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Surface crack detection is essential for evaluating the safety and performance

of civil infrastructures, and automated inspections are beneficial in providing

objective results. Deep neural network-based segmentation methods have

demonstrated promising potential in this purpose. However, the majority of

thesemethods are fully supervised, requiring extensivemanual labeling at pixel

level, which is a vital but time-consuming and expensive task. In this paper,

we propose a novel semi-supervised learning model for crack detection. The

proposed model employs a modified U-Net, which has half the parameters

of the original U-Net network to detect surface cracks. Comparison using 20

epochs shows that the modified U-Net network requires only 15% training

time of the traditional U-net, but improves the accuracy by 20% upwards.

On this basis, the proposed model (modified U-Net) is trained based on an

updated strategy. At each stage, the trained model predicts and segments the

unlabeled data images. The new strategy for updating the training datasets

allows the model to be trained with limited labeled image data. To evaluate

the performance of the proposed method, comprehensive image datasets

consisting of the DeepCrack, Crack500 datasets those open to public, and an

expanded dataset containing 2068 images of concrete bridge surface crack

with our independent manual labels, are used to train and test the proposed

method. Results show that the proposed semi-supervised learning method

achieved quite approaching accuracies to the established fully supervised

models using multiple accuracy indexes, however, the requirement for the

labeled data reduces to 40%.

KEYWORDS

deep learning, crack detection, semi-supervisded, image segementation,
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1 Introduction

Existence of surface cracks has a significant impact on
the safety and endurance of infrastructure such as roads and
bridges Biondini and Frangopol. (2016) Rafiei and Adeli (2017).
Cracking is an inevitable phenomenon indicating the
degradation of infrastructure performance. It is getting common
when infrastructure approaches their life expectancy. With an
aging population and rising labor costs, the ability to inspect
the structure continuously and automatically with a reduced
workforce has become a critical research pathMaeda et al. (2018)
and Liu et al. (2019b). Manual visual inspection is a well-known
technique for inspecting and evaluating the health of the civil
infrastructure. This kind of solution is low efficiency, highly
reliant on experts and time-consuming Nguyen et al. (2021).
The accuracy of damage diagnosis is largely dependent on the
inspectors’ skill level and experience. As a result, automatic crack
detection is critical for achieving the objectivity and efficiency
required for damage assessment Adhikari et al. (2014).

Numerous automatic or semi-automatic systems have been
proposed, using advanced sensors for assessment, such as
line scanning cameras Gavilán et al. (2011), accelerometers
Radopoulou and Brilakis (2017), RGB-D sensors Tsang and
Lo (2006), black-box cameras Kim and Ryu (2014), and 3D
laser scanners Bursanescu et al. (2001) and Zhang et al. (2018b).
The equipment with these sensors, as well as the relevant
systems are usually costly. For instance, between the year
of 2012 and 2013, the Ohio Department of Transportation
(ODOT) was offered five choices for pavement inspections at
the cost of $1.12 million, including a collection system, web
hosting, workstations, and training. In general, the average
cost for pavement inspections and monitoring is estimated as
$48.75/km in Netherlands Seraj et al. (2017). It is comparable in
United Kingdom, that the average cost is reported ranging from
$27.89/km to $55.77/km in the previous studies Radopoulou
and Brilakis (2017), Hadjidemetriou and Christodoulou (2019).
Due to the high cost of vehicles equipped with sensors for road
inspections, the relevant agencies and government departments
cannot afford to spend a high price to inspect the entire road as
much as possible Woo and Yeo (2016).

With the advances of computing power and the advent
of artificial intelligence, image processing, and computer
vision-based approaches became increasingly effective at
analyzing and detecting surface cracks of infrastructures
Cao et al. (2020). Many automated or semiautomated computer-
aided crack detection methods have been proposed, including
threshold segmentation Zhu et al. (2007) and Li et al. (2022),
histogram transforms Patricio et al. (2005), region growing
Zhou et al. (2016) and Li et al. (2011), edge detection Ayenu-
Prah and Attoh-Okine (2008). Although these algorithms laid
a solid foundation and inspired the automated crack detection,
they require extensive manual feature engineering, while the

detection results are likely to influenced by noise because of the
crack images complexity. These limitations are debated up to
date.

Recently, deep learning (DL)-based computer vision
methods have achieved state-of-the-art performance in
various computer vision-based tasks Krizhevsky et al. (2012),
Ren et al. (2015), Long et al. (2015), Peng et al. (2020),
and Han et al. (2021b). Various methods those based
on convolutional neural network (CNN) have been
applied to identify the crack detection of structures,
including image classification Gopalakrishnan et al. (2017)
and Mohammed et al. (2021), object detection Cheng and
Wang (2018) and Xu et al. (2019), and semantic segmentation
Tong et al. (2019), Zhou et al. (2019), and Al-Huda et al. (2021).
Generally, these previous DL-based methods can be categorized
into threemajor kinds, i.e., the binary classifier that distinguishes
between crack and non-crack images for the input images
Nhat-Duc et al. (2018), anchor boxes used to highlight cracks in
images by the object detector Huyan et al. (2019), and pixel-level
semantic segmentation that able to specific segment pixels of
the crack from background pixels in images Huyan et al. (2020).
Among these methods, pixel-level crack segmentation delineates
the geometric features of the cracks, therefore, should be
considered as a more effective solution in engineering practice,
where the geometric features of the cracks are required to
determine the type, length, width, and severity of the crack
Dong et al. (2020).

