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In this paper, an analytical approach for global buckling of ring-stiffened

sandwich cylindrical shells is presented with layerwise theory (LWT).

Appropriate displacement functions are assumed according to the boundary

conditions and the deformation characteristics of the inner and outer shells. The

strain energies of the inner and outer shells and the ribs and the work done by

external forces are derived with the help of classical laminate theory.

Furthermore, the Rayleigh–Ritz method is employed to obtain the critical

buckling load of ring-stiffened sandwich cylindrical shells. The ribband width

has a great influence on the precision of calculation of the critical buckling load,

and a formula for calculating this width is obtained by data fitting. To confirm the

accuracy of the proposed formulation, a numerical simulation is carried out by

using Abaqus FEM software. The results show that the proposed approach has

high accuracy in predicting the global buckling behavior of ring-stiffened

sandwich cylindrical shells. Finally, the effects on the buckling performance

of ring-stiffened sandwich cylindrical shells caused by changing the inner and

outer shell thicknesses and the rib height, thickness, and spacing are explored.
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1 Introduction

Sandwich cylindrical shells are generally composed of two shells of the same material

between which is sandwiched a core of a different material, which may be a lightweight

filler core, a lattice core, or a skeleton cores (Mahamood et al., 2012; Chen et al., 2015).

With their advantages of high strength and stability, strong impact resistance, and low

density, sandwich cylindrical shells are widely used in various engineering structures

(Lopatin et al., 2012; Gholami Ansari et al., 2015; Shahgholian-Ghahfarokhi et al., 2019).

Among the class of skeleton-reinforced sandwich cylindrical shells are ring-stiffened

shells, in which ring ribs are sandwiched between the inner and outer shells to provide

resistance to external loads. Strength failure and buckling are the main failure modes of

ring-stiffened sandwich cylindrical shells when these are subjected to both axial and radial

loads, and buckling includes local buckling, rib crippling, and global buckling.
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Unfortunately, to date, there have been no reports of systematic

research on the strength and stability of ring-stiffened sandwich

cylindrical shells.

Sandwich cylindrical shells were developed from single-

layer cylindrical shells. Flugge (1973) and Timoshenko and

Gere (1963), among others, have established a method for

the analysis of buckling of unstiffened single-layer

cylindrical shells. Xie et al. (2003), among others, have

systematically studied the strength and stability of

stiffened single-layer cylindrical shells. The total potential

energy of the structure was calculated using classical

laminate theory (CLT), and a formula for the critical

global buckling load of stiffened single-layer cylindrical

shells was derived using the Rayleigh–Ritz method. Tian

et al. (1999) and Ghorbanpour Arani et al. (2010) performed

the elastic buckling analysis of ring-stiffened cylindrical

shells under general pressure loading via the Ritz

method. Carveli et al. (2001), Messager et al. (2002), and

Ren et al. (2014) obtained a formula for the critical buckling

load of composite stiffened cylindrical shells by using the

smeared stiffener method (SSM). After decades of

development, the research on the strength and stability of

single-layer cylindrical shells has become mature, and the

semi-analytical and semi-empirical formulas can meet the

precision requirements of engineering design. However,

there are significant differences in form of structure, the

works of single-layer cylindrical shells cannot be directly

applied to the sandwich cylindrical shells.

Over the years, there have been many studies of sandwich

cylindrical shells. The buckling of such shells with both ends

clamped under external pressure was studied by Lopatin and

Morozov (2015) using the Galerkin method. Jalali et al.

(2011) used first-order shear deformation theory (FOSDT)

to analyze the buckling of sandwich cylindrical shells with

variable shell thickness. Alibeigloo and Rajaee Piteh Noee

(2017) studied the statics and free vibration of sandwich

cylindrical shells consisting of a layer of functionally

graded material sandwiched between ceramic and metal.

Chen et al. (2015) carried out both experimental and

theoretical investigations of the influence of defects on the

bending and shearing mechanical properties of sandwich

cylindrical shells strengthened by carbon fiber conical

trusses. Han et al. (2004) explored the buckling of foam

core sandwich cylindrical shells with large slenderness

ratio under external pressure. Estrada et al. (2012)

investigated the buckling behavior of sandwich cylindrical

shells buried in soil. Sofiyev et al. (2015) used FOSDT to

analyze the vibration of sandwich cylindrical shells on elastic

foundations. Garg et al. (2021) carried out a detailed study in

which they analyzed various theories of statics, buckling, and

vibration of sandwich structures based on an extensive survey

of the literature, and they presented a summary of the status

of research on sandwich structures. Many studies have shown

that the most important failure mode of sandwich cylindrical

shells is global buckling (Wodesenbet et al., 2003; Bisagni

et al., 2006; Frulloni et al., 2007; Morozov et al., 2011; Zheng

et al., 2015).

Many scholars have done a lot of work on the global

buckling of sandwich cylindrical shells. Ghahfarokhi and

Rahimi (2018) established a theoretical approach for

analyzing the global buckling of sandwich cylindrical

shells with lattice cores. A force and moment effect

analysis was used to evaluate the influence of the lattice

cores on the global equivalent stiffness, and finally the

critical buckling load was obtained by the Rayleigh–Ritz

method. Shahgholian et al. (2020) used FOSDT to

calculate the global stiffness matrix of sandwich

cylindrical shells. A formula for the critical buckling load

was obtained by the Rayleigh–Ritz method. To verify the

accuracy of this approach, the results obtained have been

compared with those of other methods described in the

literature, including the finite element method (FEM).

