Yep.

Output performance analysis of the FGFP
energy harvesting

The power density response is an important parameter for

evaluating the performance of the FGFP energy harvesting (Deng

et al., 2014; Su et al., 2019a), which can be expressed in the

following form:

Pd t( )
−ω2W0e

jωt( )2 �
∑∞

r�1
−jωOrZr

λ2r−ω2( )+2jωξrλr
1
R + BQL

h2 jω( ) + ∑∞
r�1

jωO2
r

λ2r−ω2( )+2jωξrλr
⎡⎢⎢⎢⎢⎢⎢⎢⎣ ⎤⎥⎥⎥⎥⎥⎥⎥⎦

2

×
1
R
×
1
v

(45)
where Zr � −M∫L

0
∅r(x1)dx −Mt∅r(L). Figure 5 depicts the

power density of two types of FGFP energy harvesting with the

beam thickness h � 3 μm under different excitation

frequencies. When the load resistance R increases from

0.1 to 10 MΩ (as an electrical open circuit condition), the

resonance frequencies of the two types of FGFP energy

FIGURE 3
Variation of natural frequencies of the FGFP energy
harvesting as a function of the beam thickness under different
electrical conditions.

FIGURE 4
Variation of the effective natural frequency shift of two types
of FGFP energy harvesting as a function of the beam thickness.
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harvesting are almost the same values under all load

resistances, 10,370 and 10,408 Hz, respectively. The

resonance frequencies of the FGFP energy harvesting are

not sensitive to external load resistances at the large scale

(h � 3 μm). Both types of FGFP energy harvesting have

maximum output power density when the load resistance is

about 1.5 MΩ, which is the optimal load resistance. However,

the maximum output power density of the FGFP energy

harvesting Ⅰ is obviously higher than that of the FGFP

energy harvesting Ⅱ, which indicates the electromechanical

coupling effect of the FGFP energy harvesting Ⅰ is higher.

The plotted curves in Figure 6 show the power density

response for a smaller scale beam (h � 0.3 μm). For different

load resistances, the power density response curves of the two

types of the FGFP energy harvesting have an intersection

phenomenon. At the small scale, effective flexoelectric effect

(flexoelectricity and gradient piezoelectricity) can

significantly affect the electromechanical coupling of the

system. So that when the load resistance increases from

0.1 to 10 MΩ, the resonance frequency of the beam Ⅰ is

shifted from 104,156 to 119,990 Hz, and the resonance

frequency of the beam Ⅱ is shifted from 109,665 to

FIGURE 5
Variation of the power density FRFs of the FGFP energy harvesting with h � 3 μm: (A) FGFP energy harvesting I; (B) FGFP energy harvesting II.

FIGURE 6
Variation of the power density FRFS of the FGFP energy harvesting with h � 0.3 μm: (A) FGFP energy harvesting I; (B) FGFP energy harvesting II.
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111,640 Hz. Comparing the results of Figure 5A and

Figure 6A, it should be noted that the maximum power

density for the beam with thickness 0.3 μm is smaller than

that for the beam with thickness 3 μm in the FGFP energy

harvesting Ⅰ. However, for the single layer uniformly

flexoelectric energy harvesting, the power output increases

with decreasing thickness (Deng et al., 2014; Su et al., 2019a).

In the present case, the gradient piezoelectricity has a

significant effective flexoelectric effect at the larger scale

for the FGFP energy harvesting. Figure 2B also shows that

the absolute value of electromechanical coupling coefficient

Cpf increases with increasing thickness at the large scale.

Figure 7 presents the variation of maximum power density FRFs

with the beam thickness for the different FGFP energy harvesting. The

power density of the FGFP energy harvesting with only flexoelectric

effect increases and then decreases with decreasing thickness. This is

because when the thickness decreases to a certain value, the induced

electric potential due to the flexoelectric effect will significantly act on

the FGFP energy harvesting itself, resulting in a reduction on the

mechanical deformation of the system, thereby reducing the

mechanical vibration response of the FGFP energy harvesting. It

achieves a maximum power density at about 0.4 μm. The power

density of the FGFP energy harvesting with only piezoelectric effect

linearly increases with increasing thickness, which intersects the curve

of only flexoelectric effect. This means that the flexoelectric effect

dominates the performance of the system at the small scale; however,

at the large scale, the gradient piezoelectric effect becomes appreciable.