However, comparing to the binary classifier and anchor
boxes methods, the pixel-level semantic segmentation of CNNs
often suffers from loss of information and an imbalance in
the quantity of cracked and non-cracked pixels in their early
versions. Downsampling methods (e.g., max-pooling) lose
information from the feature map and obstruct the pursuit of
pixel-perfect accuracy. Zhang et al. (2017) developed a method
for segmenting cracks at the pixel level based on CNN called
CrackNet. CrackNet does not contain pooling layers, and the
feature map size is constant in all layers to prevent information
loss.They alsomade progressive strengthening that the improved
versions of CrackNet II and CrackNet V Zhang et al. (2018a)
and Fei et al. (2018) were released, which are more accurate and
faster. Cheng et al. (2018) and Jenkins et al. (2018) demonstrated
high-precision segmentation of cracks at the pixel level using U-
Net. A skip connection between the encoder and decoder can
recover the information loss in the U-Net upsampling method
for pixel-level image segmentation Ronneberger et al. (2015),
Tang et al. (2021), andKarimpouli andKadyrov (2022) proposed
a Double-Unet to overcome inability to reconstruct HR
features in the decoder part of the U-net. Results show that
SRDUN performs more realistic than conventional networks.
Liu et al. (2020) proposed a detection and segmentation method
for road cracks, and the YOLOv3 model was used to determine
the kind and crack position of the input image, which was then
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used as an input to the U-Net segmentation. Zhu et al. (2022)
used an unmanned aerial vehicle (UAV) to collect pavement
images and then used deep learning to detect six types of distress,
including four crack types (e.g., fatigue crack). Han et al. (2021a)
proposed a sampling block with a convolutional neural network
implementation called CrackW-Net, thereby developing a novel
pixel-level semantic segmentation network for pavement crack
segmentation.

As can be seen from the abovementioned studies, the
semantic segmentation methods have been extensively used
in crack detection and can be used as the basis for crack
morphological feature measurement. However, the majority of
the current crack detection semantic segmentation methods
are fully supervised learning-based Liu et al. (2019b) and
Xu et al. (2019), which require supervising the model’s training
process using amount of the labeled image data. In these
labeled image data, the cracks of the infrastructure surface are
commonly manual delineated and separated from the non-
crack area. The quality of these manual labeled image data
significantly influences the detection accuracy of the model. In
this sense, the application of DL-based semantic segmentation
methods to crack detection is limited owing to that the labeling
work is time-consuming. For instance, pixel-wise labeling
spends about 15 times longer to complete than bounding
anchor box labeling, and even 60 times longer than image-level
classification Dong et al. (2020). To this end, different kinds of
weak annotations were used inmanymethods, such as bounding
box Dai et al. (2015), and scribble Lin et al. (2016) to annotation
at pixel-wise. Despite the fact that there is no difficulty because a
massive dataset is not required, but the cracks can have complex
topological structures and can span the entire image. As a result,
scribble or bounding box annotation is an ineffective technique
for crack detection Al-Huda and Li (2022). With image-wise
label, annotation time andworkload can be significantly reduced,
allowing this task to be applied more effectively to pavement
crack segmentation task.

To overcome the issue of insufficient data, the semi-
supervised learning method is an alternative solution, which
fully utilize unlabeled data, reducing labeling workload while
maintaining accuracy. Some current studies, Li et al. (2020) and
Shim et al. (2020) have begun to use this kind of method, and
proposed an adversarial learning-based semi-supervised crack
segmentation method. The model consists of a segmentation
network and a discrimination network. Given an input crack
image, the segmentation network generates a prediction map,
and the discriminator network separates the prediction map
from the ground truth label map. Wang and Su (2021) proposed
a semi-supervised semantic segmentation network for crack
detection. The proposed method consists of a student model
and a teacher model. The two models use the EfficientUNet to
extract multi-scale crack feature information, which reduces

image information loss. However, most of the previous semi-
supervised learning-based studies for crack segmentation
majorly use adversarial learning or similar networks, therefore,
it is difficult to achieve good training results unless the training
process ensures synchronization and balance between the two
adversarial networks Wang et al. (2017) and Goodfellow et al.
(2016).

In order to address these issues, in this paper we propose
a novel semi-supervised method for crack image segmentation.
The modified U-Net is applied in the proposed method. Then,
to minimize the requirement for the labeled image data, a
novel dataset update strategy that updates the given training
dataset are proposed. The modified U-Net-based convolutional
neural network was used to avoid the difficulties associated
with manually extracting features. A open-source, however,
unlabeled GitHub dataset for bridge crack images Li et al. (2019)
is used. The images in this dataset are independently labeled.
To evaluate the performance of the proposed method, the
labeled bridge crack dataset, and two other open-source
dataset, i.e., DeepCrack and Crack500, are used to train
and test the proposed method. The proposed method was
compared to the fully supervised methods by conducting
experiments on two public datasets. The following are main
contributions:

• A novel semi-supervised learning-based semantic
segmentation framework for crack images, which
significantly reduces the workload associated with data
annotation, is proposed.
• The improved U-Net-based convolutional neural network
was used to avoid the difficulties associated with manually
extracting features.
• The new bridge crack image dataset was carefully labeled
and used to train and test the model based on unlabeled
GitHub bridge crack open-source dataset Li et al. (2019).
This manual labeled dataset will be available and released to
public along with this paper.
• The proposed method was compared to the fully
supervised methods by conducting experiments on
two public datasets. The results demonstrate that the
proposed method achieves comparable results to fully
supervised methods while reducing human labeling
efforts.