Huang et al. (2017) assumed that the elastoplastic

behavior of the shell material changed smoothly

according to a power law and thereby established a semi-

analytical method for describing the elastoplastic buckling

of sandwich cylindrical shells under the combined action of

axial and torsional loads. Although much research has been

done on the global buckling of sandwich cylindrical shells,

this has mostly been done using equivalent-single layer

(ESL) theory. In this approach, a sandwich cylindrical

shell is taken as being equivalent to a single-layer

cylindrical shell, the global stiffness matrix of the

sandwich cylindrical shell is then calculated on this basis,

and the energy method is then used to obtain a formula for

the critical buckling load. However, this method has some

serious shortcomings, for example, the global stiffness

matrix is too complex to calculate and the mechanism of

buckling associated with each part of the structure is unclear.

For this reason, it is urgent to develop an analysis approach

with clear mechanical mechanism, small amount of

calculation and high accuracy.

In this paper, the global buckling of ring-stiffened

sandwich cylindrical shells is studied theoretically. First, a

reasonable virtual displacement is assumed according to the

boundary conditions and the deformation characteristics of

the shells during global buckling. To obtain the total

potential energy of the structure, the strain energies of the

inner and outer shells and the ribs of the sandwich structure

are calculated, and a formula for the critical global buckling

load is then derived using the Rayleigh–Ritz method. Second,

the width of the ribband, which is an important parameter

representing the coupling effect of the inner and outer shells

and the ribs, is analyzed, and a formula for calculating this is

established. Third, Abaqus FEM software is employed to

analyze the global buckling of the sandwich cylindrical
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shell, and the results are then compared with those of the

proposed analytical approach to verify the accuracy of the

latter. Finally, the influences of the inner shell thickness, outer

shell thickness, rib height, rib thickness, and rib spacing on

global stability are investigated. The illustration of the

organization of this article is shown in Figure 1.

The approach to analyzing the global buckling of ring-

stiffened sandwich cylindrical shells presented in this paper

avoids the need to calculate a complex global stiffness

matrix. As well as requiring fewer calculations, it has a

clear physical meaning and enables a quantitative

description to be given of the contributions of the inner

and outer shells and the ribs to global stability. On the one

hand, the results obtained here provide a deeper

understanding of the mechanisms involved during

buckling of skeleton-reinforced sandwich cylindrical

shells and thereby theoretical guidance for the

preliminary design of ring-stiffened sandwich cylindrical

shells. On the other hand, these results can also be used as a

basis for rapid optimization of structural designs of such

shells.

2 Analytical approach

Energy theory is a general approach to buckling analysis,

in this section, the physical model of ring-stiffened sandwich

cylindrical shells subjected to external hydrostatic pressure is

introduced at first, and then the total potential energy is

obtained by the classical laminated theory, finally, the

critical global buckling load of ring-stiffened sandwich

cylindrical shells is derived with the help of the

Rayleigh–Ritz method.

2.1 Physical model

The schematic representation of the ring-stiffened sandwich

cylindrical shells was shown in Figure 2, which have two shells,

namely, the inner and outer shells. The two shells are tied

together by ring ribs. The ring ribs are the rings produced by

the inner and outer shell cut out a plane perpendicular to the x

axis, and the geometric parameters are as follows: L is the total

length of the shells, R0 and R1 are the radii of the middle surfaces

Figure 1
The illustration of the organization of this article.
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of the inner and outer shells, respectively. L is the rib spacing, x

and φ are axial and circumferential coordinates, and h is the rib

height.

2.2 Total potential energy

In this subsection, the potential energy of the sandwich

cylindrical shells is calculated using CLT, which assumes a

reasonable virtual displacement based on the boundary

conditions and the deformation characteristics during global

buckling.

2.2.1 Virtual displacement
As shown in Figure 3, when global buckling of the

sandwich cylindrical shells occurs, the deformation

modes of the inner and outer shells are both sinusoidal

and the amplitudes of deformation are roughly equal, and

so it can be assumed that the inner and outer shells have the

same virtual displacement during global buckling. In

addition, for shells with both ends simply supported, the

circumferential and radial displacements should be zero at

the ends. Taking the left end as the coordinate origin,

the virtual displacements satisfying the displacement

boundary condition can be assumed to have the

following forms:

⎧⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎩

u � A sin(nφ) cos(mπx

L
)

v � B cos(nφ) sin(mπx

L
)

w � C sin(nφ) sin(mπx

L
),

(1)

where u, v, and w are the axial, circumferential, and radial

displacements, m and n are the wavenumbers of the axial

half-wave and circumferential whole wave when global

buckling occurs, and A, B, and C are constants representing

the amplitudes of displacements.

The strain energies of the outer and inner shells and the ribs,

together with the external force work, will now each be

calculated. The detailed calculations can be found in the work

of Xie et al. (2003).

2.2.2 Strain energy of outer shell
Similar to the study of plate bending, the strain of middle

surfaces of shell can also be characterized by the following six

components: two tensile and compressive strains ε01 and ε02,

two changes of curvature χ1 and χ2, one shearing strain γ0 and

one twist rate χ12. We know from any book on thin shell

theory that the relationship between them and the

displacement component is as follows:

Figure 2
Schematic of ring-stiffened sandwich cylindrical shells.

