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Topological insulators supply robust edge states and can be used to compose

novel waveguides to protect energy propagation against various defects. For

practical applications, topological waveguides with a large working bandwidth

and highly localized interface mode are desired. In the present work,

mechanical valley Hall insulators are described by explicit geometry

parameters using the moving morphable component method first. From the

geometry parameters, artificial neural networks (ANN) are then well-trained to

predict the topological property and the bounds of nontrivial bandgaps.

Incorporating those ANN models, mathematical formulation for designing

optimal mechanical topological waveguides can be solved efficiently, with

an acceleration of more than 10,000 times than the traditional topology

optimization approach.
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1 Introduction

Utilizing the topologically protected edge states, topological waveguides surpass

the classical waveguides from the following aspects: backscattering free, immunity to

cavities, disorders and sharp corners, and a theoretically perfect transmission rate

(Figure 1). The underlying principle is the well-known bulk-edge correspondence,

which declares that the topological edge states are determined and protected by the

difference of topological invariants for both sides of the waveguide (Hasan and Kane,

2010; Qi and Zhang, 2011; Asbóth et al., 2016). As a result, topological materials open

a new avenue for the efficient manipulation of waves, and there has been a great

interest in developing topological insulators in different physical systems (Huber,

2016; Ma et al., 2019; Ozawa et al., 2019; Tokura et al., 2019; He et al., 2022a; Breunig

and Ando, 2022; Xue et al., 2022).

Besides the success of classic topological insulator models in photonic and

phononic systems (He et al., 2016; Huber, 2016; Ma and Shvets, 2016; Dong et al.,

2017; Pal and Ruzzene, 2017; Chen et al., 2018; Liu and Semperlotti, 2018; Lu et al.,

2018; Chen et al., 2019a; Chen et al., 2019b; Fan et al., 2019; Ma et al., 2019; Ozawa

et al., 2019; Zhou et al., 2020; Xue et al., 2022), topology optimization has been used
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for the inverse design of topological insulators with optimized

performance, e.g., a wider topological band gap. Christiansen

and his collaborators obtained acoustic and photonic spin-

Hall insulators by realizing the novel wave propagation path

in a well-designed waveguide (Christiansen et al., 2019a;

Christiansen et al., 2019b). Nanthakumar et al. (2019) and

Chen et al. (2019c) used topology optimization methods to

rationally obtain band structures with Dirac cones. Based on

that, first-order photonic topological insulators with extra-

wide bandgaps and second-order topological insulators are

successfully obtained (Chen et al., 2019c; Chen et al., 2020).

Dong et al. (2021) customized Dirac cones with various

symmetries and degeneracies, and further constructed novel

broadband acoustic topological insulators in square lattices by

topology optimization. To consider the topological

requirement during the optimization process, Du et al.

(2020) proposed a quantitative measure of band inversion

and adopted the explicit topology optimization method to

describe continuum unit cells (UCs). Mathematical

formulations for quantum valley Hall insulators and spin

Hall insulators were given in (Du et al., 2020; Luo et al.,

2021a). Recently, multi-class and multi-functional topological

crystalline insulators have been systematically designed by

combining the moving morphable component method and

symmetry indicator method (Luo et al., 2021b). A

comprehensive review of the inverse design of topological

insulators is referred to (Chen et al., 2022).

Although remarkable progress has been achieved in the

above work, computational efficiency is still a bottleneck for

the inverse design of topological insulators. In particular, in

the solution process of the topology optimization method,

tens to hundreds (or even thousands) of times of analyzing

intermediate designs are necessary to obtain the final

optimized design, especially when intelligent algorithms

are used. Even though alternative physical requirements

have been developed to escape from the expensive

calculation of topological invariants, for continuum UCs,

solving the mathematical formulations for optimal

topological insulators with genetic algorithm (GA) is still a

time-consuming task (Du et al., 2020; Luo et al., 2021a; Luo

et al., 2021b). It is worth noting that machine learning

techniques have been recently used for the classification of

topological insulators (Long et al., 2020), prediction of

topological transitions (Wu et al., 2020), summarization of

the phase diagram of disordered higher-order topological

insulators (Araki et al., 2019), and inverse design of

photonic topological insulators (Long et al., 2019).

