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Strength, as an important indicator of structural materials, has always been an
important research topic in materials science. Theoretically, building a strength
model is a rewarding method to understand the relationship between the
mechanical properties and microstructure of materials. Although many strength
models can reduplicate experimental values very well, they are empirical models, and
their applicability is limited to materials for which empirical parameters have been
obtained. Here, a non-empirical strength model is proposed based on the two-
dimensional (2D) displacement potential of dislocation slipping, which can be applied
to different chemically bonded crystals. Owing to the large electron localization
function (ELF), covalent and ionic crystals have a high 2D displacement potential of
dislocation slipping, and their dislocation slip mode prefers the kink-pair mode,
further exhibiting a high critical resolved shear stress (CRSS). In contrast, metallic
crystals with a small ELF have a low 2D displacement potential of dislocation slipping,
and their dislocation slip mode is more inclined to the string mode, showing a low
CRSS. This work provides new insights into dislocation-slipping configurations that
will be useful for the development of new high-performance structural materials.
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1 Introduction

With the rapid development of science and technology, the service environment of
structural materials has become increasingly harsh (Williams and Starke, 2003). To ensure
the reliability and durability of engineering components, structural materials with very high
performance are needed, and a very deep understanding of their strengthening mechanism is
necessary. Since the strength is closely related to the microstructure, understanding and
constructing the correlation between the strength and microstructure has always been an
important research topic in materials science (Caillard, 2007; Wen et al., 2019; Xiao et al., 2020;
Sun et al., 2022).

As early as 1926, a theoretical strengthmodel was proposed by Frenkel (1926). However, the
strength calculated by this model is several orders of magnitude higher than the experimental
observation. Therefore, this model is inadequate for calculating and understanding the strength
of materials.

To date, according to the principle on which strength models are based, they have been
categorized into two categories, which can be used to obtain strengths similar to experimental
values. One category is based on dislocation theory, and these models are usually used to study
the yield strength of metallic materials. The other category is based on valence bond theory, and
these models are usually used to study the hardness of covalent and ionic materials.

For the yield strength models based on dislocation theory, the original model is the Peierls-
Nabarro (P-N)model (Peierls, 1940; Nabarro, 1947). In the P-Nmodel, a one-dimensional (1D)
displacement potential (P-N barrier) is used, and a non-empirical expression of the force
required for dislocation motion (P-N force) is given. Although the predicted P-N force is
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consistent with the experimental results in terms of the order of
magnitude, the temperature and stain rate effects on the strength
cannot be considered in this model (Hull and Bacon, 2001). To
overcome this drawback, two empirical models have been built on
the basis of transmission electronmicroscopy (TEM) observations and
the 1D P-N barrier. One is the Seeger model (kink-pair model)
(Seeger, 1955; Seeger et al., 1957), which is applicable to some
covalent materials (Xiao et al., 2018) or body-centred-cubic (BCC)
metallic materials (Seeger andWüthrich, 1976). The other model is the
string model, which was built by Freudenthal. (1959) and is applicable
to some metallic materials (Oh et al., 2009). Although thermal
activation for dislocation movement has been considered and the
predicted strength is consistent with the experimental results (Seeger
et al., 1957; Haasen, 1958; Conrad, 1964; Seeger and Wüthrich, 1976),
their application scope is questioned owing to the empirical
dislocation slipping mode used. Hence, the use of these models in
the design of mechanical properties for new materials is unreliable.

The strength (hardness) models based on valence bond theory are
mainly for covalent and ionic materials (Gao et al., 2003; Šimůnek and
Vackář, 2006; Li et al., 2008; Lyakhov and Oganov, 2011; Mazhnik and
Oganov, 2019; Mazhnik and Oganov, 2020). Currently, only the
properties of chemical bonds are considered in all these models.
According to these models, single-crystal diamond should

obviously be the hardest material because the sp3 (Xiao et al., 2020)
hybridized C−C bond in diamond is the strongest bond in the three-
dimensional network (Chaudhri and Lim, 2005). However, recently
synthesized nanotwinned diamond is more than twice as hard as
single-crystal diamond (Huang et al., 2014). Obviously, explaining the
hardening mechanism of covalent materials based only on these
hardness models is unreasonable, and a more profound theory is
urgently needed to investigate the hardness of covalent and ionic
crystals.