Figure 3
Deformation diagram of shells during buckling mode.
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ε01 �
zu

zx
� −Amπ

L
sin(nφ) sin(mπx

L
),

ε02 �
1
R
[zv
zx

− w] � −(nB + C) 1
R
sin(nφ) sin(mπx

L
),

γ0 � zu

Rzφ
+ zv

zx
� [n

R
A + mπ

L
B] cos(nφ) cos(mπx

L
),

χ1 �
z2w

zx2
� −Cm2π2

L2
sin(nφ) sin(mπx

L
),

χ2�
1
R2

[z2w
zφ2

+ w] � −n
2 − 1
R2

C sin(nφ) sin(mπx

L
),

χ12 �
1
R
[ z2w

zφzx
+ zv

zx
] � (nC + B) 1

R

mπ

L
cos(nφ) cos(mπx

L
).

Then we can obtain the strain at any point of section of shell:

⎧⎪⎨⎪⎩
ε1 � ε01 − zχ1
ε2 � ε02 − zχ2
γ � γ0 − 2zχ12,

(2)

Where ε1 is the tensile and compressive strain along the x direction,

ε2 is the tensile and compressive strain along the y direction, γ is the

shearing strain, z is the distance from the point to themiddle surface.

According to the definition of strain energy, the strain energy

of any elastic body can be derived as:

U � 1
2
∫∫∫[σxεx + σyεy + σzεz + τxyγxy + τyzγyz

+τxzγxz]dxdydz. (3)

For the straight normal assumption,

σz � γyz � γxz � 0.

Under biaxial stress state,

σx � E

1 − ]2
(εx + ]εy),

σy � E

1 − ]2
(εy + ]εx), (4)

τxy � E

2(1 + ])γxy.

Take Eq. 4 into Eq. 3, and the research object is cylindrical, so

dy, εx, εx, γxy need be replaced with Rdφ, ε1, ε2, γ. The strain

energy of the outer shell can be divided into two parts, namely,

the bending strain energy U11 and the tension strain energy U12:

U11 � πL

4R1

D1

R2
1

{ 2(1 − ])m2α21B
2 + 4(1 − ])m2α21nBC

+[(m2α21 + n2 − 1)2 + 2(1 − ])m2α21]C2 }, (5)

U21 � πL

4R1

Et1
1 − ]2

⎧⎪⎪⎪⎨⎪⎪⎪⎩
[m2α21 +

1
2
(1 − ])n2]A2 + (1 + ])mnα1AB

+[n2 + 1
2
(1 − ])m2α21]B2 + 2nBC + 2]mα1AC + C2

⎫⎪⎪⎪⎬⎪⎪⎪⎭, (6)

where ] is the Poisson’s ratio of material, t1 is the thickness of the

outer shell, D1 � Et31/[12(1 − ]2)] is the bending stiffness of the
outer shell, and α1 � πR1/L.

2.2.3 Strain energy of inner shell
Similarly, the strain energy of the inner shell also comprises

two parts, namely, the bending strain energy U10 and the tension

strain energy U20:

U10 � πL

4R0

D0

R2
0

{ 2(1 − ])m2α20B
2 + 4(1 − ])m2α20nBC

+[(m2α20 + n2 − 1)2 + 2(1 − ])m2α20]C2 }, (7)

U20 � πL

4R0

Et0
1 − ]2

⎧⎪⎪⎪⎨⎪⎪⎪⎩
[m2α20 +

1
2
(1 − ])n2]A2 + (1 + ])mnα0AB

+[n2 + 1
2
(1 − ])m2α20]B2 + 2nBC + 2]mα0AC + C2

⎫⎪⎪⎪⎬⎪⎪⎪⎭, (8)

where t2 is the thickness of the inner shell,D0 � Et30/[12(1 − ]2)]
is the bending stiffness of the inner shell, and α0 � πR0/L.

2.2.4 Strain energy of ribs
The strain energy of the ribs comprises the bending

strain energy and compressing strain energy, but the latter

will be ignored because it is very small compared with the

former. To compensate for this simplification, the

thicknesses of the inner and outer shells should be added

to the thickness of the ribs, spread evenly on them, when

calculating the tension strain energy. The strain energy of the

ribs is given by

U3 � πL

4R
EI

R2l
(n2 − 1)2C2, (9)

where R is the radius at the neutral axis and I is the moment of

inertia of the rib section with ribband. I can be calculated as

follows:

I � t2h3

12
+ b(t31 + t30)

12
+ bt0(y − t0

2
)2

+ bt1(h + t0 + t1
2
− y)2

+ t2h(y − h

2
− t0)2

,

(10)
where t2 is the rib thickness, b is the ribband width, and y is the

distance between the inner surface of the inner shell and the

neutral axis.

2.2.5 External force work
To analyze the external force work produced when the shell

deviates from its initial position, two rectangular elements are cut

out from the inner shell and shells, with two cross sections and

two longitudinal sections. The element on the outer shell is

subjected to three external forces: a longitudinal force T1, a

circumferential force T21 caused by contraction between

elements, and an external pressure P. The element on the

inner shell is subjected to two external forces: a longitudinal

force T0 and a circumferential force T20 caused by contraction

between elements.