The remaining of this paper is organized as follows.
Section 2 presents the research methodology; Section 3
presents the datasets and evaluation metrics; Section 4
presents the experimental results; Section 5 presents
discussions and comparative study to verify the segmentation
performance; finally, the study’s conclusions are presented in
Section 6.
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2 Methodologies

2.1 Overview of the proposed method

The fully supervised deep learning methods depends on the
quality and amount of the labeled crack images dataset, which
is commonly manual labeled, time-consuming, and costly. The
main goal of this method is to use a limited number of labeled
crack images to achieve satisfactory results. For this purpose,
a new method for crack image segmentation based on semi-
supervised learning is proposed to address this issue.

This section details our semi-supervised framework for
crack segmentation using image-level labels as semi supervision
annotations. It aims to bridge the gap between the fully and
the weakly supervised semantic segmentation methods for
pavement crack segmentation, while reducing human labeling
efforts. The proposed framework has four main steps: 1)
Contrast Limited Adaptive Histogram Equalization (CLAHE)
Reza (2004) is adapted to mitigate the detrimental effects of
uneven illumination on input images via contrast limited
adaptation; 2) the Supervised model is trained on labeled data
images; 3) an initial pixel-level annotation is obtained by using
the trainedmodel (supervised) to predict and segment unlabeled
data images; 3) the semi-supervised model is trained on labeled
data and high-confidence predictions; 4) update the training
dataset by combining labeled data and high confident predictions
to train the semi-supervisedmodel. 5) steps 3,4 are repeated until
all images in the data set required to train the model are used,
and 6) use the final model to predict the label of the test set and
evaluate.

As shown in Figure 1, the input image is enhanced by
CLAHE, as a preprocessing step. Then, trained the modified U-
Net deep neural network on a small amount of labeled crack data
and then predict and segment the unlabeled data image. Next,
the previously used dataset is updated and combined with the
highly confident predictions to train the semi-supervised model.
The specifics of the proposedmethodology are discussed inmore
detail in the following Section 2.3.

2.2 The modified U-Net model

In order to implement an automated crack image analysis
system, it is necessary first to segment the cracks. Complex
feature engineering and selecting the most suitable classifier are
essential to achieve satisfactory segmentation results, and this
task is time-consuming and labor-intensive. A modified U-Net-
based Convolutional Neural Network is used to avoid difficulties
with manually extracting features.

U-Net Ronneberger et al. (2015) is a fully convolutional
neural network-based model for solving the issue of biomedical
image semantic segmentation. The model consists of a

contraction path and an expansion path, and the input image is
compressed into amultichannel featuremap passing through the
feature extraction path.The encoder uses max-pooling (strides =
2) and convolutional layerswith an increasing number of filters to
continuously reduce image size, followed by activation (ReLU).
Thenumber of filters in the convolutional layers decreases during
decoding, followed by gradual upsampling in the subsequent
layers to the top. The contracting and expansive paths in a
traditional UNet network are nearly symmetrical. However,
due to downsampling methods (e.g., maximum pooling),
information from the feature map is lost, and the pursuit of
pixel-perfect accuracy is hampered. In addition, traditional UNet
networks contain many parameters that hinder network speed.

In this paper, in order to address the above issues, a modified
U-Net-based crack segmentation method is proposed in this
study. Figure 2 shows the modified UNet network. The basic
of the U-Net method has been illustrated in detail in previous
studies Ronneberger et al. (2015) and Tang et al. (2021). The
modified U-Net focuses on the following aspects.

To reduce the number of network parameters and increase
the speed of network training, the modified U-Net network
has half the parameters of the original UNet network, which is
capable of accurately and automatically detecting cracks with
a high level of spatial precision. Additionally, Same padding
was added in the modified UNet network to achieve the size
of the output feature map is similar to the input feature map
size. Table 1 shows the comparison of network architecture
performance results, the DeepCrack dataset was used for the
experiment, and it seems clear that Modified U-Net has the best
performance across all metrics and requires the least amount of
training time.

The ith input crack image is represented by x (i).The standard
binary cross-entropy loss is the loss function used to train the
U-Net. The formula is as in Eq. 1.

L (θ) = − 1
N

n

∑
i=1
(yi logŷθxi) + (1− yi) log(1− ŷθxi) (1)

where yi represents the ground-truth and ŷθxi represents the
predicted label for the ith input image. The parameters θ of the
U-Net model optimization issue can be estimated as shown in
Eq. 2.

θ* = (argminL(θ)
θ ) (2)

This optimization problem was solved using the Adaptive
Moment Estimation (Adam) algorithm Kingma and Ba (2014).