For the mechanical response of metallic, ionic and covalent
materials under complex loading conditions, the microscopic
deformation mechanisms all involve in dislocation slip (Xiao et al.,
2018; Xiao et al., 2019; Zhai et al., 2020). Also, previous studies have
proven that metallic materials are weakly directional, similar to
covalent bonds (Ogata et al., 2002). For covalent crystals, such as
diamond and silicon, the room temperature dislocation plasticity is
observed directly (Šimůnek and Vackář, 2006; Li et al., 2008; Nie et al.,
2020). Therefore, dislocation theory is utilized to understand the
origin of the hardness of covalent materials (Xiao et al., 2018; Nie
et al., 2020; Feng et al., 2021). These cases offer a feasible means: a
unified strength model based on dislocation theory can be used to deal
with metallic, covalent, and ionic materials. The displacement
potential of dislocation slipping has been found to be dominated

FIGURE 1
2D displacement potential of dislocation slipping and origin of dislocation slipping modes. (A) Hard kink-pair mode. The black line represents the
dislocation line configuration, and the background represents the projection of the 2D displacement potential, where the energy difference from the Peierls
valley (a′) to the saddle point (b′) represents the P-N barrier (EPN); the energy difference from the saddle point (b′) to the left barrier peak (c′) represents the left
migration barrier (EML); and the energy difference from the saddle point (b′) to the right barrier peak (d′) represents the right migration barrier (EMR).
Furthermore, according to the restrictions from the 2D displacement potential on the dislocation, the dislocation slipping modes can be divided into mixed
kink-pair mode (B), soft kink-pair mode (C), and string mode (D).
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by the two adjacent atomic planes in a crystal lattice, and the
dislocation bends and kinks when moving on its slip plane (Hirth
et al., 1983a); therefore, the displacement potential of dislocation
slipping should be considered a two-dimensional (2D) potential.
Naturally, the joint influence of the directionality and strength of
the chemical bonds on a dislocation can be included. Based on this
idea, a unified strength (yield strength/hardness) model for different
chemically bonded crystals is proposed in this work. In contrast to
previous empirical strength (yield strength/hardness) models based on
empirical observations or data fitting, our model is derived from the
fundamentals of strength based on dislocations. This will provide
insight into the physical mechanism of the dislocation slipping mode
and strength, which will be helpful for designing and studying
structural materials.

2 Origin of different dislocation slipping
modes in the 2D displacement potential

A dislocation is a line defect on a slip plane, and its motion is
limited to its slip plane. At finite temperatures, thermal activity is
essential; hence, the dislocation slipping mode is dominated not only
by mechanical activation but also by thermal activation. Therefore, a
dislocation slipping by keeping a straight line mode (P-N model) with
invalid thermal activation is infeasible, and an actual dislocation
slipping mode should be partially protruding (Seeger et al., 1957).
In this situation, the displacement potential of dislocation slipping
includes not only the 1D P-N barrier (EPN) but also the migration
barrier (EM) of sideways movement of the protruding parts. These two
barriers distribute in mutual angle directions and constitute a 2D
barrier surface, which not only restricts the expansion of dislocation
lines but also restricts the shape of dislocation motion and affects its
slipping mode (Caillard and Martin, 2003).

The 2D barrier obstructing dislocation motion is related to the
crystal structure and dislocation properties (Peierls, 1940; Nabarro,
1947), such as shear modulus G, Poisson’s ratio ], and Burgers vector
b. Thus, the 2D barrier is an intrinsic property of a material. Under
finite temperature T and applied shear stress τ conditions, both
temperature and shear stress contribute to overcoming this 2D

barrier, and the slipping mode varies with temperature and applied
shear stress (Long et al., 2013). According to the relative energies of the
thermal activation energymkBT [kB is the Boltzmann constant, andm
is a coefficient (George and Rabier, 1987)] and EM as well as EPN, the
slipping mode can be divided into four categories (as shown in
Figure 1):

1. Hard kink-pair mode When the temperature is low, thermal
activation cannot overcome barriers in any direction. At this time, all
protruding dislocation segments are straight in three directions due to
the restrictions from EML, EMR, and EPN, as shown in Figure 1A.

2. Mixed kink-pair mode When the thermal activation energy is
higher than EML but lower than EMR (EML < mkBT < EMR < EPN), the
thermal activation overcomes the left migration barrier. Accordingly,
the left dislocation segment transforms into the string mode, which is
bounded only by its line tension. However, the dislocation in such a
temperature range is still constrained by EMR and EPN, and the other
two dislocation segments are straight, as shown in Figure 1B.