The expression for the external force work done by the

longitudinal force is
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W1 � πL

4R1
T1α

2
1m

2C2 + πL

4R0
T0α

2
0m

2C2. (11)

While that for the external force work done by the

circumferential force and the external pressure is

W2 � πL

4R1
T21(n2 − 1)C2 + πL

4R0
T20(n2 − 1)C2. (12)

For ring-stiffened sandwich cylindrical shells sealed with

hemispherical heads at both ends, T0, T1, T20, andT21 are as

follows:

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
T0 � R2

1Pt0
(R0 + R1)(t0 + t1)

T1 � R2
1Pt1

(R0 + R1)(t0 + t1),
(13)

{ T21 � k21pR1

T20 � k20pR0,
(14)

where k20 and k21 are the circumferential force coefficients of the

inner and outer shells, respectively, and are given by

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

k21 �
∫l

0
(Et1W1

R1
+ k1pR1) dx
lpR1

k20 �
∫l

0
Et0

W0

R0
 dx

lpR0
.

(15)

The total potential energy Π, which is the sum of the strain

energy and the external force work is given by

Π � U11 + U21 + U10 + U20 + U3 −W1 −W2

� πL

4R1

D1

R2
1

{ 2(1 − ])m2α21B
2 + 4(1 − ])m2α2

1nBC

+[(m2α21 + n2 − 1)2 + 2)1 − ])m2α2
1]C2 }

+ πL

4R1

Et1
1 − ]2

⎧⎪⎪⎪⎨⎪⎪⎪⎩
[m2α2

1 +
1
2
(1 − ])n2]A2 + (1 + ])mnα1AB

+[n2 + 1
2
(1 − ])m2α21]B2 + 2nBC + 2]mα1AC + C2

⎫⎪⎪⎪⎬⎪⎪⎪⎭
+ πL

4R0

D0

R2
0

{ 2(1 − ])m2α20B
2 + 4(1 − ])m2α20nBC

+[(m2α20 + n2 − 1)2 + 2(1 − ])m2α20]C2 }

+ πL

4R0

Et0
1 − ]2

⎧⎪⎪⎪⎨⎪⎪⎪⎩
[m2α2

0 +
1
2
(1 − ])n2]A2 + (1 + ])mnα0AB

+[n2 + 1
2
(1 − ])m2α20]B2 + 2nBC + 2]mα0AC + C2

⎫⎪⎪⎪⎬⎪⎪⎪⎭
− ( πL

4R1
T1α

2
1m

2C2 + πL

4R0
T0α

2
0m

2C2)
−[ πL

4R1
T21(n2 − 1)C2 + πL

4R0
T20(n2 − 1)C2] + πL

4R
EI

R2l
(n2 − 1)2C2.

(16)

To simplify this formula, terms on the right-hand side that

are small compared with the others are to be omitted. Since t1/R1

for the thin-shell structure is about 10−2,

D1

R2
1

� Et31
12(1 − ]2)R2

1

� 1
12

t21
R2
1

Et1
1 − ]2

≈
1

120 000
Et1
1 − ]2

. (17)

Similarly,

D0

R2
0

≈
1

120 000
Et0
1 − ]2

.

In the expressions forU11 andU10, the terms 2(1 − ])m2α21B
2

and 2(1 − ])m2α20B
2 are only four times larger than the terms

1/2(1 − ])m2α21B
2 and 1/2(1 − ])m2α20B

2 in the expressions for

U21 and U20, and so they can be considered to be of the same

order of magnitude. Both m2α20 and m2α21 are of the order of

unity, and so the terms 4(1 − ])m2α21nBC, 2(1 − ])m2α21C
2,

4(1 − ])m2α20nBC, and 2(1 − ])m2α20C
2 in the expressions for

U11 and U10, and the terms 2nBC and C2 in the expressions for

U21 and U20, are also of the same order of magnitude. However,

the pre-multiplier differs by a factor of 120,000, and so the terms

2(1 − ])m2α21B
2, 2(1 − ])m2α20B

2, 4(1 − ])m2α21nBC,

2(1 − ])m2α21C
2, 4(1 − ])m2α20nBC, and 2(1 − ])m2α20C

2 in

the expressions for U11 and U10 are very small compared with

the corresponding terms in the expressions for U21 and U20 and

can be omitted. After comparison and polynomial combination,

the expression for Π can be simplified to

Π � πL

4R1

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

[D1

R2
1

(m2α21 + n2 − 1)2 + Et1
1 − ]2

− T1m
2α2

1 − T21(n2 − 1)]C2

+ Et1
1 − ]2

[n2 + 1
2
(1 − ])m2α21]B2 + Et1

1 − ]2
[m2α2

1 +
1
2
(1 − ])n2]A2

+ Et1
1 − ]2

[2nBC + 2]mα1AC + (1 + ])mα1nAB]

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

+ πL

4R0

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

[D0

R2
0

(m2α20 + n2 − 1)2 + Et0
1 − ]2

− T0m
2α20 − T20(n2 − 1)]C2

+ Et0
1 − ]2

[n2 + 1
2
(1 − ])m2α20]B2 + Et0

1 − ]2
[m2α2

0 +
1
2
(1 − ])n2]A2

+ Et0
1 − ]2

[2nBC + 2]mα0AC + (1 + ])mα0nAB]

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭
+πL
4R

EI

R2l
(n2 − 1)2C2.