2.3 Dataset updating method

The proposed semi-supervised method aims to obtain
satisfactory crack segmentation with a limited amount of labeled
data. In practice, obtaining a large number of unlabeled crack
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FIGURE 1
The schematic representation of the proposed semi-supervised method. 1) The Supervised model is trained on labeled data images, then 2) uses
the trained model (supervised) to predict and segment unlabeled data images. Then 3) the semi-supervised model is trained on labeled data and
high-confidence predictions. 4) This semi-supervised trained model re-labeling unlabeled images. The above steps (3, 4) are repeated until all
images in the data set required to train the model are used.

images is relatively easy. The dataset updating strategy used
to utilize these images, as shown in Figure 3. The goal of the
dataset update strategy is to label unlabeled images automatically,
therefore, increasing the total amount of the labeled images data,
which helps to estimate the network parameters.The following is
a detailed description of the implementation procedure.

Assume that the training dataset is S = {xn,yn,xnonm}, where
n = ni: N, 1: M and S1 ∪ S2. The subset S1 = xn, yn; n = ni: N
represents the labeled dataset, while the subset S2 = xnonm ;m =
mi:M represents the unlabeled dataset. The xn denotes the n− th
crack image and the yn represents the n− th ground-truth label.
The xnonm represents the m− th crack image without ground
truth. The output of the U-Net model is denoted by the symbol
ŷθ and Eq. 2 is used to estimate the parameter θ. Let ypredm denote
the predicted label of xnonm . After that, we can get ypredm by Eq. 3.

ypredm = ŷθ (xnonm) . (3)

The training dataset Sn can then be updated as follows:

S* = {xn,yn,xnonm ,ypredm} ,where,n = ni:N,mi:M (4)

The parameters θ of the U-Net model will be recalculated
with the updated dataset S* as input, during training

and validation of the semi-supervised model, the loss
is primarily used to assess the discrepancy between the
predicted and actual values, the dice coefficient is selected
as monitoring criteria to guide hyper-parameter learning.
The whole process of the proposed semi-supervised learning
method for the crack image segmentation is shown in
Algorithm 1.

3 Evaluation

3.1 Datasets

The performance evaluation was done by performing
experiments using two publicly available crack datasets, i.e.,
DeepCrack and Crack500 dataset, with the embedded ground
truth labels.

1) DeepCrack dataset Liu et al. (2019a).There are 537 images
with a resolution of 544 × 384 pixels. Ground truth images at
the pixel level are available. This dataset was used to evaluate
the proposed method. Figure 4 shows some images of the
DeepCrack dataset.
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FIGURE 2
The architecture of the modified U-Net model.

TABLE 1 Comparison of network architecture performance results on DeepCrack dataset for 20 epochs.

Network architectures Training time (s) Accuracy Precision Recall F1-score

Traditional UNet 1,471 0.9824 0.8621 0.6505 0.6821

Modified U-Net 223 0.9896 0.8864 0.7683 0.8229

FIGURE 3
The main framework of the proposed dataset updating strategy.
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Input: Training dataset S = {xn,yn,xnonm}

Output: Label predicted ypredm for unlabeled

data xnonm

STEP 1: Initialization

• Learning method: learning rate, batch size,

epoch

• Choose labeled data S for training the

modified U-Net model

STEP 2:

• Update the modified U-Net model parameters θ

by solving Eq. 2

• Calculate Binary cross-entropy loss for the

labeled data S

• Calculate Dice coefficient loss for the

labeled data S

STEP 3:

• Predict the pseudo-label ypredm using Eq. 3

STEP 4:

• Using pseudo-label probability that have

greater than a threshold value

- Update the training dataset S* by combining

labeled data and pseudo-labels using Eq. 4

• Training the modified U-Net model on the

updated training dataset S*

• Calculate Binary cross-entropy loss for the

labeled data S*

• Calculate Dice coefficient loss for the

labeled data S*

STEP 5:

• while the stop criteria are not met, do

- Return to STEP 3

• end while

STEP 6: Use the final model to predict the

label of the test set and evaluate

Algorithm 1. Semi-supervised learning method for the crack images

segmentation.

2) Crack500 dataset Yang et al. (2019). There are 3,792
training images, 696 validation images, and 2,246 test images, all
with a fixed size of 640 × 360 pixels and a variety of crack types.
This dataset presents a challenge due to the complex inference
factors such as uneven lighting conditions and shadows. Some
samples are shown in Figure 5.

To guarantee the robustness of the proposed method, we
also expand the dataset upon on DeepCrack and Crack500
dataset. Li et al. (2019) released a bridge crack image data in
2019. However, this dataset does not contain ground truth labels,
therefore, cannot be directly used for training.We independently
made manual pixel-level labels for the contained bridge crack

images, generating a new expanded dataset for crack semantic
segmentation.

3) Bridge cracks dataset with independentmanual labels.The
images are from a realistic crack dataset available to the public.
This dataset includes 2068 crack imageswith a resolution of 1,024
× 1,042. These images were taken on a real bridge using the
CMOS camera built into theDJI Phantom4Pro drone. Pixel-level
ground truth for this datasetwas carefullymanually created using
the Labelme tool to train and test the proposed model. Some
samples are shown in Figure 6. This manual labeled dataset will
be available and released to public along with this paper.