Additionally, topological metaplates for flexural waves and

phononic beams with nontrivial topological properties have

been obtained by machine learning (He et al., 2021; He et al.,

2022b). And a recent review of the intelligent on-demand

design of phononic metamaterials is available (Jin et al.,

2022).

In the present work, focused on continuum-type unit cells,

based on the design method of optimal valley Hall insulators in

(Luo et al., 2021a), artificial neural networks are constructed to

predict the topological property and bounds of nontrivial

bandgap first, and this can accelerate the computational

efficiency by four orders of magnitude. Then alternative

mathematical formulations for the inverse design of

topological waveguide are presented and solved by the

machine learning-assisted procedure. Finally, the present

design paradigm obtains an optimal topological waveguide

with a highly concentrated transmission path.

The rest of the paper is organized as follows: an explicit

description of continuum valley Hall insulators using the moving

morphable component (MMC) method is introduced in Section

2. The numerical analysis of band structure and topological

property of valley Hall insulators is then sketched in Section

3. After training artificial neural networks for predicting the

qualitative topological property and quantitative performance in

Section 4, the optimal design of the topological waveguide

assisted by machine learning is presented in Section 5. Finally,

Section 6 summarizes some concluding remarks.

2 Valley Hall insulators described by
moving morphable components

2.1 The MMC method

In the present work, the MMC method is used to describe

the valley Hall insulators. In particular, moving morphable

components determined by their geometric parameters are set

as the basic building blocks to compose the optimal

topological insulators (Guo et al., 2014; Zhang et al., 2017;

Du et al., 2022). By optimizing those geometry parameters, the

configurations of UCs are updated through the moving,

morphing, or merging of MMCs. Since the number of

design variables is reduced substantially as compared to the

traditional implicit topology optimization method, gradient-

free algorithms can be used for the inverse design of valley

Hall insulators with reasonable time costs. Besides, the

intermediate designs with crisp boundaries can be directly

modeled in commercial software.

2.2 C3-symmetric unit cells described by
MMCs

For the considered C3-symmetric hexagonal lattice made of

base medium Al and scattering medium Fe illustrated in

Figure 2A, only the material distribution of the diamond

region boxed by yellow dashed lines needs to be determined.

As shown by Figure 2B, each MMC (representing the scatter)

adopted here includes these geometry parameters: the center
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coordinate (x0, y0), the length ρi of each control line OPi and the

inclined angle ϕ of line OP1. So the design variable of the α-th

component is denoted asDα � (xα
0 , y

α
0 , {ραi }i�1,...,4,ϕα)⊤. To make

the boundary smoother, 3 interpolation points are introduced

between the adjacent control points (Luo et al., 2021a). The first

irreducible Brillouin zone boundary of the hexagonal UC is

illustrated in Figure 2C and will be used to obtain the band

structures in the subsequent sections.

3 Valley Hall insulator classified by its
band structure and topological
property

As a typical topological matter, valley Hall insulators can

hold protected edge states which are robust to various defects

(Ma and Shvets, 2016; Dong et al., 2017; Pal and Ruzzene, 2017;

Chen et al., 2018; Liu and Semperlotti, 2018; Lu et al., 2018; Chen

et al., 2019a). Instead of calculating the expensive valley Chern

numbers, it is to trace the gapped Dirac cone through the

objective bandgap and phase vortexes for the identification of

valley Hall insulators in this work (Luo et al., 2021a).

3.1 Band structures of valley Hall insulators

To illustrate the valley Hall insulators, a C3-symmetric

hexagonal unit cell with six inserted circles of radii R1 and R2

is presented in Figure 3. The harmonic elastic out-of-plane wave

is governed by the following equations

μ∇2uz � ω2ρuz

uz(r + R) � eik·Ruz(r) (1)

where ρ and μ are the mass density and Lame’s parameter; k, R
and uz are the wavevector, lattice vector and harmonic out-of-

plane displacement field, respectively.