(18)

2.3 Critical global buckling load

In this subsection, the global stability equation of

the structure is established using the Rayleigh–Ritz method

and is then solved to calculate the critical global buckling load

of ring-stiffened sandwich cylindrical shells.

2.3.1 Global stability equation
The total potential energy Π is substituted into the basic

relations of the Rayleigh–Ritz method,

zΠ

zA
� 0    

zΠ

zB
� 0    

zΠ

zC
� 0, (19)

namely,
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[ πL

4R1
2
E(t1 + t)
1 − ]2

[m2α2
1 +

1
2
(1 − ])n2] + πL

4R0
2
E(t0 + t)
1 − ]2

[m2α2
0 +

1
2
(1 − ])n2]]A

+[ πL

4R1

E(t1 + t)
1 − ]2

(1 + ])mα1n + πL

4R0

E(t0 + t)
1 − ]2

(1 + ])mα0n]B
+[ πL

4R1

E(t1 + t)
1 − ]2

2]mα1 + πL

4R0

E(t0 + t)
1 − ]2

2]mα0]C � 0

[ πL

4R1

E(t1 + t)
1 − ]2

(1 + ])mα1n + πL

4R0

E(t0 + t)
1 − ]2

(1 + ])mα0n]A
+[ πL

4R1
2
E(t1 + t)
1 − ]2

[n2 + 1
2
(1 − ])m2α21] + πL

4R0
2
E(t0 + t)
1 − ]2

[n2 + 1
2
(1 − ])m2α20]]B

+[ πL

4R1

E(t1 + t)
1 − ]2

2n + πL

4R0

E(t0 + t)
1 − ]2

2n]C � 0

[ πL

4R1

E(t1 + t)
1 − ]2

2]mα1 + πL

4R0

E(t0 + t)
1 − ]2

2]mα0]A
+[ πL

4R1

E(t1 + t)
1 − ]2

2n + πL

4R0

E(t0 + t)
1 − ]2

2n]B

+

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

πL

4R1
2[D1

R2
1

(m2α21 + n2 + 1)2 + E(t1 + t)
1 − ]2

− T1m
2α21 − T21m

2α20]

+ πL

4R0
2[D0

R2
0

(m2α20 + n2 + 1)2 + E(t0 + t)
1 − ]2

− T0m
2α2

0 − T20m
2α20]

+πL
4R

2
EI

R2l
(n2 − 1)2

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
C � 0,

where t � ht2/2l is the thickness produced by smear ribs on the

inner and outer shells. To simplify this formula, some marks are

done as follow:

a11 � πL

4R1
2
E(t1 + t)
1 − ]2

[m2α21 +
1
2
(1 − ])n2]

+ πL

4R0
2
E(t0 + t)
1 − ]2

[m2α20 +
1
2
(1 − ])n2],

a12 � a21 � πL

4R1

E(t1 + t)
1 − ]2

(1 + ])mα1n

+ πL

4R0

E(t0 + t)
1 − ]2

(1 + ])mα0n,

a13 � a31 � πL

4R1

E(t1 + t)
1 − ]2

2]mα1 + πL

4R0

E(t0 + t)
1 − ]2

2]mα0,

a22 � πL

4R1
2
E(t1 + t)
1 − ]2

[n2 + 1
2
(1 − ])m2α21]

+ πL

4R0
2
E(t0 + t)
1 − ]2

[n2 + 1
2
(1 − ])m2α20],

}a23 � a32 � πL

4R1

E(t1 + t)
1 − ]2

2n + πL

4R0

E(t0 + t)
1 − ]2

2n,

a33 � πL

4R1
2[D1

R2
1

(m2α21 + n2 + 1)2 + E(t1 + t)
1 − ]2

− T1m
2α21 − T21m

2α20]
+ πL

4R0
2[D0

R2
0

(m2α20 + n2 + 1)2 + E(t0 + t)
1 − ]2

− T0m
2α20 − T20m

2α20]
+ πL

4R
2
EI

R2l
(n2 − 1)2.

(20)

The following homogeneous linear equations are thereby

obtained:

a11A + a12B + a13C � 0
a21A + a22B + a23C � 0
a31A + a32B + a33C � 0.

(21)

As is well known, only when the determinant constructed from

the coefficients of (21) is equal to zero will the equations have

nonzero solutions, and thus∣∣∣∣∣∣∣∣∣∣∣
a11 a12 a13
a21 a22 a23
a31 a32 a33

∣∣∣∣∣∣∣∣∣∣∣ � 0 (22)

After expansion of the determinant, the global stability equation

of the ring-stiffened sandwich cylindrical shells is obtained as follows:

a11a32a23 − a21a32a13 − a31a12a23 + a31a22a13
a11a22 − a21a12

� πL

4R1
2
⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

D1

R2
1

(m2α2
1 + n2 + 1)2

+E(t1 + t)
1 − ]2

− T1m
2α21 − T21m

2α20

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦ +
πL

4R0
2
⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

D0

R2
0

(m2α20 + n2 + 1)2

+E(t0 + t)
1 − ]2

− T0m
2α2

0 − T20m
2α20

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦+ πL

4R
2
EI

R2l
(n2 − 1)2.