3. Soft kink-pair mode When the thermal activation energy is
higher than EML and EMR but smaller than EPN, i.e., EML < EMR <mkBT
< EPN, the thermal activation overcomes the left and right migration
barriers. Therefore, the left and right dislocation segments transform
into the string mode, but the dislocation segment perpendicular to EPN
remains straight, as shown in Figure 1C.

4. String mode With increasing temperature, thermal activation
overcomes barriers in any direction, and all protruding dislocation
segments enter the string mode, which is only bounded by the line
tension, as shown in Figure 1D.

3 Mathematical model of material
strength

3.1 Critical resolved shear stress (CRSS) of
dislocation slip

To obtain the CRSS of dislocation slip, the energy of the
dislocation system is mathematically modelled for nucleation and
expansion in different slipping modes. In this work, the energy of the
dislocation system includes four parts: elastic energy, interaction

FIGURE 2
Competition of dislocation slipping modes under a given applied shear stress. (A)Dislocation system energy as a function of nucleus size under certainly
applied shear stress. When the first derivative of the system energy reaches zero, the maximum value of the system energy can be defined as the thermal
activation energy barrier, and xc can be called the critical nucleus size. (B) Thermal activation energy barrier of the four dislocation slip modes as well as the
EML, EMR, and EPN energy barriers.
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energy, work done by the applied shear stress, and stacking fault
energy. Because the dislocation core energy is approximately 1/10–1/
15 of the elastic energy (Hull and Bacon, 2001), it is ignored.

For the hard kink-pair mode, as shown in Figure 1A, a dislocation
line in its initial state is located in the Peierls valley, it moves to the
nearest equivalent Peierls valley under the effect of the applied shear
stress τ (Peierls, 1940; Nabarro, 1947). When the critical configuration
is formed, the length of this dislocation line increases by 2h compared
with the initial state, so the elastic energy of the dislocation line
increases (Hirth et al., 1983b).

Welas � A1Gb2h

2π
ln

Ri

r
( ), (1)

where A1 � cos 2β + sin 2β
1−v , β is the angle between the dislocation line

and Burger′s vector b, G is the shear modulus of the material, h is the
kink height, Ri is the integral range of linear elasticity theory, r is the
dislocation core radius.

The interaction energy between two parallel kinks with length h
can be obtained according to literature (EshelbyDouglas, 1962) and
can be written as

Wint � −A2Gb2h2

8πx
, (2)

where A2 � (1+v)cos 2β+(1−2v)sin 2β
1−v , x is nucleus size.

The work done by the applied stress τ can be expressed as

Wτ � −hbxτ. (3)
The stacking fault energy can be expressed as

Wγ � hxγSEF, (4)
where γSEF is the stacking fault energy of unit area.

As a result, the energy of the dislocation system is the sum of the
four parts (Eqs 1–4) and can be expressed as a function of the applied
shear stress τ and nucleus size x:

E x, τ( ) � A1Gb2h

2π
ln

Ri

r
( ) − A2Gb2h2

8πx
− hbxτ + hxγSEF. (5)

Similarly, for the mixed kink-pair mode, as shown in Figure 1B,
the energy of the dislocation system can also be expressed as a function
of τ and x:

FIGURE 3
Polycrystalline material strength calculation from the CRSS. (A) Three-dimensional plot of the Schmid factor distribution for a single slip system under
different external force orientations. (B)Outer envelope of Schmid factors for 12 slip systems under different external force orientations. The grooves coincide
with the edges of the characteristic triangle, where two slip systems are equally favoured. (C) Schmid factor of grains with different orientations under uniaxial
stress conditions. (D) Yield strength of grains with different orientations. (E) Polycrystalline structure. (F) Population of yielded grains as a function of
uniaxial stress.
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E x, τ( ) � sE0

cos θ + α( ) +
lE0 cos θ − α( )
cos θ + α( ) + A1Ghb

2

4π
ln

Ri

r
( ) − xE0 − A2Gb

2h2

8πx

− 1
2

l + x( )h + R2 α − 1
2
sin 2α( )[ ]bτ + 1

2
l + x( )h + R2 α − 1

2
sin 2α( )[ ]γSEF

,

(6)

where s is the length of the arc (R is the radius), l is the length of the
partial protrusion, 2α is the central angle of the arc, and E0 � 1

2Gb
2 is

the energy per unit length of the straight dislocation.
For the soft kink-pair mode, as shown in Figure 1C, the energy of

the dislocation system can also be expressed as a function of τ and x:

E x, τ( ) � 2sE0

cos θ + α( ) +
lE0 cos θ − α( )
cos θ + α( ) − xE0 − A2Gb

2h2

8πx

− 1
2

l + x( )h + 2R2 α − 1
2
sin 2α( )[ ]bτ + 1

2
l + x( )h + 2R2 α − 1

2
sin 2α( )[ ]γSEF

.