Thanks to the explicit geometry description, the UCs

described by the MMC method are modeled in COMSOL

5.6 and analyzed with body-fitted mesh. By solving Eq. 1 for

each wavevector k, band structures are present in Figure 3. The

lattice constant is A � 1m, and the material parameters are set as:

the base medium with elastic modulus E0 � 70GPa, Poisson’s

ratio ]0 � 0.35 and mass density ρ0 � 2700kg ·m−3, the

scattering medium with elastic modulus E � 200GPa,

Poisson’s ratio ] � 0.3 and mass density ρ � 7800kg ·m−3. For
the case R1 � R2, a Dirac cone exists in the band structure of

FIGURE 2
(A) The C3-symmetric hexagonal UC described by the MMCs, (B) the design variables of each MMC and (C) the first irreducible Brillouin zone
boundary of the hexagonal UC.

FIGURE 1
An illustration of a topological waveguide.
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Figure 3B. By breaking the symmetry of the UC along different

directions, i.e., R1 >R2 and R1 <R2, gaps would be introduced

between the Dirac points and the eigenmodes at the gapped Dirac

points will be reordered, as shown in Figures 3A,C. The UCs in

Figures 3A,C are both valley Hall insulators and can be used for

generating topological waveguides. Therefore, how to obtain a

pair of valley Hall insulators with different topological properties

and a common nontrivial bandgap is crucial for designing

topological waveguides (Luo et al., 2021a).

3.2 Vortex of valley Hall insulators

Guaranteed by the bulk-edge correspondence (Hasan and Kane,

2010; Qi and Zhang, 2011; Asbóth et al., 2016), a pair of UCs with

different topological invariants is sufficient to create a gapless edge

band. For continuum UCs, however, the numerical calculation of

topological invariants, e.g., valley Chern number, are very expensive.

Therefore, an effective and rapid identification method is necessary.

By noticing the fact that, for the gapped Dirac points, their

phase fields of valley Hall insulators present two opposed

vortexes (clockwise or anticlockwise), as shown in Figures

3A,C. Luo et al. (2021a) suggested using the opposite phase

vortexes as a measure to classify the topological property.

Furthermore, the vortex index of the n th eigenmode of the i

th unit cell at K point is defined as the following double

integration of unit phase gradient along the tangent vector

(positive in anticlockwise)

τ(i)n � 1

|Ω|∫∫Ω

∇θ(i)n · eτ∣∣∣∣∇θ(i)n

∣∣∣∣ dS,where eτ � 1������
x2 + y2

√ (−y, x) (2)

In principle, a perfect vortex index is a quantized value of −1,
0, or +1, and the topological phase transition can be effectively

identified from the sign of the unvarnished vortex quantity. As

pointed out in (Luo et al., 2021a), in numerical implementations,

setting a relatively large threshold for the vortex index would be

effective.

4 Artificial neural networks for
mechanical valley Hall insulators

4.1 Dataset generation

To construct the dataset, one MMC is randomly generated in

the primitive diamond region of a C3-symmetric hexagonal UC

with lattice constant A � 1m and its y-coordinate of the center is

fixed as A/2. As a result, the UC can be determined only by

6 design variables, and the input vector denotes X �
(x0, ρ1, ρ2, ρ3, ρ4, ϕ)⊤.

From the application aspect of topological waveguides, a

wider common bandgap of the valley Hall insulators is

beneficial for a larger working bandwidth and a more

localized edge mode. Therefore, both the bounds of

objective (nontrivial) bandgap and the vortex indexes are

necessary information. For each UC, we set the normalized

upper and lower bounds of the objective bandgap (denoted as

Y � (�ω1, �ω2)⊤) (with �ω1 � Amax
k

ω1(k)/ (2πc0) and
�ω2 � Amin

k
ω2(k)/ (2πc0)) and the two vortex indexes

(denoted as Y � (τ1, τ2)⊤) of the gapped Dirac points as the

outputs.