2.3.2 Formula for critical global buckling load
Solution of the global stability equation gives the following

formula for the critical global buckling load:

pcr � P1 + O1 + P0 + O0 + Q

k1m2α21 + k21(n2 − 1) + k0m2α20 + k20(n2 − 1), (23)

where m and n are the values that minimize the critical global

buckling load, and

O1 � D1

R3
1

(m2α2
1 + n2 − 1)2 O0 � D0

R3
0

(m2α2
0 + n2 − 1)2

P1 � E(t1 + t)m2α41
R1(m2α21 + n2)2 P0 � E(t0 + t)m2α40

R0(m2α20 + n2)2
Q � EI(n2 − 1)2

R3l
,

(24)

Here,O1,  O0,  P1, P0, andQ represent respectively the influences

on the critical global buckling load of the bending stiffness of the

outer shell, the bending stiffness of the inner shell, the tension

stiffness of the outer shell, the tension stiffness of the inner shell,

and the bending stiffness of the ribs.

3 Calculation of ribband width

It can be seen from the above determination of the critical

global buckling load that the ribband width in Eq. 7 is the only

parameter for which a calculation method has not been given.

When a rib bends, part of the shell connected with it also

deforms, and these parts of the shell is called the ribband.

Therefore, when calculating the cross-sectional moment of

inertia of the ribs, ribband should be included. Strictly

speaking, only part of the shell in each rib space is deformed

together with the ribs, and so the ribband width b can be

written as

b � κl, (25)
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where l is the rib spacing and κ, which is less than 1, is called the

ribband width coefficient.

There have been no reports in the literature of analytical

methods to determine the ribband width, and it is generally

calculated using empirical formulas for different structural

forms. It can be seen from the results of calculations of the

critical global buckling load of stiffened single-layer cylindrical

shells that the ribband width has little influence on the precision

of such calculations. Therefore, for convenience of calculation,

the ribband width is usually taken as the whole rib spacing.

However, the ribband width does have a great influence on the

accuracy of calculations of critical global buckling loads of

sandwich cylindrical shells, and it has been suggested by Xia

and Xie (2004) that it should be taken to be 0.6 times the rib

spacing. Unfortunately, we have performed a large number of

calculations showing that the ribband width is not always either

the whole rib spacing or 0.6 times this spacing, but is a variable

parameter. Therefore, a formula needs to be derived for

calculating the width of the ribband of sandwich cylindrical

shells.

In this section, Abaqus FEM software is first used to analyze

the critical global buckling load of sandwich cylindrical shells.

This FEM result is then used in the analytical approach to

determine the ribband width. Second, the influence of

geometrical parameters on the ribband width is explored, and

the parameters with little influence are omitted. The relationships

between the ribband width and the other parameters is then

TABLE 1 Model 1 parameter setting.

R0 (mm) t0 (mm) t1 (mm) t2 (mm) L (mm) l (mm) h (mm) E (MPa) ν

250 4 4 3 750 30 180 108 000 0.34

Figure 4
Finite element calculation of global buckling mode.

Figure 5
Variation dimensionless ribband width with parameter
magnification.
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determined in a step-by-step manner. Finally, a formula for the

ribband width of ring-stiffened sandwich cylindrical shells is

obtained.

3.1 Finite element analysis

The parameters of the FEM model (Model 1) was shown in

Table 1, and the global buckling mode and critical global

buckling load Pcr of sandwich cylindrical shells calculated by

Abaqus was shown in Figure 4. The finite element type of shells

and ribs are S4R, and the inner shell and the outer shell and the

ribs are connected by “Tie”, the size of each finite element is

about h/3, the displacement boundary condition is simply

support at both ends, the part type is shell, and the material is

TitaniumAlloy. The sandwich cylindrical shells are subjected to a

radial uniform external pressure P and axial load P2 at the same

time, with P2 acting on the outer surfaces of the ribs at the ends.

P2 is given by

P2 � P
R2
1

R2
1 − R2

0

. (26)

Pcr is calculated by the FEM to be 56.029 MPa, which is

brought into the proposed analytical method for buckling

analysis of the ring-stiffened sandwich cylindrical shells,

then, the width of the ribband can be determined to be

b = 2.381 cm. According to both the FEM and the

analytical method, the buckling mode has whole ring

wavenumber n = 3 and longitudinal half-wave

wavenumber m = 1.

Figure 6
Curves of b′ versus l′ for different models.

Figure 7
Fitting result for κ � f(h’ ) using an exponential function.

TABLE 2 Dimensions of models and comparison between FEM and analytical results.

