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We introduce an efficient training framework for constructing machine

learning-based emulators and demonstrate its capability by training an

artificial neural network to predict the time evolution of quantum wave

packets propagating through a potential landscape. This approach is based

on the idea of knowledge distillation and uses elements of curriculum

learning. It works by constructing a set of simple, but rich-in-physics

training examples (a curriculum). These examples are used by the emulator

to learn the general rules describing the time evolution of a quantum

system (knowledge distillation). We show that this emulator is capable of

learning the rules of quantum dynamics from a curriculum of simple training

examples (wave packet interacting with a single rectangular potential barrier),

and subsequently generalizes this knowledge to solve more challenging

cases (propagation through an arbitrarily complex potential landscape).

Furthermore, we demonstrate, that using this framework we can not only

make high-fidelity predictions, but we can also learn new facts about

the underlying physical system, detect symmetries, and measure relative

importance of the contributing physical processes.

KEYWORDS

machine learning, quantum emulation, generalization, knowledge distillation,
curriculum learning, interpretability, scientific concept discovery

1 Introduction

Neural networks, with their variety of architectures Sengupta et al. (2020) have
enabled novel approaches to research in domains such as physics Carleo et al. (2019),
material science Schmidt et al. (2019), and quantum science Carrasquilla (2020). Many
standard applications ofmachine learningmethods can be reduced to either classification
or regression tasksAlzubaidi et al. (2021). In the latter case, they have been shown to serve
as powerful interpolation tools Feldman and Zhang (2020); Chai et al. (2020). However,
in other scientific applications, we are more interested in extrapolation from known facts,
rather than in interpolation, e.g., searching for a new material that has some unusual
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properties. Unfortunately, out-of-domain predictions, are
typically challenging Haley and Soloway (1992); Xu et al. (2021).

The main objective of this paper is to examine the
following idea: Can we train a neural network using some
easily generated—but rich in physics—examples, and than apply
the extracted knowledge to solve some more complex cases, not
represented explicitly during the training? To answer this, we
propose a new training framework that promotes generalizability
of neural network. Furthermore, we showhowone can use neural
networks to learn about the underlying physical problem, and
how it can be utilized for scientific concept discovery.

Through the paper, our central focus will be on the following
three aspects: knowledge extraction, generalization capability,
and model interpretability. To extract knowledge, we use the
concept of curriculum learning Bengio et al. (2009). Namely,
we construct a training set that allows a neural network
to effectively learn the basic rules governing the physics of
the quantum system. This procedure can also be viewed
as knowledge distillation Gou et al. (2021) from a physically-
informed simulator, responsible for constructing the training
examples, to an auxiliary network that learns from the prepared
curriculum. This idea is rooted in the concept of teacher-
network frameworks Romero et al. (2015), whereby a smaller
(and simpler) machine learning model is trained to approximate
a larger, more complex system. However, whereas in the original
formulation, this techniquewas primarily used to reduce the final
model complexity Hinton et al. (2015), i.e., in order to decrease
the inference time and to reduce the overall computational and
storage requirements, here we have another motivation. We
want to promote the ability of the machine learning model to
generalize (to make out-of-domain predictions). In other words,
the goal here is to train on examples that are easy to construct,
and then make predictions for cases that could potentially be
difficult to simulate in a direct way. Finally, we want to observe
how our machine learning-based emulator learns the essential
physics from the physically-informed simulator. As we will show,
by doing this, we can get additional insights about the nature of
the underlying problem, discover symmetries, and measure the
relative importance of the contributing features.

In this work, as a prove of concept, we focus on the quantum
dynamics of one-dimensional systems. While the problem is
fairly easy to simulate in a traditional way Figueiras et al. (2018),
it also exhibits several non-trivial properties, such as wave
function inference, scattering, and tunnelling. Additionally, the
emulatormust learn to preserve thewave function normalization
and must correctly interpret the real and imaginary part of the
input. Another practical advantage of this problem formulation
is that we can easily scale the difficulty of the task by analyzing
potential landscapes of various complexity.

The underlying motivation for focusing on quantum
dynamics emulation tools is their use in simulating quantum
systems and role in the design process of quantum devices,

such as qubits and sensors Meyerov et al. (2020). Specifically,
modeling devices that are embedded in an environment requires
challenging predictions of open quantum system dynamics
Candia et al. (2015); Luchnikov et al. (2019). Such simulations
are inherently difficult on classical computers Loh et al. (1990);
Prosen andŽnidarič (2007).The reason is that direct calculations
can only be performed for fairly small systems, as the limiting
factor are the exponential dimensions of their Hilbert spaces
Breuer and Petruccione (2007). Consequently, new tools that
offer efficient and high-fidelity approximation of quantum
dynamics can help the science community to model larger and
more complex systems.