By generating 100, 000 samples by random sampling about

the input, the outputs are obtained using COMSOL 5.6.

Normalization is adopted to the whole dataset to improve the

accuracy of training tasks. The training, validation and test sets

take 80%, 10% and 10% of the dataset, respectively.

4.2 Deep neural networks for mechanical
valley Hall insulators

Since the bounds of the objective bandgap are continuous

values, while their vortex indexes are in discrete type, two

artificial neural networks are used for predicting them from

the input respectively. All the training process is

implemented by using the deep learning toolbox in Matlab

2019b.

FIGURE 3
The band structures of C3-symmetric hexagonal UCs with setting (A) R1 � 0.3A,R2 � 0.2A, (B) R1 � R2 � 0.25A and (C) R1 � 0.2A,R2 � 0.3A (A
denoting the lattice constant). The corresponding UCs, the out-of-plane displacement fields, and phase fields at the (gapped) Dirac points are
inserted as well.
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4.2.1 Regressionmodel predicting the bounds of
objective bandgap

We first build a regression neural network to predict the

bounds of the normalized objective bandgap of the MMC-

described UCs, with the input vector of X �
(x0, ρ1, ρ2, ρ3, ρ4, ϕ)⊤ and the output is Y � (�ω1, �ω2)⊤. As

illustrated in Figure 4A, four fully connected layers are used

to connect the input and output layers, with the number of

neurons being 256, 128, 64, and 16 in order. For the ith fully

connected layer, the relationship between the input vector Pi and

the output vector Qi can be expressed as Qi � Wi × Pi + bi,
where W i is the weight matrix and bi is the bias vector. For

each hidden layer, the LeakyRelu activation function is used to

introduce nonlinear factors into the neural network. The root-

mean-square error (RMSE) is used to measure the difference

between the predicted and the actual upper and lower bounds of

the normalized objective bandgap, and the expression is:

RMSE �
�����������������������∑N

i�1(~ωi
1 − �ωi

1)2 + (~ωi
2 − �ωi

2)2
N

√
(3)

where (~ωi
1, ~ω

i
2)⊤ are the actual normalized bounds of the objective

bandgap, andN is the number of samples. The minibatch size and

max epoch are set as 5120 and 3000, respectively. As an

improvement of the Adagrad algorithm, the RMSprop algorithm

is adopted to accelerate the learning process with an initial learning

rate of α � 0.01, which is specifically updated to half of the previous

value after every 1000 epochs.

4.2.2 Classification model identifying vortex
Additionally, a classification neural network with the same

input X � (x0, ρ1, ρ2, ρ3, ρ4, ϕ)⊤ is also trained to determine the

topological properties of the MMC-described unit cells. The

topological property of the UCs is further labeled as: +1 for

the case −1≤ τ1 ≤ − 0.6 and 0.6≤ τ2 ≤ 1, −1 for the case

0.6≤ τ1 ≤ 1 and −1≤ τ2 ≤ − 0.6, and 0 for the rest. Obviously,

UCs with a label +1 or −1 are valley Hall insulators, while trivial

materials are labeled by 0. And this label is denoted as ψ and set as

the output of the classification model.

As shown in Figure 4B, for this triple classification problem, five

fully connected layers with 256, 256, 128, 64, and 16 neurons are used

to connect the input and output layers, respectively. The LeakyRelu

activation function is used for each hidden layer while the softmax

activation function is used for the output layer to generate the

classification probability. The classification takes the probability

values and assigns each input to one of three mutually exclusive

categories using the cross-entropy loss function, which is defined as:

loss � − 1
N

∑N
i�1
∑M
j�1
wjtij lnyij (4)

whereN is the number of samples,M is the number of categories,

wj is the weight of the j th category, and tij is the indicator of the ith

sample belonging to the j th category. Specifically, when the ith

sample is matched to the jth category, the tij � 1; otherwise tij � 0.