Model R0

(mm)
t0
(mm)

t1
(mm)

t2
(mm)

h (mm) i (mm) L (mm) FEM result Analytical result Error
in Pcr(%)

Pcr(MPa) m n Pcr(MPa) m n

a 252 4 4 3 18 30 750 56.029 1 3 54.819 1 3 −2

b 251 2 4 3 18 30 750 43.557 1 3 43.825 1 3 1

c 252 4 4 5 18 30 750 62.97 1 3 63.908 1 3 1

d 252 4 4 3 10 30 750 31.778 1 3 30.576 1 3 −4

e 252 4 4 3 18 50 750 45.203 1 3 49.479 1 3 9

f 252 4 4 3 18 30 1,500 24.759 1 2 26.163 1 2 6

g 504 8 8 6 34 60 1,500 52.526 1 3 51.605 1 3 −2

h 2,520 40 40 30 180 300 7,500 56.018 1 3 54.819 1 3 −2

i 5,040 80 80 60 340 600 15,000 52.534 1 3 51.605 1 3 −2
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3.2 Formula for ribband width

We now derive a formula for calculating the ribband width. To

avoid any influence of the global size of the cylindrical shells on the

calculation, all the geometrical parameters (t0, t1, t2, h, and l) and
the ribbandwidth b aremade dimensionless by dividing themby the

feature dimension R0/10. The dimensionless forms are indicated by

primes: t0′, t1′, t2′ , h′, l′, and b′. Model one is taken as the basic

model, and, one by one, each parametermagnified by a factor x, with

the other parameters kept unchanged. Figure 5 shows the resulting

plots of b′ versus x.
As can be seen from Figure 5, change of h′ and l′ have a

great influence on b′, but the effects of changes in t0′, t1′, and t2′

are negligible. To verify this, we first keep h = 18 mm, but

select different t0, t1, and t2 to give Model 1 s (t0 = t1 = 4 mm,

t2 = 3 mm, h = 18 mm), Model 2 s (t0 = t1 = 2.8 mm, t2 = 3 mm,

h = 18 mm), and Model 3 s (t0 = t1 = 4 mm, t2 = 5 mm, h =

18 mm). Second, we take h = 10 mm to give Model 4 s (t0 = t1 =

4 mm, t2 = 5 mm). Figure 5 shows the curves of b′ versus l′ for
these models.

As can be seen from Figure 6, the curves of Models 1 s, 2 s,

and 3 s are close, but differ significantly from that of Model 4 s,

which proves again that changes in h′ have a strong influence on
b′, whereas the effects of changes in t0′, t1′, and t2′ are negligible. It

can therefore be assumed that as an approximation b′ � f(h′, l′)
within the visible error range. It also can be seen that the curves of

b′ versus l′ are approximately straight lines passing through the

origin and with a slope that depends mainly on h′. It can

therefore be assumed that b′ � f(h′)l′. In fact, from the

definition of riband width, namely, κ � f(h′), it can be seen

that f(h′) is the ribband width coefficient.

From the above observations and analysis, it can be seen that

the problem of determining the ribband width is equivalent to

that of determining ∋ as a function of h′. To obtain an

expression relating ∋ and h′, we first change one geometrical

parameter at a time, with t0 and t1 changing from 2 mm to 4 mm,

t2 from 1.8 mm to 4.2 mm, h from 10 mm to 26 mm, and l from

30 mm to 50 mm.We then obtain a large number of values of the

ribband width coefficient for these different parameter values by

carrying out FEM simulations, and select an exponential function

to fit the expression κ � f(h′). The fitting results are shown in

Figure 7, where, with a goodness of fit R = 0. 809, we have

κ � 1.308 exp(−0.737h′). (27)

Putting this fitting result into b′ � f(h′)l′ gives

b′ � 1.308 exp(−0.737h′)l′. (28)

Finally, to obtain the formula for calculating the ribband

width, both sides of this equation are multiplied by the feature

dimension R/10 to restore the dimensional quantities:

b � 1.308 exp(−0.737h′)l. (29)

4 Verification

Abaqus 6.12 FEM software is used for numerical

simulation, and the FEM results are compared with those

Figure 8
Buckling mode of model f: (A) (Front view) and (B) (Bottom
view).

TABLE 3 Comparison of buckling analysis results for steel models.

R0

(mm)
t0
(mm)

t1
(mm)

t2
(mm)

h
(mm)

l
(mm)

L
(mm)

FEM result Analytical result Error
in Pcr
(%)Pcr(MPa) m n Pcr(MPa) m n

250 4 4 3 18 30 750 100.54 1 3 102.075 1 3 −2

250 2 4 3 18 30 750 78.034 1 3 82.673 1 3 −6

250 4 6 3 18 30 750 112.99 1 3 112.66 1 3 0

250 4 4 4.2 18 30 750 110.79 1 3 112.189 1 3 −1

250 4 4 3 10 30 750 61.017 1 3 58.855 1 3 4
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of the analytical method proposed in this paper to verify the

accuracy of the latter. In contrast to the parameter changes

used in the determination of the formula for the ribband

width, the models used in this section not only have a wider

range of geometrical parameters, but also involve changes in

the slenderness ratio or the global size. The finite element

type is S4R, the size of each finite element is about h/3, the

displacement boundary condition is simply support at both

ends, and the material is Titanium Alloy. Table 2 shows the

dimensions of the models and a comparison between the

FEM results and analytical results for each model, and

Figure 8 shows the buckling mode of Model f. It can be

seen from Table 2 that the error in Pcr using the analytical

approach and the FEM is less than 10% for all models, and the

wavenumbers of the axial half-wave and the circumferential

whole wave are consistent during buckling. Therefore, the

analytical approach to global buckling of sandwich

cylindrical shells proposed in this paper appears to have

good accuracy and applicability.

To verify whether the proposed approach is suitable for

buckling analysis of sandwich cylindrical shells made of other

metallic materials, a buckling analysis of sandwich cylindrical

shells made of steel (E = 210000MPa, ] = 0.3) is carried out.