1.1 Related work and novelty of our
approach

Machine learning methods have recently been
successfully used to solve many-electron Schrödinger
equations Pfau et al. (2020); Hermann et al. (2020). However,
in contrast to our work, previous focus was not on the
quantum dynamics, but rather on finding equilibrium quantum
states in electronic and molecular systems. Machine learning
methods can be also used to solve partial differential equations
(PDEs). In this context, some recent studies have been based
on finite-dimensional approaches Zhu and Zabaras (2018);
Bhatnagar et al. (2019), neural finite element Smith et al. (2021);
Raissi et al. (2019); Raissi (2018), and Fourier neural operator
methods Lu et al. (2020); Li et al. (2020). However, in most of
these approaches, the trained emulators can only generalize
to a specific distribution of initial conditions. Consequently,
they do not generalize in the space of the PDE parameters,
and therefore they need to be re-trained for each new scenario.
Machine learning was also used to emulate classical fluid
dynamics Sanchez-Gonzalez et al. (2020). However, in those
cases the focus was placed on accelerating large-scale, classical
simulations. In contrast, here we focus on quantum systems.

In the context of quantum dynamics, there has been a
number of recent papers showing promise of using neural
networks to predict the time evolution of wave packets, which
however differ from our approach in significant ways. For
example, in Secor et al. (2021), the authors predict the time
evolution of wave packets for either a fixed or a specific type
of slowly-evolving potential. In contrast, in our work we train
the neural network to learn general rules of wave packet time
evolution that are not tight to any specific potential shape.
Additionally, we focus on extrapolation, whereas the cited paper
is concerned with interpolation (predicting the propagation
of wave packets in regimes already explored during the
training).

In Lin et al. (2021), the authors use a long short-term
memory (LSTM) network to predict the long-time quantum
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dynamics of open systems. However, they restrict the analysis
only to the case of zero external potential. In contrast, we
focus on propagation through arbitrarily complex potential
landscapes. Additionally, we test the minimal neural network
architecture required for completing our prediction tasks
(e.g., we show that an recurrent-type model is not necessary
when predicting propagation in absence of the external
potential).

In Wu et al. (2021), the authors propose a neural network
architecture capable of learning the time evolution of the reduced
density matrix for a spin-boson model. The authors take long
sequences of inputs (128 time-steps) and process them with
the help of two layers of CNN filters before directing them
to an LSTM network. While we test similar neural network
architectures, there are several differences between this paper and
our work. First of all, instead of solving one specific model, we
concentrate here on the more general question of how to extract
dynamics from a restricted set of (simple) simulations, and then
how to generalize this knowledge to predict the quantum time
evolution under more general circumstances. Thus, we focus
on knowledge extraction, not only on forecasting. We also ask
the question of what is the minimal model capable of learning
quantum dynamics, in order to examine the complexity of the
underlying physical problem. As we show, this approach helps
us with the robustness and interpretability of the final emulator.
In Rodríguez and Kananenka (2021), the authors predict long-
time dynamics of open quantum systems, taking as the input
values of the system reduced density matrices at discrete times.
In contrast, we examine a more general case, by focusing on the
propagation of wave functions in the presence of an arbitrarily
complex external potential. Finally, in Choi et al. (2022), the
authors present a method of learning and generating quantum
trajectories of closed and open quantum systems. They achieved
this by training a variational autoencoder and by modeling the
dynamics of the resulting latent representation by solving an
ODE equation parametrized by a separate neural network’s layer.
While this approach allows extrapolating quantum trajectories
(from a simple two-level quantum system to a two-qubit system),
the general scope of this paper differs from our work. We do
not focus on a single machine learning model that is capable of
generalization, but we look at training frameworks that promote
generalization for many possible neural architectures. As such,
we look at the discussed work not as competing, but rather
complementary to our work.

In more general terms, our training framework differs from
a typical supervised setting that is often primarily concerned
with in-domain predictions. We aim to extract knowledge from
a curriculum of simple examples, and then generalize to more
complex scenarios. Therefore our focus will be on training
methods that facilitate generalization to (near) out-of-domain
cases.

2 Methods

2.1 Problem formulation

We consider the one-dimensional time-dependent
Schrödinger equation in atomic units,

i ∂
∂t

ψ (x, t) =Hψ (x, t) , (1)

where x ∈ [0,Lx), t ∈ [0,T), and the Hamiltonian operator H is
defined as

H = T+V = −1
2

∂2

∂x2 +V (x) , (2)

with T and V being the kinetic and potential energy operators,
respectively.

We represent the quantum waves as complex-valued
functions, ψ(x, t) ∈ ℂ, on a Nx ×Nt mesh grid, and we impose
periodic boundary conditions: ψ(x+ Lx, t) = ψ(x, t), where Lx
is the size of our 1-dimensional environment. We use an
equal mesh spacing. With Δx = Lx/Nx and Δt = T/Nt , the
spatial and temporal coordinates become xi = iΔx and tj = jΔt,
with i ∈ {0,1,… ,Nx − 1} and j ∈ {0,1,… ,Nt − 1}, respectively.
For brevity, we denote the discrete wave function values as
ψj

i = ψ(xi, tj), and the discrete potential steps as vi = V(xi).
Given the discretizations described above, we consider the

neural network-based emulator as a parameterized map from
an input, constructed from the H consecutive time steps,
{tj, tt+1,… , tj+H−1}, to the output that relates to the next time step,
tj+H . To make the input and the output of the neural network
independent from the size of the system, we construct a slices (we
call themwindows through the text) of a fixedwidthW. Namely, a
portion of the input representing the values of the quantumwave
at the time step tj, can be written as

ωj
i = (ψ

j
i−⌊W/2⌋,ψ

j
i−⌊W/2⌋+1,…,ψ

j
i,…,ψ

j
i+⌊(W−1)/2⌋−1,

ψj
i+⌊(W−1)/2⌋) . (3)