As the output of the above softmax layer, yij is the predicted

probability for the case that the ith sample belongs to the jth

category. For the classification neural network, satisfactory training

efficiency and accuracy can be achieved by setting theminibatch size

and max epoch as 1024 and 120, respectively. Similar as the

regression model, the Rmsprop algorithm is again used with an

initial learning rate of α � 0.01. The learning rate is set to decay to

half of the previous value after every 20 epochs.

4.3 Training of the artificial neural
networks

The convergence histories of the loss function values of both the

regression and classification neural networks are shown in Figure 5.

The difference between the validation and training losses is slight,

and therefore no significant overfitting nor underfitting is observed

in both models. In order to further verify the reliability of the

FIGURE 4
(A) The regression neural network for predicting the normalized bounds of the objective bandgap, and (B) the classification neural network for
predicting the vortex indexes.
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regression neural network, comparisons between the predicted and

actual values of the lower bounds and upper bounds of the

normalized objective bandgaps are presented in Figures 6A,B. It

can be found that, for both the normalized upper and lower bounds

of the objective bandgap, the predicted values and actual values are

quite close, i.e., besides only a few outliers,most points are quite close

to the line y � x. Quantitatively, for the test set, the corresponding

root-mean-square error is RMSE � 0.0590, which guarantees the

accuracy of the trained regression model.

For the classification neural network, the classification accuracy of

the test set is 99.45%. From the confusion matrix of the test set

presented in Figure 6C, besides the high accuracy, it is worth noting

that the nontrivial topological property is never classified oppositely,

e.g., −1 to +1 or +1 to −1. And the fewer incorrect classification only

happens for the cases when the vortex index is marginal, e.g., 0 to ± 1

or ± 1 to 0. And this will not happen when the nontrivial bandgap is

not too narrow (please see the designs in Section 5.2 and Section 5.3).

All these facts validate the accuracy of the trained classification model.

To summarize, we trained reliable regression and classification

neural networks for the subsequent inversedesignof the topological

waveguide.Themotivationandthegreatestadvantageof thiswork is

thesignificantimprovementinthesolutionefficiency.Werandomly

generated 100 pairs of UCs and calculated their bounds of the

objective bandgap and vortex indexes of gapped Dirac points

using COMSOL 5.6 and the trained neural networks, respectively.

The results obtained by exact analysis took a total of 13310.0542 s,

withanaveragetimeof133.1005s,while the latter tookonly0.7963s,

with an average time of 0.0080 s, which is about 16, 000 timesmore

efficient than the former1. The above calculations are implemented

on a desktop computer equipped with an Intel(R) Core(TM) i7-

11700K@3.60GHz 3.60 GHz CPU, 32.0 GB of RAM, and Matlab

2019b under Windows 10.

5 Optimal design of valley Hall
insulators by machine learning

5.1 Mathematical formulation

Since a pair of UCs with inverse topological labels and a common

objective bandgap could compose a topological waveguide, the

mathematical formulation of designing a topological waveguide

described by the MMC method can be written as:

f ind d � (d(1)⊤, d(2)⊤)⊤
min (ψ(1) + 1)2 + (ψ(2) − 1)2
+ (min(�ω(1)

2 , �ω(2)
2 ) −max(�ω(1)

1 , �ω(2)
1 ) − �ωgap)2

s.t. ψ(i) � F c(d(i)), i � 1, 2(�ω(i)
1 , �ω(i)

2 )⊤ � F r(d(i)), i � 1, 2,

d(i) ∈ Ud , i � 1, 2
(5)

where d(i) � (x(i)
0 , ρ(i)1 , ρ(i)2 , ρ(i)3 , ρ(i)4 , ϕ(i))⊤ is the design variables

of the i th unit cell and their admissible set is denoted as Ud �
{(x1, . . . , x6)⊤|x1 ∈ {−1/2 �

3
√

m, 1/2
�
3

√
m}; 0.05m≤ xi ≤ 0.5m,

i � 2, . . . , 5; π/20≤ x6 ≤ π/2}. By minimizing the objective

function, the topological labels of the two UCs are −1 and +1,
and the normalized width of their common objective bandgap is
�ωgap. A critical point of this formulation is that the topological

labels and the bounds of objective bandgap are predicted by the

well-trained classification and regression neural networks, which

guarantee the solution efficiency of this design formulation.