3.2 Evaluation metrics

This study used six metrics to evaluate fully supervised and
semi-supervised models. The relationship between the ground
truth and the predicted result for each pixel can be divided into
True Positive (TP), False Positive (FP), False Negative (FN), and
True Negative (TN) for the binary pixel-level classification task.
For crack detection, TP denotes the number of pixels correctly
predicted as cracks which the ground truth is also a crack; FP
denotes the number of pixels illogically predicted as cracks but
are non-cracks in the ground truth; FN denotes the number
of pixels predicted as non-cracks, but are the ground truth is
a crack, and TN denotes the number of pixels predicted as
non-cracks for which the ground truth is also a non-crack. To
evaluate the performance of a model, many indexes describing
the result accuracy have been proposed, including precision,
recall, F1-score, and IoU. Precision represents the fraction of
relevant instances among the retrieved ones. Recall is the fraction
of all relevant instances that are actually retrieved, the F-score,
which can balance precision and recall effects and provide
a more comprehensive assessment of the performance of a
classifier and Intersection of union (IoU) is the overlap area of
the predicted segmentation and the ground truth divided by
the union area of the predicted segmentation and the ground
truth. Equations 5–8 presents precision, recall, F1-score, and
Intersection of union (IoU). The precision, recall, and F-score
metrics did not consider TN. In contrast, the area under the
ROC curve (AUC) metric considers the TN and provides a
more comprehensive evaluation of the method performance. In
addition, the ROC curves can be plotted by thresholding the
anomaly scores, and the Area Under the ROC Curve (AUC) can
be calculated to quantify anomaly detection performance. AUC
is also used to evaluate performance compared to unsupervised
anomaly detection methods. Furthermore, pixel accuracy is the
most basic metric for indicating the proportion of correctly
predicted pixels.

Precision = TP
(TP+ FP)

. (5)
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FIGURE 4
Samples of source images and crack labels in DeepCrack dataset Liu et al. (2019a).

FIGURE 5
Samples of source images and crack labels in Crack500 dataset Yang et al. (2019).

Recall = TP
(TP+ FN)

(6)

F1−score = 2
(Precision ⋆ Recall)
(Precision+Recall)

(7)

IOU = 2
(Precision ⋆ Recall)

(Precision+Recall− Precision ⋆ Recall)
(8)

4 Results

4.1 Training implementation

The models were trained with a fixed learning rate of 0.001
for 100 epochs. The loss and optimization functions were binary
cross-entropy and Adam, respectively. Batch sizes of 24 were
used to train the models. When the validation loss function is
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FIGURE 6
Samples of source images in Li et al. (2019), and our manual crack labels in Bridge cracks dataset.

reduced, the models’ weights are preserved to reduce overfitting.
Themodels were trained using the Keras, Tensorflow and Python
libraries on the Google Colaboratory virtual environment.
During training and validation, the loss is primarily used to
assess the discrepancy between the predicted and actual values,
the dice coefficient is selected as monitoring criteria to guide
hyper-parameter learning. Figure 7 shows the loss curve and
the dice curve during validation. It observes that network
performance differs across datasets, which is not surprising given
the fact that different datasets have cracks of varying shapes
and sizes, complex backgrounds, and varied surface conditions.
In DeepCrack images, background intensity and crack intensity
are with high contrast. Therefore, most cracks can be accurately
extracted from pavement images. While Crack500 makes crack
segmentation challenging due to its diverse widths and shapes.
The background textures of most crack images are complex. The
same problem exists in the Bridge cracks dataset. It also observes
that the loss value of the 80% Crack500 dataset is higher than
that of the other dataset because the proposed method added
pseudo labels to the previous dataset to update it and train
the proposed model (80% pseudo labels added to 80% labeled
data). The more pseudo labels there are, the greater the loss
because the accuracy of those labels is insufficient due to the
variety of widths and shapes and the fact that the background
textures of most crack images in the Ckack500 dataset are
complex.

4.2 Experiment configuration

The proposed semi-supervised method was trained on the
bridge crack dataset (Our labeled dataset). 20%, 40%, 60%,
and 80% of the labeled data were used to train and test the
semi-supervised crack segmentation method. When trained
with 20% of the labeled data, the semi-supervised model
automatically generates labels for 80% of unlabeled data by
dataset updating strategy. When trained with 40%, 60%, and
80%of the labeled data, the semi-supervisedmodel automatically
generates labels twice or three times as much as the number
of the training labeled data. Data augmentation was used to
generate sufficient training data to ensure the generalization
ability of the semi-supervised model. The quantitative results
of the semi-supervised method on the bridge crack dataset are
shown in Table 2. The results of the semi-supervised method
were better in terms of recall, F1-Score, AUC, and IOU when
only 60% of the labeled data was used. In addition, the model
automatically generated labels for the unlabeled data that were
twice as large as the labeled quantity. It is demonstrated that
the semi-supervised method achieved good crack segmentation
results.The results of the semi-supervisedmethod on the test sets
for bridge crack segmentation are shown in Figure 8. Dashed
red dashed rectangle denote FP error. The DeepCrack and
Crack500 datasets were used to train and test the proposed
model in order to comprehensively evaluate its performance.
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FIGURE 7
The loss curve and the dice curve during validation. (A) DeepCrack dataset; (B) Crack500 dataset; (C) The bridge crack dataset.