Similarly, a portion of the input representing the potential
landscape at the same time step, can be written as

νi = (vi−⌊W/2⌋,vi−⌊W/2⌋+1,…,vi,…,vi+⌊(W−1)/2⌋−1,

vi+⌊(W−1)/2⌋) . (4)

In Figure 1, we show how the input of raw simulation data
can be decomposed into a series of windows. We use a neural
network to map each input data window to an output data
window. More specifically, we look for a network to learn the
mapping

fΘ:{ωj
i,ω

j+1
i ,…,ω

j+H−1
i ,νi} → {ω

j+H
i } . (5)
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FIGURE 1
Structure of the input. (A), The input data consists of a time series of one-dimensional plots, i.e., the real and the imaginary parts of the wave
function, as well as the values of the potential barrier. (B), All input information can be represented as a tensor, with three channels (similar to RGB
channels when representing visual data).

Note that the dimensions of the input and the output of the
neural network are different, since we have no need to predict the
external potential (we assume that the potential is either static or
slowly changing).

During the training, we try to find parameters Θ of the map
fΘ (represented by a neural network), that minimize the training
objective function (a loss function L) on each window output,
defined as

L =MSEj
i =

1
W
‖ω̂j+H

i −ω
j+H
i ‖

2
, (6)

where ω̂j+H
i denotes the predicted values of the quantum wave at

the time step tj in the considered window, and ωj+H
i denotes the

ground truth values.

2.2 Prediction using the window based
scheme

To make the emulator independent of the environment size,
we predict only the local evolution of the wave packet ωj

i within
a given window (cf. Figure 1B or Eq. (3)). However, to recreate
the entire wave function ψ(x, tj) for a given time step j, we need to
assemble the individual predictions from different, overlapping
windows. Let us denote the ψj

m evaluated from window ωj
m+k

as ψj
m(ω

j
m+k). We average those predictions by giving a larger

weight to those predictions for which the grid-point xm is located
closer to the center of the window. For the weight, we use the
Gaussian modulation,

⟨ψj
m⟩ =

⌊W/2⌋

∑
k=−⌊(W−1)/2⌋

A exp(− k2

2δ2)ψ
j
i(ω

j
m+k) , (7)

where A = 1/∑⌊W/2⌋k=−⌊(W−1)/2⌋ exp(−k
2/2δ2) is the normalization

constant, and δ denote the Gaussian averaging spread.
A complete prediction of the next time-step is a collection

of all predicted points [⟨ψj
0⟩, ⟨ψ

j
1⟩,…,⟨ψ

j
Nx
⟩]. Fortunately,

all the intermediate predictions ψj
m(ω

j
m+k) can be obtained

independently, therefore the entire algorithm is easily
parallelizable (e.g., by performing a batch inference on a modern
GPU).

2.3 Predicting multiple steps of evolution

We predict the next time-step of the system evolution in
a recurrent manner, i.e., the predictions of the previous time
steps are used to form the input of the current time-step. By
iteratively predicting next time-steps, we can obtain a sequence
of snapshots, portraying the wave function evolution, of an
arbitrary length.

2.4 Data generation and processing

Our data generation implements a two-step procedure. First,
we generate raw simulation data that represents the state of the
system. Then we slice them into smaller windows to feed into the
neural network.

2.4.1 Raw simulation
We generate raw simulation data of wave propagation

discretized on a regular mesh of size Δx = Lx/Nx, where Nx is the
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number of mesh points and Lx is the length of the simulation
box. For the discritization, we use a space splitting method
Nakano et al. (1994). Next, we simulate the wave propagation
over a rectangular potential barrier of height Hb and width
Wb, centered at the simulation box. Each wave funciton is
parametrized by X0, S0, E0, being the center-of-mass, spread, and
energy of initial Gaussian-modulated wave packet, respectively.
For the purpose of this work, we set Lx = 100 a.u, Nx = 1,024,
and Wb = 7.0 a.u. In t = 0, the wave packet has a Gaussian
modulation,

ψt=0 (x) = Cexp(−
(x−X0)

2

4S2
0
) exp(i√2E0x). (8)

The simulations are running with an internal-time step of
Δtint = 0.0005a.u. We run the simulation for 100.000 steps, while
saving snapshots of the simulation by every 200 steps (thus the
time between each recorded, discrete time-step is Δt = 0.1a.u). As
a result, we get a tensor (Nt = 500) × (Nx = 1,024), that describes
the wave function evolution. In case of a free propagation, each
pixel is represented by two values, the real and the imaginary part
of the wave function. In the simulations including a potential
barrier, we add a third channel to each pixel, to encode values
of the potential at each point.

Data windowing

To make the input of the neural network independent of the
environment size, we slice the recorded raw simulation data into
windows of size (H+ 1) ×W×C. Specifically, W = 23 represents
the spatial window size, C = 2 or three denotes the number
of information channels, H+ 1 = 5 stands for the number of
consequent time steps.ThefirstH time steps are used to construct
the training data set. The last time step in each simulation is used
to construct the training target.