(7)

For the string mode, as shown in Figure 1D, the energy of the
dislocation system can be expressed as a function of τ and nucleus size R:

E R, τ( ) � 2Rβ
E0

cos β
− 2R sin βE0 − bτR2 β − 1

2
sin 2β( )

+R2 β − 1
2
sin 2β( )γSEF, (8)

where 2β is the central angle of the string.
When τ is given, the energy of the dislocation system, E, is a

function of the nucleus size x or R. As schematically shown in
Figure 2A, the energy of the dislocation system initially increases,
followed by a decrease as the nucleus size keeps increasing. There
exists a maximum of the energy, which is called the thermal activation
energy barrier Q(τ) for dislocation motion at a given applied shear
stress τ. Mathematically, Q(τ) can be determined by calculating the
first derivative of Ewith respect to x or R. Therefore,Q(τ) as a function
of τ can be obtained, as schematically shown in Figure 2B. For all four
slipping modes, Q(τ) monotonically decreases with increasing τ.
Under the same applied shear stress, the dislocation slipping mode
with a low activation energy barrier is priority activated. EPN, EML, and
EMR equivalently decrease with increasing τ. The final dislocation
slipping mode is determined by two factors: one is the relative energies
of the thermal activation energy mkBT and EM as well as EPN, as
mentioned in Section 2, and the second factor is the competition
between different slipping modes to ensure a lower energy barrier.

By combining the Orowan equation (Orowan, 1934; Schoeck,
1965; Hirth and Nix, 1969) and Arrhenius’s dislocation velocity
expressions (Laidler, 1984), the following relationship can be obtained:

FIGURE 4
Universality and reliability of our strengthmodel. (A,B) The hardness of diamond varies as a function of temperature and strain rate. (C,D) The hardness of
NaCl varies as a function of temperature and strain rate. (E,F) The yield strength of Cu varies as a function of temperature and strain rate.
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Q τ( ) � kBT ln
ρmbλbvD

_ε
( ), (9)

where ρm is the density of movable dislocations; λb is the average free
path of dislocations; vD is the Debye frequency of the material; and _ε is
the strain rate.

By solving Eq. 9, the CRSS can be obtained for given temperature,
dislocation density, and strain rate.

3.2 Non-empirical strength model for
polycrystalline materials

A polycrystalline material is composed of many single-crystal
grains with different orientations, and a single crystal grain with
high symmetry, such as face-centred-cubic (FCC) and BCC
crystals, exhibits a multiple slip system. Although the CRSS can
characterize the critical shear strength of dislocation motion on a
single slip plane and dominate the strength of a polycrystalline

material, the CRSS cannot be directly used as the strength of a
polycrystalline material, and there exists a geometric
transformation between them. Usually, the yield strength of
polycrystalline materials can be calculated from the CRSS by using
the Sachs model (Barnett et al., 2006), the Taylor model (Taylor, 1938),
and the self-consistent (SC) model (Hutchinson, 1970). In this work,
the yield strength of polycrystalline materials is calculated from the
CRSS by using the Sachs model as an example.

According to Schmid’s law, the uniaxial yield stress of a single
crystal is equal to the CRSS divided by the corresponding Schmid
factor. Figure 3A shows the distribution of the Schmid factor of a
single slip system for an FCC crystal. For a high symmetry single
crystal, e.g., an FCC crystal, there are multiple slip systems and
48 patches of the Schmid factor, and the distribution is shown in
Figures 3B, C. However, the uniaxial yield stress of a single crystal can
also be calculated by Schmid’s law, as shown in Figure 3D. In
polycrystalline materials, there are many single-crystal grains with
different orientations, as shown in Figure 3E. Under the action of
uniaxial stress, grains with different orientations have different yield

FIGURE 5
Types of slipping dislocation in crystals, as well as their influence on strength. (A) Count of slipping dislocations at various temperatures in diamond, and
orientation-dependent hardness under different temperature scopes (B–E). (F,K) Count of slipping dislocations in NaCl and Cu, and orientation-dependent
hardness (G)–(J), (L–O).
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stresses. With increasing uniaxial stress, the number of yielded grains
increases. When the number of yielded grains reaches a specific
proportion (e.g., 90%), the corresponding uniaxial stress is treated
as the yield strength of the polycrystalline material by using the Sachs
model, as shown in Figure 3F. Furthermore, the Vickers hardness of
polycrystalline materials can be calculated by using Tabor’s law
(Tabor, 2000); that is, the Vickers hardness is approximately
2.74 times the yield strength of the polycrystalline material.