As in previous experiments, the training was performed on
20%, 40%, 60%, and 80% of the labeled data, respectively.
The experimental results of the two datasets show that semi-
supervised learning-based crack segmentation is effective. The

quantitative results of the semi-supervised method are shown
in Tables 3, 4. When only 60% of DeepCrack’s labeled data
is used, the semi-supervised model outperforms the others in
terms of F1-Score, AUC, and IOU. Additionally, the model
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TABLE 2 The bridge crack dataset: Comparison of crack segmentation performance between fully supervised learning (FSL) and semi-supervised
learning (SSL).

Labeled data use (%) Accuracy Precision Recall F1-score AUC IOU

20 0.9530 0.8797 0.3509 0.5010 0.6737 0.3346

FSL 40 0.9561 0.7074 0.5941 0.6458 0.7882 0.4769

60 0.9581 0.6888 0.6925 0.6902 0.8349 0.5270

80 0.9589 0.6934 0.6976 0.6955 0.8376 0.5331

20 0.95465 0.8789 0.3787 0.5293 0.6875 0.35995

SSL 40 0.9576 0.7193 0.6083 0.6591 0.7956 0.4916

60 0.9589 0.6898 0.7079 0.6987 0.8425 0.5370

80 0.9602 0.7153 0.6790 0.6967 0.8297 0.5345

FIGURE 8
The bridge crack: Semi-supervised pixel-level segmentation results on the test set. Areas denoted by dashed red rectangles indicate FP errors.

TABLE 3 The DeepCrack dataset: Comparison of crack segmentation performance between supervised learning (FSL) and semi-supervised learning (SSL).

Labeled data use (%) Accuracy Precision Recall F1-score AUC IOU

20 0.9823 0.8468 0.7578 0.7799 0.8755 0.66432

FSL 40 0.9852 0.8400 0.8389 0.8395 0.9156 0.7233

60 0.9856 0.8568 0.8265 0.8413 0.9099 0.7261

80 0.9861 0.8574 0.8383 0.8478 0.9158 0.7358

20 0.9811 0.8184 0.7777 0.7932 0.8843 0.65782

SSL 40 0.9849 0.8320 0.8445 0.8382 0.9181 0.7215

60 0.9861 0.8519 0.8434 0.8482 0.9182 0.73645

80 0.9862 0.8630 0.8333 0.8479 0.9134 0.7360

Frontiers in Materials 11 frontiersin.org

https://doi.org/10.3389/fmats.2022.1058407
https://www.frontiersin.org/journals/materials
https://www.frontiersin.org/journals/materials#articles


Mohammed et al. 10.3389/fmats.2022.1058407

TABLE 4 The Crack500 dataset: Comparison of crack segmentation performance between fully supervised learning (FSL) and semi-supervised learning
(SSL).

Labeled data use (%) Accuracy Precision Recall F1-score AUC IOU

20 0.9559 0.6234 0.6057 0.6144 0.7916 0.4434

FSL 40 0.9571 0.6238 0.6547 0.6389 0.8152 0.4694

60 0.9601 0.6542 0.6625 0.6583 0.8205 0.4907

80 0.9610 0.6581 0.6793 0.6685 0.8288 0.5021

20 0.9567 0.6333 0.6016 0.6171 0.7901 0.4462

SSL 40 0.9616 0.6884 0.6151 0.6497 0.7990 0.4811

60 0.9607 0.6681 0.6416 0.6546 0.8110 0.4865

80 0.9619 0.6724 0.6685 0.6705 0.8242 0.5043

FIGURE 9
The DeepCrack: Semi-supervised pixel-level segmentation results on the test set. Areas denoted by dashed red rectangles indicate FP errors.

automatically generated labels twice as large as the labeled
quantity for the unlabeled data. While outperformed the others
in terms of recall, AUC, and IOU when trained on the Crack500
dataset with 80% labeled data. The semi-supervised learning
strategy employs both unlabeled and labeled data to obtain
rich data and optimize the segmentation model’s performance.
Figures 9, 10 show samples of segmentation results of the semi-
supervised model on the test set of the DeepCrack and Crack500
datasets, respectively. Although the semi-supervised method
achieves good crack segmentation results, some FN and FP
errors cannot be completely avoided. Dashed red rectangles
indicate FP errors. The experimental results of the two datasets

show that semi-supervised learning-based crack segmentation is
effective.

5 Discussion

5.1 Comparison with fully supervised
learning

The proposed semi-supervised segmentation method and
the fully supervised segmentation method are trained with the
same training parameters to achieve convergence.
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FIGURE 10
The Crack500: Semi-supervised pixel-level segmentation results on the test set. Areas denoted by dashed red rectangles indicate FP errors.

First, the performance of the fully supervised method and
semi-supervised method were compared on the bridge crack
dataset (Our labeled dataset). 20%, 40%, 60%, and 80% of the
labeled data were used to train and test the semi-supervised
crack segmentationmethod.The quantitative comparison results
between the fully supervised and semi-supervised methods are
shown in Table 2. Comparing the semi and fully supervised
methods and training on a bridge crack dataset with 20%
labeled data, the proposed semi-supervised produced the same
or improved performance metrics of accuracy, recall, F1 score,
AUC, and IOU results. A similar trend of improvement
of accuracy, precision, recall, F1-score, AUC, and IOU was
observed when training on bridge crack dataset with 40%, 60%,
and 80% labeled data. When 20% and 80% of the labeled
data were used for training, the results were still acceptable
compared to the fully supervised approach. Although there was
a 0.08% difference in precision and a 0.79% difference in AUC, it
significantly reduced the workload of data labeling.