Data processing

We adopted a few techniques to efficiently process the
training data. i) To reduce the correlations between training
samples, we apply spatial and temporal sampling to intentionally
skip some windows. We set the spatial sampling ratio to 0.1 and
the temporal ratio to 0.9. ii) We assign a higher possibility to data
windows overlapped with the central potential barrier.This helps
us balance the “hard” and “easy” cases in the training set. iii)
We apply the periodic boundary condition. iv) We renormalize
the values in the channels. Specificly, the potential values are
rescaled to [0, one] to improve the training stability (e.g., to
mitigate the exploding gradient problem Bengio et al. (1994);
Pascanu et al. (2013)).

2.5 Description of the neural network
architectures

In order to find a minimum viable model, capable of solving
the task, we test four different neural network architectures of

increasing complexity: i) a linear model, ii) a fully-connected
forward feed neural network, iii) a convolutional neural network
(CNN), iv) and a recurrent neural network (using the gated
recurrent units, GRU) Cho et al. (2014). More details on each
architecture can be found in the Supplementary Materials.

All four models are popular choices when dealing with
sequential data (cf. The models used in the papers discussed
in the “Related Work” section on page §). The benefit of this
approach is that we test whether the complexity of the introduced
models are necessary. By choosing a simpler model we reduce
the computational costs and we improve the generalizability and
interpretability. Additionally, by finding the minimum viable
model, we can also judge how complex the underlying physical
problem is.

2.6 Training details

For the purpose of training, we generated a data set with
combinations of 189 different sets of initial Gaussian wave
packets and 14 different rectangular potential barriers (in total,
2,646 configurations). We kept the widths of the barrier fixed at
Wb = 7a.u. (71 pixels), the size of the environment at Nx = 1,024
pixels (with periodic boundary conditions enabled), and the
window width at W = 23 pixels.

We have trained all neural networks using an AdamW
optimizer Loshchilov and Hutter (2019); Kingma and Ba (2015)
with a mean squared error (MSE) loss function. We selected an
initial learning rate of 10–3, with the first and second momentum
being β1 = 0.9 and β2 = 0.99, respectively. To improve the
convergence, we applied a learning rate scheduler. Namely,
one percent of the total training steps were used as warm-up
steps with a linearly increasing learning rate. Afterwards, the
learning rate decays linearly to 10–6. Furthermore, to improve
stability of the training, we used gradient clipping as defined
in Pascanu et al. (2013). More details regarding the hyper-
parameters tuning are given in the Supplementary Materials.

2.7 Model evaluation

To evaluate the model’s performance, we compare the
predicted evolution of the system with the ground truth, using
the following two metrics: i) the mean absolute error, and ii) a
normalized correlation.

We define the mean absolute error (MAE), calculated per
each time step, as,

|ϵ| =
Nx

∑
i=1

| ̂ψi −ψi|
Nx
, (9)

where Nx is the number of spatial points, while ̂ψi and ψi are the
ground truth and the predicted wave function value, respectively,
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evaluated in the ith discrete position, xi. MAE remains at low
values for a good model. However, a consistent low MAE is not
sufficient to determine a good model, as a model that constantly
outputs zero or near-zero values might result in a relatively low
MAE in some cases (e.g., when the ground truth is a wave packet
concentrated only in a small volume of a larger space).Therefore,
along the MAE, we use a secondary metric, the normalized
correlation,

C =
∑Nx

i=1
̂ψi
*ψi

|ψ̂‖ψ|
, (10)

where, Nx, ̂ψi and ψi are defined in the same way as above.
The symbol * represents the complex conjugate. Normalized
correlation treats the predicted and true wave functions as two
vectors, i.e. ψ̂ and ψ. To this end, normalized correlation can be
understood as the angular similarity between two wave function
vectors.

For an overall performance evaluation, we calculate the
average over a number of consequitive time steps, denoted by
⟨|ϵ|⟩ and ⟨C⟩ respectively.

3 Methodology

3.1 The training framework

In Figure 2, we show the proposed training framework
for preparing machine learning-based quantum dynamics

emulators. The main idea is based on the concepts of
knowledge distillationGou et al. (2021) and curriculum learning
Bengio et al. (2009). However, instead of extracting information
from a larger machine learning model, our target is a simple,
physically informed simulator. In detail, the framework consists
of the following steps. First, the simulator samples the initial
conditions and generates time-trajectories describing an
evolution of the physical system of interest (cf. Figure 2A).
Next, we construct training examples from these recorded
simulations (cf. Figure 2B).We select a diverse set of the training
examples, making sure that all important phenomena of interest
are represented (cf. Figure 2C). This balanced curriculum of
examples is consequently used as the input for the machine
learning model. We train the model, and then we validate it
using some novel examples. When testing the model, we include
cases that were not directly represented during the training, to
measure whether the model can combine and generalize the
acquired knowledge (cf. Figure 2D).

3.2 Training and testing procedure

To demonstrate that the emulator can extract knowledge
from simple examples and generalize it in a non-trivial
way, we restrict the physical simulator to cases with only
a single rectangular potential barrier. The emulator need to
learn from these simple examples the basic properties of
the wave function propagation, namely dispersion, scattering,

FIGURE 2
Framework for Training a Machine Learning-Based Quantum Dynamics Emulator. (A), We sample initial conditions, according to which we
generate a set of physical simulations. (B), By selecting small space and time slices (illustrated by the sliding red window), we construct individual
training examples. (C), We sample from the space of all possible training examples to create a training curriculum. (D), Finally, the machine
learning-based emulator learns from the prepared curriculum of training examples. We test the emulator by selecting novel cases and by
recursively forecasting the next time steps of the system evolution.