In Section 3.1, the CRSS of dislocation slip was calculated by using
Eqs 1–9 (as shown in Supplementary Figures S5–S6). The physical
meaning of all parameters used in Eqs 1–9 is clear, and no empirical
parameters are used in these equations. Furthermore, the yield
strength and Vickers hardness for a polycrystalline material are
completely dependent on the CRSS and orientations of different
grains. Therefore, our strength model for polycrystalline materials
is totally non-empirical, and its application scope is not constrained by
sources of empirical parameters.

4 Universality and reliability of the
strength model

To verify the universality and reliability of our non-empirical
strength model, the strengths (yield strength/hardness) of six
multicrystals with different chemical bond types (i.e., diamond and
cubic BN with covalent bonds, NaCl and MgO with ionic bonds, and

Cu and Al with metallic bonds) are calculated. Here, the material
properties and dislocation type parameters used in the strength model
are obtained by the first-principles method, which is described in
Supplementary Part I and II. The calculated material property
parameters, generalized stacking fault energy (GSFE) surface, and
dislocation types are listed and plotted in Supplementary Tables S1, S2;
Supplementary Figures S1–S3, respectively.

By using the method described in Section 3, the strengths for the
above-mentioned six multicrystals are calculated, and they are plotted in
Figure 4 and Supplementary Figure S4. All calculated strengths agree well
with the experimental observations spanning a certain range of
temperatures and strain rates (Atkins and Tabor, 1967; Gridneva et al.,
1972; Davis, 1993; Novikov et al., 1993; Weidner et al., 1994; Cáceres et al.,
2002; Almasri and Voyiadjis, 2007; Voyiadjis and Almasri, 2008; Bhakhri
et al., 2012; Li and Zinkle, 2012; Pradeep Kumar, 2018), which implies the
universality and reliability of our non-empirical strength model. For
covalent crystals and ionic crystals, their Vickers hardness continuously
decreases with increasing temperature under a given dislocation density.
There exist two distinct regimes with different temperature-softening rates,
which is consistent with our previous result from the kink-pair model
(Feng et al., 2021), and the reason is that the dominant dislocation type
changes with increasing temperature. Formetallic crystals Cu andAl, there
also exist two distinct regimes with different temperature-softening rates,
but this change is contributed by the change in the dislocation mode from
the hard kink-pair mode to the string mode with increasing temperature.
Recently, Lunev’s molecular dynamic simulation results for UO2 (Lunev

FIGURE 6
Reconciling of chemical bonds and dislocations. (A) Schematic illustrating that the motion of a dislocation is controlled by the combination of
mechanical and thermal actions. (B)Mechanical action leads to the energy for chemical bond breaking being lower. (C) Relationship between themechanical
and thermal activations. (D) Temperature-dependent mechanical and thermal activations.
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et al., 2018) indicated that its dislocation slipping mode changes with
applied shear stress and temperature. This consistency shows the
rationality of our model to some extent.

For all studied crystals, one can note that the strength increases
with increasing strain rate (Figure 4 and Supplementary Figure S4),
which indicates a strain rate hardening behaviour (Ayres andWenner,
1979). In addition, their strength increases with decreasing dislocation
density due to the work-hardening mechanism that can be ignored
under low dislocation density.

In addition, the activated dislocation types under various
temperatures are counted (Figure 5 and Supplementary Figures
S7–S10). The types of activated slip systems of the six multicrystal
materials agree with experimental observations (Riviere et al., 1981;
Hull and Bacon, 2001; Jo et al., 2014; Xiao et al., 2018; Feng et al.,
2021). This further confirms the universality of our non-empirical
strength model, which can be adopted not only for covalent crystal
research but also for ionic and metallic crystals. Moreover, its
calculated results agree very well with the experimental values,
showing its reliability.