Furthermore, the semi-supervised segmentation approach
produces better results than the fully supervised approach in
most metrics, proving the proposed model’s efficacy.

Secondly, compared the performance of the fully supervised
method and semi-supervised method was on the DeepCrack
and Crack500 datasets in order to comprehensively evaluate
its performance. As in previous experiments, the training
was performed on 20%, 40%, 60%, and 80% of the labeled
data, respectively. From the results shown in Tables 3, 4. It

is obvious that the proposed model has clear advantages. The
semi-supervised approach provided better results than the fully
supervised approach in most metrics. As shown in the tables, the
segmentation results of the fully supervised and semi-supervised
methods also improve as the number of labeled data increases;
this is in line with the fact that increasing the number of labeled
images in a deep neural network model improves parameter
estimation accuracy.

The semi-supervised method is superior to the fully
supervisedmethod for crack segmentation because the workload
associated with labeled data is significantly reduced while
ensuring accuracy. The experimental results of the two datasets
show that semi-supervised learning-based crack segmentation is
effective.

5.2 Comparison with Pix2Pix cGAN
method

The Pix2Pix method Isola et al. (2017) and Kyslytsyna et al. 
(2021) is a well-known strategy for image-to-image translation.
It is based on a conditional generative adversarial network,
in which a target image is generated and conditioned on
an input image. The generator of the Pix2Pix model uses
a U-Net based architecture Ronneberger et al. (2015) and the
discriminator of the model uses a convolutional “PatchGAN”
classifier that only penalizes the structure at the scale of image
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TABLE 5 The bridge crack dataset: Comparison of crack segmentation performance between Pix2Pix cGANmethod and ours method.

Method Labeled data use Precision Recall F1-score

20% of the labeled data 0.6172 0.5351 0.5619

Pix2Pix cGAN 40% of the labeled data 0.7036 0.582 0.6259

60% of the labeled data 0.7145 0.5895 0.6352

80% of the labeled data 0.7457 0.6093 0.6604

20% of the labeled data 0.8789 0.3787 0.5293

Ours 40% of the labeled data 0.7193 0.6083 0.6591

60% of the labeled data 0.6898 0.7079 0.6987

80% of the labeled data 0.7153 0.6790 0.6967

TABLE 6 The DeepCrack dataset: Comparison of crack segmentation performance between Pix2Pix cGANmethod and ours method.

Method Labeled data use Precision Recall F1-score

20% of the labeled data 0.7396 0.6489 0.6865

Pix2Pix cGAN 40% of the labeled data 0.749 0.656 0.6948

60% of the labeled data 0.7582 0.6629 0.7027

80% of the labeled data 0.7761 0.6726 0.7159

20% of the labeled data 0.8184 0.7777 0.7932

Ours 40% of the labeled data 0.8320 0.8445 0.8382

60% of the labeled data 0.8519 0.8434 0.8482

80% of the labeled data 0.8630 0.8333 0.8479

TABLE 7 The Crack500 dataset: Comparison of crack segmentation performance between Pix2Pix cGANmethod and ours method.

Method Labeled data use Precision Recall F1-score

20% of the labeled data 0.6755 0.5803 0.6164

Pix2Pix cGAN 40% of the labeled data 0.6815 0.5877 0.6238

60% of the labeled data 0.702 0.6042 0.642

80% of the labeled data 0.7063 0.6117 0.6494

20% of the labeled data 0.6333 0.6016 0.6171

Ours 40% of the labeled data 0.6884 0.6151 0.6497

60% of the labeled data 0.6681 0.6416 0.6546

80% of the labeled data 0.6724 0.6685 0.6705

patches. In order to verify the effectiveness of the proposed
method, the results were compared with Pix2Pix method on the
bridge crack, DeepCrack and Crack500 datasets. Three metrics
were considered for performance comparison which include
precision, recall, and F1-Score. The quantitative comparison
results between Pix2Pix cGAN and semi-supervisedmethods are
shown in Tables 5–Tables 7. The proposed method outperforms
Pix2Pix cGAN in all metrics when 40% of the labeled data is used

on a bridge crack dataset, but for Pix2Pix cGAN using 20%, 40%,
and 60% of the labeled data. The proposed method outperforms
Pix2Pix cGAN in all metrics when 20% of the labeled data is used
on a DeepCrack dataset, but for Pix2Pix cGAN using 20%, 40%,
and 60% of the labeled data. The proposed method outperforms
Pix2Pix cGAN in terms of recall and F1-Score when 40% of
labeled data is used on the Crack500 dataset, but for the Pix2Pix
cGAN method 20%, 40% and 60% of labeled data are used.
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TABLE 8 Comparison of crack segmentation performance results on DeepCrack.