Frontiers in Materials 06 frontiersin.org

https://doi.org/10.3389/fmats.2022.1060744
https://www.frontiersin.org/journals/materials
https://www.frontiersin.org/journals/materials#articles


Yao et al. 10.3389/fmats.2022.1060744

tunneling, and quantum wave interference. Next, we test
whether the emulator can predict the time-evolution of wave
packages in a more general case: e.g., for packages of different
shapes propagating through an arbitrarily complex potential
landscape.

To evaluate the generalization potential of the neural
network-based emulators, we hand-designed a panel of test data
sets that includes: random single-rectangular barriers, double-
rectangular barriers, triple-rectangular barrier, irregular barriers,
quadratic potentials, as well as rectangular wells.

We show these test cases in detail in Supplementary
Materials.

4 Results

4.1 Quantum dynamics emulation with
neural networks

We present the results of the emulation and the comparison
with the ground truth in Figure 3. In panels d–e, we demonstrate
the emulator’s generalizability potential on in two out-of-domain
situations: with the potential barrier having a shape of a step
pyramid or a smooth half-circle. Since the emulator was trained
only on a single rectangular barrier of a fixed width (much
wider than the width of the step in the pyramid), those testing

FIGURE 3
Machine Learning-Based Neural Network Emulator. (A), Proposed neural network emulator architecture, along with the corresponding input and
output. The rectangle boxes illustrate different types of neural network layers, and the red arrays represent the hidden states (hidden vectors). (B),
Data representation of an exemplary raw input. The red rectangles represent spatial slices of the data (windows). (C), Data representation of an
exemplary output of the neural network emulator. (D), Ground truth and the predicted value ofR[ψ(x, t)] for an initial Gaussian wave packet and for
a pyramid shaped potential barrier. (F), Comparisons of the predicted evolution and the ground truth for three temporal snapshots, t ∈{50,200,350},
depicted by the white horizontal lines in panel (D). (E,G), A similar comparison, but for a half-circle shaped potential barrier instead.
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cases can not be reduced to any examples that were seen during
the training. Instead, to make valid predictions, the neural
networks must recombine the acquired knowledge in a non-
trivial way. Despite that challenge, as we can see in Figures 3F, G,
in both cases the predictions of our emulator match well the
ground truth. It is worth of noticing, that the emulator makes
its predictions in a recurrent manner (by using the predictions
of the previous steps as input of the next step). Therefore, it is
expected that predicting the evolution over hundreds of steps
will cause some error accumulation. The fact that even after
350 steps the error is negligible, speaks about the quality of the
individual (step by step) predictions. This result indicates also,
that long-term predictions of the dynamics are possible in our
framework.

As a conclusion, the proposed neural network emulator
successfully learns the classical aspects of the wave dynamics,
such as dispersion and interference. It also captures the
more complex quantum phenomena, such as quantum
tunneling. To further show that the emulator can generalize the
acquired knowledge to make both in- and out-of-distribution
predictions, we hand-designed a test data set with 12 freely
dispersing cases, 11 rectangular barriers (with randomly

chosen width and height), as well as 14 more challenging
test cases depicting both multiple and irregularly shaped
barriers (in total, 37 test instances). We show a selection
of those cases in Figure 4 In all cases, the results were
satisfactory, confirming the ability of the emulator to generalize
to novel (and notably, more challenging) situations (see
also additional test results in Figs. S3 in the Supplementary
Materials).

4.2 Architecture justification

In this section, we aim to provide some justification for the
specific architecture of the emulator, that we introduced in the
previous sections. In order to verify, whether all the introduced
complexity is necessary, we ask a question whether there exists
a simpler machine learning model capable of learning quantum
dynamics with a similar accuracy. Consequently, we compare our
recurrent-network based approach with other popular network
architectures. For consistency, in each case we use the same
window-based scheme (to keep the input constant), while
emulating the wave packet propagation for 400 time steps.When

FIGURE 4
Test Cases. A selection of a hand-designed test data set for wave packet evolution in a potential landscape, along with the performance metrics of
the proposed machine learning-based emulator.
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TABLE 1 Neural Network Architecture Comparison. Performance
comparison for different architectures of our machine learning-based
emulator. As ametric, we used themean absolute error |ϵ| (less is better)
and a normalized correlation C (closer to one is better), both averaged
over all spatial grid points, all time step, and all available test cases.

Model Number of parameters ⟨|ϵ|⟩ ⟨C⟩

Linear 3,220 0.0366 0.1597

Dense 27,163 0.0411 0.5729

Conv 28,889 0.1467 0.3667

GRU 40,204 0.0051 0.9953

comparingwith the ground truth, wemeasured the averagemean
absolute error (MAE) and the average normalized correlation C.

The results are presented in Table 1, where the values
represent the average performance over all our 37 test cases. For
the comparison, we used three other models: a linear model,
a densely connected feedforward model, and a convolutional
model (for a detail description of each network architecture,
see the Supplementary Materials). As evident in our results,
the proposed architecture (utilizing the gated recurrent units,

GRU) outperforms all other, simpler architectures by a large
margin.