As illustrated in Figure 7, the design Eq. 5 is solved with the help

of GA by setting the following parameters: the population size of 40,

the crossover fraction of 0.8, the elite count of 2, the stall generation

limit of 15 and the fitness function tolerance of 10−8.

FIGURE 5
The convergence history of (A) the root-mean-square error of the regression neural network and (B) the cross-entropy loss of the classification
neural network.

1 There is no doubt that, those specific time values may vary with
different implementations; however, the orders of efficiency
improvement, which is essential for the subsequent optimization,
can always be achieved by using the proposed machine learning
enhanced process.
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5.2 Design of valley Hall insulators with a
target common bandgap

By setting the target normalized common objective bandgap

as 0.04 and 0.07, two pairs of valley Hall insulators are obtained

by solving the mathematical programming (Eq. 5). The

corresponding design variables are: dopt
0.04 � (−1/2 �

3
√

, 0.470,

0.061, 0.464, 0.081, 1.476, 1/2
�
3

√
, 0.180, 0.477, 0.082, 0.125,

0.208)⊤ and dopt0.07 � (−1/2 �
3

√
, 0.183, 0.484, 0.318, 0.246,

1.046, 1/2
�
3

√
, 0.471, 0.149, 0.433, 0.275, 0.251)⊤. Both

designs are converged in 35 generations and the
corresponding iteration histories are given in Figure 8.

Tables 1, 2 show the geometries of each pair of UCs and their

band structures with the objective bandgap marked. Besides, the

FIGURE 6
Comparisons between the predicted and actual values of (A) the lower bounds, and (B) the upper bounds of the normalized objective
bandgap. (C) Confusion matrix of the test set of the classification neural network.

FIGURE 7
Flowchart of the design procedure of optimal design of valley Hall insulators.

FIGURE 8
Iteration histories of the width of the normalized common bandgap for target values of (A) 0.04 and (B) 0.07.
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topological properties of the UCs are verified by plotting the phase

distribution θ of the gappedDirac points and the arrows indicate the

phase gradient ∇θ. The widths of the normalized common bandgap

are set as 0.04 and 0.07, while these values are actually 0.040 (0.257-

0.297) and 0.069 (0.243-0.312), respectively, and the relative errors

are both smaller than 1.5%. Furthermore, the vortexes are clockwise

(the upper gappedDirac point) and anticlockwise (the lower gapped

Dirac point) in both first UCs, and this implies the corresponding

topological labels are −1. Oppositely, the actual topological labels of
both second UCs are +1. All these facts demonstrate the

effectiveness of the proposed ML-assistant design framework for

topological waveguides.

5.3 Design of valley Hall insulators with
maximized working frequencies

The waveguide made of a pair of valley Hall insulators with

different topological properties and a wider common bandgap,

usually has a larger operating bandwidth and more concentrated

edge states. Therefore, for real applications, a topological

waveguide with better performance can be obtained by

modifying the objective function of Eq. 5 as

min (ψ(1) + 1)2 + (ψ(2) − 1)2
− (min(�ω(1)

2 , �ω(2)
2 ) −max(�ω(1)

1 , �ω(2)
1 ))2 (6)

Solving the updated formulation, the common bandgap

width of optimized UCs can reach 0.106, and the

corresponding design variable is d opt
max � (−1/2 �

3
√

, 0.290,

0.373, 0.311, 0.325, 0.401, 1/2
�
3

√
, 0.359, 0.317, 0.315, 0.453, 0.202)⊤.

The optimized UCs, their band structures and the

corresponding energy vortexes are presented in Table 3. It can be

found that, the actual width of the normalized common bandgap is

0.105 (0.229-0.334), and the relative error is about 1.0%. And the

topological properties of the two UCs are also consistent with

classified labels. This also validates the effectiveness of the

proposed paradigm for designing topological insulators with a

maximized width of the common bandgap.