Since the piezoelectric and flexoelectric effects of the FGFP energy

harvesting Ⅰ produce output electric potentials with the same

direction, the gradient piezoelectric effect would enhance the

maximum power density response, in which the corresponding

Cpf is always positive. Due to the change of piezoelectric

polarization direction, the induced electric potential generated by

the gradient piezoelectric effect has the opposite direction with that

generated by the flexoelectric effect. Hence, the maximum power

density response of FGFP energy harvesting Ⅱ can be regarded as the

result of the cancellation of the gradient piezoelectric effect and

flexoelectric effect. The maximum power density response of

FGFP energy harvesting Ⅱ is in phase with the external excitation

when the beam thickness is less than 1.3 μm, and is in reverse phase

with the external excitation when the beam thickness is greater than

FIGURE 7
Variation of themaximum power density FRFs of two types of
FGFP energy harvesting as a function of the beam thickness.

FIGURE 8
Variation of the maximum power density FRFs as a function of the beam thickness with different gradient indexes: (A) FGFP energy harvesting I;
(B) FGFP energy harvesting II.
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1.3 μm. The corresponding Cpf also satisfies the same law, which

indicates that the positive and negative values ofCpf can represent the

induced electric potential direction of the FGFP energy harvesting.

Clearly, the piezoelectric polarization direction of the FGFP energy

harvesting is crucial to obtain optimal power output at the desired

scale.

Influence of the gradient index on
electromechanical coupling output of the
FPFG energy harvesting

In this section, we will investigate the influence of the

gradient index on the electromechanical coupling performance

of the two types of FGFP energy harvesting. Keeping the bottom

material (PVDF) of two types of FGFP energy harvesting

invariable, we only change the parameters of the top material

(BaTiO3). The top material parameter remains unchanged

(γ � 1), indicating the gradient index remains unchanged

(α1 � 3.567, α2 � α3 � α4 � 2.302, α5 � 1.218); the top material

parameters are twice the original material parameters (γ � 2),

indicating that the gradient index increases

(α1 � 4.260, α2 � α3 � α4 � 3, α5 � 1.911); the top material

parameters are half of the original material parameters

(γ � 0.5), indicating the gradient index

decreases (α1 � 2.874, α2 � α3 � α4 � 1.609, α5 � 0.525).

Figure 8 depicts the variation of the maximum power

density FRFs with the beam thickness of two types of FGFP

energy harvesting with different gradient indexes. It can be

seen that the gradient index does not change the trend of the

curves. The maximum power density response of the FGFP

energy harvesting Ⅰ increases with increasing gradient index.

The large gradient index will therefore produce more

significant material gradient changes along the beam

thickness. The intense flexoelectric effect and gradient

piezoelectric effect will enhance the electromechanical

coupling output of system at the large scale for the FGFP

energy harvesting Ⅰ. For the FGFP energy harvesting Ⅱ shown

in Figure 8B, the output of system generated by flexoelectric

effect and gradient piezoelectric effect will cancel each other.

Hence, the power density response will become very small or

even zero at a certain beam thickness. At the small scale, the

maximum power density response will reach a peak value at a

certain thickness, which increases with increasing gradient

index. At the large scale, the maximum power density

response increases with increasing thickness. However, for

about 0.56 μm< h< 1.14 μm, the maximum power density

response decreases with increasing gradient index. Hence, near

the transition range from nano tomicro scale, considering the FGFP

energy harvesting Ⅱ is inapplicable, which should be adopted at the

smaller or larger scale. Therefore, selection of materials, structure

scale and external load resistance is essential to obtain the optimal

harvestable power for the FGFP energy harvesting.

Conclusion

In this paper, the FGFP energy harvesting is studied based on the

Euler-Bernoulli beam model. Utilizing the electric Gibbs free energy

and the generalized Hamiltonian principle, the dynamic governing

equations and boundary conditions are established. Further, the

natural frequency equation is derived and the mode-superposition

method is used to obtain the closed-form analytical expressions of the

electromechanical responses of the FGFP energy harvesting in the

modal space. The simulation results show that the change of

piezoelectric polarization direction will significantly change the

normalized bending stiffness and the flexo-piezoelectric coupling

coefficient of the FGFP energy harvesting. Further, the

piezoelectric polarization direction, gradient index, structure size

and external load resistance have significant influences on the

output performance of the FGFP energy harvesting. The change

of piezoelectric polarization direction will lead to enhance or reduce

the performance of the FGFP energy harvesting. The flexoelectric

effect and gradient piezoelectric effect will dominate the output

performance at the nanoscale and microscale, respectively. The

present study reveals the importance of the piezoelectric

polarization direction and gradient index on the output

performance of the FGFP energy harvesting from nano to micro

scales. This result also provides theoretical guidance for the selection

of materials, gradient index, structure scale, and external load

resistance to design new FGFP energy harvesting.
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