We present a details comparison for one of our test set in
Figure 5. It is evident that the recurrent architecture provides
the best results, whereas the simpler architectures fail to
capture the complex long-time evolution of the wave packets.
Notably, a failure of each simpler model can be used to justify
different aspect of our final design. For example, the failure of
the linear model might indicate the importance of the non-
linear activation functions included in our final model. The
convolutional architecture captures quantum wave dispersion,
but does not capture correctly the interaction between waves
and the potential barrier. It might suggest, that to correctly
capture the tunneling and scattering phenomena, we must mix
the information not only between different spatial points but
also between different channels. The dense architecture is able
to capture both the reflection and the tunneling phenomena,
but yields significant errors comparing to the recurrent-based
model. This indicates, how important the temporal dimension
is—something what recurrent architectures are designed to
explore, as they are capable of (selectively) storing the memory

FIGURE 5
Scattering of a Quantum Wave Packet by a Rectangular Potential Barrier. (A), Ground truth and the predicted value of R[ψ(x, t)] for quantum wave
packets scattered by a rectangular potential barrier. (B), Comparisons of emulated and exact solutions corresponding to two temporal snapshots
(time steps 150 and 350 and depicted by the white horizontal lines in panel a). (C,D), Time-step-by-time-step error propagation calculated as a
mean absolute error, |ϵ| (less is better), and normalized correlations, C (closer to one is better), respectively.
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of the previous steps in their internal states—and retrieving them
when needed Cho et al. (2014); Gers et al. (2000).

4.3 Generalization capability

The usefulness of a neural network is mainly determined
by its generalization capability. In this section, we provide a
systematic analysis of both the in-domain and the out-of-domain
predictive performance of our emulator.

In the training process, the raw emulation data is broken
up into small windows, and those windows are re-sampled to
build the curriculum. One of the reason for doing so, was
to balance cases featuring different distinct phenomena, e.g.,
free propagation vs tunneling through the potential barrier.
During the training, we artificially restricted our training
instances only to those featuring Gaussian packets and single
rectangular potential barriers. This allows us later to test the out-
of-distribution generalizability potential—namely, whether our
emulator can correctly handle packets of different modulation or
barriers of complex shape.

The barrier used in our training instances had a variable
height, but a fixed width of 7a.u. Notably, the width of the
window, that we used to cut chunks of the input data for our
neural network, was 2.25a.u.—i.e., it was smaller than the width
of the potential barrier itself. As a result, the network was
exposed during the training to three distinct situations: 1) freely
dispersing quantum waves in zero potential; 2) quantum wave
propagation with non-zero constant potential; 3) quantum wave
propagation with a potential step from zero to a constant value

of the potential (or vice versa). While it is obvious that our
emulator should handle rectangular potential barriers wider than
the width of the window, since such situations are analogous
to those already encountered in the training process, it is not
all so obvious that the same should happen with barriers of a
smaller width, yet alone with barriers of different shapes than
rectangular. However, as it was already presented in Figure 3,
those cases do not present a challenge for our emulator.

In Figure 6, we present a more systematic study of that
phenomena. We have evaluated how the accuracy of the
emulation is affected when changing the following parameters:
a) the initial wave packet spread, b) the initial wave packet
energy, c) the rectangular barrier width, and d) the rectangular
barrier height. In the experiments, we alter one of the parameters,
while holding all other parameters at a constant value. We
report the average correlation calculated across all the spatial
grid points and all the emulated time steps. As we can see,
the performance of the emulator remains effectively unchanged
for all the tested values of the initial wave spread and the
rectangular barrier width. This demonstrates that the network
generalizes well with respect to those parameters. Remarkably,
the performance does not deteriorate even when the barrier
width becomes smaller than the size of the window, i.e., 2.5a.u.
This explains why our emulator was able to correctly emulate the
evolution with presence of continuously-shaped barriers (that,
due to the discrete nature of our input, can be seen as a collection
of adjacent 1-pixel-wide rectangular barriers).

With respect to the value of the initial wave packet energy, the
correlation curve has a “∩” shape, indicating that the accuracy
deteriorates as we leave the energy-region sampled during the

FIGURE 6
Generalization of Simulation Parameters. Average normalized correlations, denoted by ⟨C⟩, as functions of four simulation parameters: (A) initial
wave packet spread, (B) initial wave packet energy, (C) rectangular barrier width, and (D) rectangular barrier height. We repeated each experiment
using five different random seeds. The bold blue line in each panel shows the average normalized correlation, and the blue shades indicate the
span between the minimum and maximum values recorded in those five trials. The red vertical lines denote the training values for each emulation
parameter.
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training stage. However, this is as much a failure to generalize
as the limitation of the way how we represent the data and
the environment. Lower energy of the packet means that the
evolution of the quantumwave is slower—and we have to predict
more steps of the simulation to cover the same spatial distance
as for wave packets with a higher energy. Due to the recurrent
process of our emulation, this means larger error accumulation.
On the other end, when the energy is high, the wave functions
change rapidly within each discretized time unit. This means a
larger potential for error each time we predict the next time step.
Similar situation also happens when the barrier height increases.
A steeper barrier means a more dramatic changes to the values
of the wave function happening between two consequent time
steps. Those both effects can be mitigated by increasing either
the spatial or temporal resolution of our emulation.