5 Reconciling chemical bonds and
dislocations in the unified strength
model

For a crystal material, its strength is directly related to its plastic
deformation (Haines et al., 2001) and is related to its dislocation motion.
From a microscopic point of view, dislocation motion is a chemical bond
breaking and rebonding process; therefore, bond properties have an
important effect on dislocation motion. For the strength model based
on dislocation theory (Hirth, 1985), only dislocation defects are
considered, and no bond properties are considered; therefore, this
model can only be adopted for some metallic materials with less
electron localization. For the hardness model based of valence bond
theory (Gao et al., 2003; Šimůnek and Vackář, 2006; Li et al., 2008;
Lyakhov and Oganov, 2011; Mazhnik and Oganov, 2019; Mazhnik and
Oganov, 2020), only bond properties are considered, and no dislocation
defects are considered; therefore, this model can only be adopted for some
covalent materials with high electron localization. The effect factor on
strength is not fully considered in the previous two types of strength
models. Even though some empirical parameters are used in thesemodels,
their results consistent with experimental values. However, this leads to
these models being empirical, and their applicability is limited to the
materials for which they were obtained.

The motion of dislocations is controlled by the combination of
mechanical and thermal action (as schematically shown in Figure 6A)
(Caillard and Martin, 2003). Mechanical action leads to a change in
crystal cell shape and further affects bond properties. This leads to the
energy for chemical bond breaking being lower (Figure 6B). In our
model, with increasing applied shear stress, the 2D displacement
potential (including the P-N barrier and the migration barrier)
monotonically decreases (in Figure 2B), which is the result of
mechanical action. A previous study revealed that the barrier for
chemical bond breaking is quantitatively correlated with the
difference in the degree of electron localization (Zhang et al., 2017).
To quantitatively discuss the effect of mechanical action on the 2D
displacement potential, the electron localization function (ELF) (Becke
and Edgecombe, 1990) for crystals under shear conditions is calculated,
and the results are shown in Supplementary Figure S11. Under the same

strain conditions, the difference in the ELF (ΔELF) for covalent or ionic
crystals is usually larger than that for metallic crystals. This means that
there are higher energy barriers for covalent or ionic crystal deformation
than for metallic crystal deformation. The calculated ΔELF between a
perfect bond and dislocation core (Supplementary Figures S12, S13) also
illustrates this point.

With increasing applied shear stress, the system energy increases
through mechanical action, and the thermal activation barrier decreases
(in Figure 6C). Furthermore, the total energy barrier can be overcome by
both mechanical and thermal actions. As schematically shown in
Figure 6D, because thermal activation energy ΔG is proportional to
temperature, at given movable dislocation density and strain rate, ΔG
linearly increases with temperature. Therefore, the thermal activation
energy ΔG is permanent for any crystal. For covalent and ionic crystals
with high 2D displacement potential, a high mechanical action is needed
to overcome the barrier of dislocation slipping, which leads to a high
strength for these crystals. For metallic crystals with low 2D displacement
potential, thermal activation has an important contribution to
overcoming the barrier of dislocation slipping, which leads to a low
strength for these crystals and a high temperature-softening rate.

Another function of mechanical action is to decrease the energy of
the dislocation system by the work done by the applied shear stress.
Therefore, the larger the activation volume is, the larger the effect of
mechanical action. For different dislocation slipping modes, the
activation volume is different, and the slope of energy with respect
to the applied shear stress can directly reflect the activation volume (in
Figure 2B). For the string mode, line tension shortens the length of the
dislocation line as much as possible, and the activation volume is larger
than that of the hard kink-pair mode. The energy of the dislocation
system is sensitive to the applied shear stress, and the slope of the
energy with respect to the applied shear stress is larger than that for the
hard kink-pair mode. This is a partial reason why the strength of a
crystal with the string mode is usually lower than that with the hard
kink-pair mode.

In our model, the bond property effect on dislocation motion has
been considered by establishing a 2D displacement potential of
dislocation slipping, and this is the root of the universality of our
non-empirical strength model. The reconciling of chemical bonds and
dislocations makes our strength model applicable to different
chemically bonded crystals.

6 Conclusion

By establishing a 2D displacement potential of dislocation
slipping, a unified non-empirical strength model is proposed. In
this strength model, both chemical bond and dislocation effects on
strength can be considered, and it can be used to predict the strength of
different chemically bonded crystals. For covalent crystals and ionic
crystals that have large electron localization, the dislocation prefers to
slip in the kink-pair mode, exhibiting high CRSS and high strength. In
contrast, metallic crystals with low electron localization prefer the
string mode since the 2D displacement potential can be easily
overcome by thermal activation; thus, metallic materials usually
have low CRSS and low strength. All parameters used in our
model are meaningful and non-empirical, and its application scope
is unlimited; hence, our model is helpful for revealing the physical
mechanism of strength and provides a direct tool for the design of new
structural materials.
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