Table 3 shows the dimensions and a comparison between FEM

and analytical results, it can be seen that the method of buckling

analysis proposed in this paper is also suitable for steel ring-

stiffened sandwich cylindrical shells.

The buckling analysis of six dimensions of steel (E =

196000MPa, ] = 0.3) ring-stiffened sandwich cylindrical shells

were performed by Xia and Xie with FEM, which are shown in

Table 4. As we can see from Table 4, the results of the analytical

approach proposed in this paper are in good agreement with the

results of FEM by them.

5 Influence of geometrical
parameters on global stability

The influences of the geometrical parameters on the critical

global buckling load of sandwich cylindrical shells are explored

with the help of the approach to buckling analysis proposed in

this paper. We keep the radius of the inner surface of the inner

shell and the total length of the shell constant and change the

other geometrical parameters of Model 1. As shown in Figure 9,

Figure 9
Influence of geometrical parameters on critical global
buckling load: (A) (Pcr with t0), (B) (Pcr with t2), (C) (Pcr with t1), (D)
(Pcr with h), (E) (Pcr with l).

TABLE 4 Comparison of buckling analysis results for steel models.

R0

(mm)
R1

(mm)
t0
(mm)

t1
(mm)

t2
(mm)

l
(mm)

L
(mm)

FEM
result
by Xia
and Xie

Analytical
result
by us

Pcr(MPa) Pcr(MPa)

2,650 2,730 40 40 30 60 600 26.77 23.07

2,650 2,730 30 40 30 60 60 21.83 22.45

2,650 2,730 35 40 30 60 600 24.43 22.73

2,650 2,730 40 30 30 60 600 22.62 19.31

2,650 2,730 30 35 20 40 400 22.85 20.70

2,650 2,710 35 40 30 60 600 17.23 15.48
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the critical global buckling load increases with increasing inner

shell thickness, outer shell thickness, rib height, and rib thickness,

but decreases with increasing rib spacing. When all the

geometrical parameters are changed by the same multiple, it is

the change in rib height that has the greatest influence on the

critical global buckling load. Increasing the rib height can

significantly increase the critical load, whereas the inner shell

thickness, outer shell thickness, rib thickness, and rib spacing

have relatively little influence on it.

It can be seen that the contributions of the inner shell,

outer shell, and ribs to global stability can be determined by

calculating the terms in Eq. 23. Taking Model 1 as an

example, the contributions of each term to global

stability are shown in Figure 10. It can be seen that for

this model, the contribution of ribs with ribband to global

stability is 83%, while the contribution of the inner and

outer shells is less than 10%. In other words, the ribs play a

decisive role in the global stability of ring-stiffened

sandwich cylindrical shells. Furthermore, the bending

stiffness of the ribs is determined by EI, and EI ∝ h3,

and so the rib height has the greatest influence on the

critical global buckling load, which means that the

stability of sandwich cylindrical shells can be improved

by appropriately increasing the rib height.

6 Conclusion

In this paper, to analyze the global buckling of ring-stiffened

sandwich cylindrical shells, first, a reasonable virtual displacement was

assumed according to the boundary conditions and the deformation

characteristics of the inner and outer shells during global buckling.

Second, the total potential energy was obtained using classical

laminate theory, and a formula for the critical global

buckling load was then derived using the Rayleigh–Ritz

method. All the terms in this formula have clear physical

meanings, which intuitively show the contribution of the

inner shell, the outer shell, and the ribs to global stability.

Finally, a numerical simulation of the global buckling of

ring-stiffened sandwich cylindrical shells was carried out

using Abaqus FEM software. The FEM results are in good

agreement with those of the proposed analytical approach,

which proves that this approach has good accuracy and

applicability. The main conclusions are as follows:

1. The ribband width is an important parameter characterizing

the coupling effect of the inner shell, outer shell, and ribs, and

it has a significant influence on the precision of calculations of

the critical global buckling load. This paper explored and

evaluated the influence of different geometrical parameters on

ribband width, by omitting those with little influence and

fitting an expression for the ribband width in terms of the

others. A formula for calculating the ribband width was

determined in a step-by-step manner.

2. The influence of geometrical parameters on the global

buckling of sandwich cylindrical shells was investigated

using the proposed analytical approach. The critical

global buckling load increases with increasing inner shell

thickness, outer shell thickness, rib height, and rib

thickness, but decreases with increasing rib spacing.

Furthermore, changes in the rib height have the greatest

influence on the critical global buckling load, while the

thicknesses of the inner and outer shells and the ribs and the

rib spacing have relatively little influence. The contribution

of the ribs to global stability is more than 80%, while those

of the inner and outer shells are less than 10%, i.e., the ribs

play a decisive role in the global stability of ring-stiffened

sandwich cylindrical shells.

3. Although a lot of work has been done on the analytical approach to

global buckling of ring-stiffened sandwich cylindrical shells in this

paper, there are still some deficiencies that need to be further

studied: the analytical method for ribband width have not been

obtained, and on experimental results can be used for verification.

4. Next the formula of ribband width will be established by an

analytical approach, and, if conditions permit, we will conduct

an experimental study on global buckling of ring-stiffened

sandwich cylindrical shells.
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Figure 10
Contributions of the inner shell, outer shell, and ribs with
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