4.4 Model interpretability through input
feature attribution

In this section, to get some insight into how our emulator
makes the prediction, we measure the feature attribution (the
contribution of each data input to the final prediction). We
employ the direct gradient method. Namely, for a given target

pixel in the output window, we calculate its gradients with
respect to every input value. We follow the intuition that larger
gradient is associated with higher importance of measured input
Simonyan et al. (2014). Since all the target values are complex
numbers, this method gives us two sets of values, one for the real
and one for the imaginary value of the target pixel,

∂R(ψtarget)

∂{ψinput}
and

∂I(ψtarget)

∂{ψinput}
. (11)

In Figure 7, we show a sample of the results. Namely,
we selected one test example, and as the target we took the
central pixel of the predicted frame. Next, we calculated the
gradient with respect to each input value. In this concrete
example, we can see that the importance of the input pixels
increases with each consecutive time steps. However, how much
exactly the early steps matter depends on the region where
the predictions are made. Far from the potential barrier (cf.
Figure 7A), the gradient measured with respect to the pixels of
the first two steps (no. 176 and 177) is close to zero, indicating
that those steps carry relative little importance. However, when
predicting the evolution of the wave function in the vicinity of
the potential barrier (cf. Figure 7C), the importance of the third-
from-the last step (no. 177) increases noticeable. This indicates,

FIGURE 7
Model Interpretability. (A), Direct gradients calculated for a freely dispersing quantum wave (far from any potential barrier). Red circles denoting
positive direct-gradient values, and with blue circles denoting negative values. (B), Two wave functions: one far from any potential barrier (left);
second interacting with a step pyramid-shaped potential barrier (right). (C), Direct gradients calculated for a quantum wave interacting with a
potential barrier.
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that when predicting free propagation, the network simply
performs a linear extrapolation based on the latest two time-
steps. However, when predicting tunneling and scattering, the
emulator reaches beyond the last two time-steps for additional
information, likely due to the non-linear character of those
predictions.

Interestingly, when repeating the calculations for other
positions of the input window, we have consistently observed
similar values of the direct gradient. To further analyze this
phenomenon, we measured the average value of the direct
gradients for 200 randomly sampled data windows. The results
are depicted in Figure 8. There is a clearly visible pattern,
suggesting a steady and almost linear relationship between the

input wave functions and the predicted value.This indicates, that
with the absence of any potential barrier, the target values are
linearly related to the input from the previous step. Introducing a
potential does not change this linearmapping bymuch (compare
the relatively small values of the standard deviation to the size of
the bars). The situation is different when we consider sensitivity
to the values of the potential, instead. We find that the direct
gradients vary greatly over different windowpositions, compared
to the average values. This is an indicator that the mapping
from potential values to the target wave functions is a more
complex, non-linear function—which is also consistent with the
interpretation of the results presented earlier (cf. e.g., Figure 5
and the discussion there).

FIGURE 8
Average direct gradients. (A), The averaged direct gradients of the real part of the center pixel of the output window. (B), The averaged direct
gradients of the imaginary part of the center pixel of the output window. The bars represent the average value, and the black line the standard
deviation.
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5 Discussion

Interpreting neural networks creates interesting possibilities.
Namely, by analyzing how machine learning models make
their predictions, we can learn new facts about the underlying
physical problem. As an example, using the direct gradient
descend method, despite its simplicity and known limitations
Sundararajan et al. (2017), we can discover interesting relations
between the input parameters. By analyzing several examples,
such as those depicted in Figure 7, we observe a strong
relationship between the averaged direct gradients of R(ψtarget)
and I(ψtarget), namely.

∂R(ψtarget)

∂R(ψinput)
=

∂I(ψtarget)

∂I(ψinput)
, and (12)

∂R(ψtarget)

∂I(ψinput)
= −

∂I(ψtarget)

∂R(ψinput)
. (13)

This result can be used to (re)discover the Cauchy-Riemann
relations Riemann (1953). Notable, this happens, despite the fact
that we have not imposed any prior knowledge of wave dynamics
or complex analysis during the training procedure. rather, the
model is able to learn the correct relation directly from the
presented training examples.

This trend, of looking at machine learning algorithms
as something more than just black-box systems capable
of extracting patterns from the data or solving given
classification and regression problems, opens new possibilities
Zdeborová (2017, 2020). As it is evident in this example, we can
use machine learning to gain a better insight into the physics
problem. There has been an increasing number of papers,
exploring this direction. For example, V. Bapst et al., in their
article Bapst et al. (2020), demonstrated how to train a graph
neural network to predict the time-evolution of a glass system.
By measuring the contributions to the prediction from particles
located on subsequent “shells” around the target particle, they
were able to estimate the effective correlation length of the
interactions. They were also able to qualitatively show, that
when system approaches the glass transition, the effective cut-off
distance for the particle-particle interactions increases rapidly,
a phenomena that is experimentally observed in glass systems.
As an another example, Lee et al., in their work Lee et al. (2022),
trained support vector machines to predict the preferred phase
type for the multi-principal element alloys. Next, by interpreting
the trained models, they were able to discover phase-specific
relations between the chemical composition of the alloys and
their experimentally observed phases. Knowing what influence
the phase formation, can be important both in the scientific
context, as it increases our understanding, and can help us to
refine our theoretical models, as well as from the manufacturing

perspective, as it enables synthesis of materials with desired
mechanical properties.