Method Accuracy Precision Recall F1-score

HED Xie and Tu (2015) 0.983 0.797 0.799 0.798

SegNet Badrinarayanan et al. (2017) 0.982 0.800 0.768 0.784

RCE Liu et al. (2017) 0.985 0.832 0.799 0.815

DeepCrack Liu et al. (2019a) 0.980 0.779 0.735 0.756

DeepCrack Zou et al. (2018) 0.988 0.874 0.837 0.855

Crackseg Song et al. (2020) 0.984 0.815 0.804 0.812

Deeply supervised network Qu et al. (2021) 0.988 0.867 0.850 0.858

Ours method 20% of the labeled data 0.981 0.818 0.778 0.793

40% of the labeled data 0.985 0.832 0.845 0.838

60% of the labeled data 0.986 0.852 0.843 0.848

80% of the labeled data 0.986 0.863 0.833 0.848

FIGURE 11
Comparison between precision, recall and F1-Score of all fully supervised and the proposed semi-supervised methods on DeepCrack and
Crack500 datasets.

5.3 Comparison with the existing fully
supervised methods

In order to verify the effectiveness of the proposed method,
the results were compared with current state-of-the-art methods
on DeepCrack and Crack500 datasets. Four metrics were

considered for performance comparisonwhich include accuracy,
precision, recall, and F1-Score.

5.3.1 Comparison on DeepCrack dataset
Table 8 shows the comparison of crack segmentation

performance results on DeepCrack dataset. The deeply
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TABLE 9 Comparison of crack segmentation performance results on DeepCrack.

Method Accuracy Precision Recall F1-score

HED Xie and Tu (2015) 0.954 0.583 0.627 0.604

SegNet Badrinarayanan et al. (2017) 0.952 0.564 0.624 0.592

RCE Liu et al. (2017) 0.952 0.587 0.593 0.590

DeepCrack Liu et al. (2019a) 0.956 0.603 0.636 0.619

DeepCrack Zou et al. (2018) 0.956 0.600 0.648 0.632

Crackseg Song et al. (2020) 0.962 0.645 0.701 0.672

Deeply supervised network Qu et al. (2021) 0.963 0.654 0.698 0.675

Ours method 20% of the labeled data 0.957 0.633 0.602 0.617

40% of the labeled data 0.962 0.688 0.615 0.650

60% of the labeled data 0.961 0.668 0.642 0.655

80% of the labeled data 0.962 0.672 0.669 0.671

supervised network outperforms the others in terms of accuracy,
recall, and F1-Score. When the semi-supervised method was
compared to the deeply supervised network, the proposed
method results were still acceptable despite 0.2%, 0.4%, 1.7%,
and 1% gaps in accuracy, precision, recall, and F1-Score
respectively. In addition, method significantly reduced the
workload associated with data labeling. Furthermore, when 40%
of the labeled data was only used, the proposed method was
second best by outperforming HED, SegNet, RCE, DeepCrack
Liu et al. (2019a), and Crackseg in all metrics. Figure 11A shows
a comparison between precision, recall and F1-Score of all
fully supervised and the proposed semi-supervised methods
on DeepCrack dataset.

5.3.2 Comparison on Crack500 dataset
As shown in Table 9, the proposed method outperformed

competitive methods in terms of precision, and the deeply
supervised network outperformed the others in terms of
accuracy and F1-Score. At the same time, the Crackseg
outperformed the other methods in terms of recall. When
20% of the labeled data was only used, the proposed
method outperformed HED, SegNet, and RCE in all metrics.
Furthermore, when 80% of the labeled data was used, the
proposedmethod outperformed HED, SegNet, RCE, DeepCrack
Liu et al. (2019a), and DeepCrack in all metrics. Figure 11B
shows a comparison between precision, recall and F1-Score of
all fully supervised and the proposed semi-supervised methods
on Crack500 dataset.

The experimental results of the Deepcrack and Crack500
datasets demonstrate that the proposed method is effective.
Compared to the fully supervised segmentation method, the
semi-supervised method significantly reduced the workload
associated with the data labeling while ensuring accuracy. In
addition, recent studies have shown that the semi-supervised

method for crack detection is effective Wang and Su (2021)
Li et al. (2020) and Shim et al. (2020).

5.4 Limitations

Although the semi-supervised approach outperforms the
fully supervisedmethods, and the results show that the proposed
method is capable of avoiding the issue of insufficient manual
labeling while ensuring accuracy, the proposedmethod has some
limitations worth discussing. A major limitation is with the
network type used. The network type is critical in achieving a
satisfactory result for image segmentation. We used a modified
U-Net deep learning network in this paper; we will experiment
with another network using the same semi-supervised approach
in the future. In addition, no research has been conducted on
quantifying geometric features such as crack depth, width, and
length to assess civil structures’ health.

6 Conclusion

This paper proposes a novel semi-supervised learning
method for crack segmentation based on deep learning. The
proposed approach combines deep neural networks and a semi-
supervised learning strategy to address the issue of labeling
cracked images, which is expensive in terms of both finance
and human resources. The semi-supervised learning approach
combines labeled and unlabeled data to obtain and optimize
the performance of the segmentation model. The experimental
results of the DeepCrack and Crack500 datasets demonstrate
that the proposed method is effective. Compared to the
fully supervised segmentation method, the semi-supervised
method significantly reduced the workload associated with
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the data labeling while ensuring accuracy. Moreover, results
show that the proposed semi-supervised learning method
achieved quite approaching accuracies to the established fully
supervised models using multiple accuracy indexes, however,
the requirement for the labeled data reduces to 40%.In future
research, the results of crack image segmentation will be used to
calculate the quantification of geometric features such as crack
depth, width, and length to assess civil structures’ health. Crack
segmentation research will also be applied in engineering.
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