5.4 Validation and evaluation of the
optimized topological waveguides

To validate the proposed design paradigm for designing

topological waveguide, each pair of optimized UCs in Section

5.2 and Section 5.3 is assembled into a finite supercell structure

respectively, as shown in Figure 9. In their band structures, the

bulk bands are depicted as black curves, and the interface bands

depicted by the red curve appear in the objective bandgap and are

responsible for the topologically protected wave propagation. As

some interface bands are blurred by their adjacent bulk bands,

the applicable operating frequency ranges are highlighted in light

green, and the corresponding widths are marked as well. To be

specific, the operating bandwidths are 140.4 Hz and 246.3 Hz in

Figures 9A,B, corresponding to the cases in which the normalized

common bandgap is set as 0.04 and 0.07, respectively. And this

value is increased to 382.0 Hz in Figure 9C, corresponding to the

TABLE 1 The optimized topological insulators with a normalized common bandgap of 0.04, their band structures and the energy vortexes of the
gapped Dirac points.

UCs Band structures Vortexes

(upper Dirac point)

(lower Dirac point)
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TABLE 3 The optimized topological insulators with amaximized normalized common bandgap, their band structures and their energy vortexes of the
gapped Dirac points.

UCs Band structures Vortexes

TABLE 2 The optimized topological insulators with a normalized common bandgap of 0.07, their band structures and their energy vortexes of the
gapped Dirac points.

UCs Band structures Vortexes
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design with a maximized width of the common bandgap. Notably,

there is almost no intersections nor gap between the interface band

and the bulk bands, which is a critical band structure (Du et al.,

2020). Compared to the former two groups of designs, the operating

bandwidth of optimized waveguides is increased by 172.1% and

55.1%, respectively. Besides, it is also shown that, as the operating

bandwidth (and the width of common bandgap) increases, the

energy of interface mode gets more concentrated at the interface

(Figure 9C). This clearly shows the significance of the optimal design

of topological insulators.

To further verify the performance of the above designs,

their waveguides were modeled in COMSOL 5.6 by

FIGURE 9
Optimized supercells, their band structures and the corresponding interface modes at kx � 0.5π/A with the width of common bandgap as (A)
0.04 (B) 0.07 (C) 0.105.

FIGURE 10
Topologically protected elastic wave propagation modes along optimized straight and Z-shaped waveguides with a width of the normalized
common bandgap as (A) 0.04 (B) 0.07 (C) 0.105.
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imposing absorption boundary conditions. Each waveguide

model consists of 40 × 40 optimized UCs and contains a

straight interface or a Z-shaped interface. A unit monopole

point source is applied at the point with a distance of 4A

from the left side along the interface. Referring to the

operating bandwidth of each finite supercell described

above, representative elastic wave propagation modes of

the three optimized waveguides are shown in Figure 10.

Obviously, elastic waves can robustly pass through all the

interfaces, including the sharp corners of the Z-shaped

interface, and this indicates that the valley Hall

insulators-based waveguides enjoy the topological

protection property. Furthermore, it is obvious that the

energy propagation is more concentrated for a waveguide

consisting of a pair of UCs with a wider common bandgap

width. In particular, the energy transport in the optimized

waveguide composed of UCs with maximized common

bandgap is most concentrated, occupying only a 4-UC-

width region.

6 Concluding remarks

In the present work, describing the valley Hall insulators

by the moving morphable component method, two artificial

neural networks are trained to predict the discrete topological

property and the continuous bounds of the objective

bandgap. From the application point of view, mathematical

formulations are proposed for the inverse design of optimal

topological waveguides to achieve a target or maximized

working bandwidth. Numerical examples illustrate that,

taking advantage of machine learning, the solution

efficiency can be accelerated by more than 10,000 times.

The obtained optimized mechanical topological waveguide

robustly concentrates the energy transmission in a 4-UC-

width interface region. The proposed design paradigm can

be easily generalized for the artificial intelligence (AI)-assisted

design of 3D topological materials, and topological materials

in multi-physics systems, with a more pronounced

improvement than the traditional inverse design method.
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