Another topic discussed in our paper is the ability ofmachine
learning models to generalize to out-of-distribution examples.
For the completeness, it is important to discuss what we mean
by this term. We train our model on some simple examples,
generated by an emulator restricted to a specific region of the
parameter space. Next, we wanted to generalize in that parameter
space. Namely, our goal is to predict the time-evolution of the
system for parameters that are outside of the scope used during
the training. This is in contrast to the typical understanding
of generalization, as the ability of handling a novel (unseen
during the training) data-input instances, that nevertheless come
from the same distribution as the training examples. While
our parameter space is relatively low-dimensional (we have
just a couple of variables describing the initial conditions of
the system), it is not the case for the ambient space of the
inputs (each input instance is a tensor of 4× 23× 3, this is
276 dimensions). This high-dimensionality of the ambient space
has profound implications. Balestriero, Pesenti and LeCun, in
their work Balestriero et al. (2021), have shown that in highly
dimensional space all predictions are effectively extrapolations,
not interpolations. The logic is, that the number of training
examples required for a prediction to be seen as interpolation,
grows at least as fast as exponentially with the increasing
dimension of the input. Effectively, for any dimensions above a
few dozens, the training points become very sparse. Therefore,
any point during the testing phase is likely to be far (at least
along some dimensions) from any other point observed during
the training.Thismakes that almost every testing point is located
outside of the convex hull defined by the training examples—thus
predictions of those points is nothing else than an extrapolation.
In our case, however, we are interested in the ability to extrapolate
in the space of the original parameter space, that control our
physic-informed emulator, not in the ambient space of the neural
network input. Since our parameters space has much lower
dimension—just below 10—thus, we can distinguish cases that
require interpolation and extrapolation. As an example, if our
model was trained by showing propagation of wave packages
with the energy spread S0 ∈ {1,1.5,2,2.5,3,3.5,4}, then to predict
an evolution for a package that has spread 2.7 would be an
interpolation, and to predict the evolution for the spread five
would be an extrapolation. In Figure 6, we have shown the
performance of our emulator both in the interpolation and the
extrapolation regime. We have also discussed, that the emulator
can generalize outside the explored region of the parameter
space, at lest along some dimensions.

There are other works discussing generalization to out-of-
domain cases Wald et al. (2021); Wang et al. (2021). However, in
those works the question of generalizability was asked mostly
in the context of out-of-distribution detection, and used mostly
in the context of fraud detection Pang et al. (2021), general
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novelty detection Yang et al. (2021) or as a means for increasing
trustworthiness of machine learning systems Liu et al. (2020). In
this paper we explored this concepts in the context of obtaining
robust emulators of physical systems.

6 Conclusion

In contrast to other works that either focused on solving a
specific quantumproblem, e.g., prediction of long-time quantum
dynamics of open systems, or on a specific class of models, e.g.,
the latent neural ordinary differential equation solvers, here we
investigate training frameworks that promote generalization for
many possible neural architectures. We also identify minimal
model architectures capable of solving a given task, in order
to assess the complexity of the underlying problem. And as we
demonstrate, in the process of doing this, we can learn new facts
about the system. This is in line with the concept of using neural
networks for scientific concept discovery.

Learning from data comes at a cost. The main heavy
lifting is done during the training. The training procedure
can take hours, and it varies whether we train it on a
CPU or a GPU. The advantage of this approach is that the
inference time is constant and easily parallelizable. Nevertheless,
dedicated methods tailored to emulate particular systems can
be significantly faster, especially in simple cases, such as one-
dimensional wave function propagation, where the overhead of
the neural networks can be especially noticeable. Non-etheless,
we believe that this is still acceptable, given that our neural
network based approach serves different purposes, i.e., we want
to learn about the system, not just solve it following a set list of
instruction. To achieve this goal, we can accept some additional
computational overhead.

Our framework can be applied to more than just the
discussed problem. We have chosen the conceptually simple
problem of one-dimensional propagation to clearly demonstrate
the extent of the extrapolation capability of our approach.
In this simple case, we had a wealth of controlled training
data. However, this approach can be straightforwardly used
on other non-linear dynamics problems with less accessible
training data, such as open quantum dynamics in interacting
many-body systems. In such situations our approach has the
potential to provide a significant speed-up. Namely, by learning
from a set of easy-to-obtain simulations, and subsequently
generalizing that knowledge to more challenging cases, we
can get predictions of the system’s behavior in regimes that
could be hard to simulate otherwise (as long as we do not
leave the regime where our predictions are still reliable - one
must remember to validate the model before using it in any
applications).

In future work we will optimize training schemes that
maximize the generalization capability. Moreover, we will

apply this methodology to physically challenging systems,
e.g., including interactions. Furthermore, we will implement
more sophisticated interpretability techniques and increase the
robustness of the emulator by utilizing known symmetries, e.g.,
by constructing physically informed neural networks. Finally, we
would like to pursue an iterative framework, whereby any time
a new symmetry is discovered, it is implemented as a system
constraint, repeating this procedure for a full characterization of
the underlying physical system.
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