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The non-keyhole friction stir lap welding (N-KFSLW) technology assisted by the

outer stationary shoulder and the inner upper half-thread rotating pin was

proposed to obtain the welding joint without keyhole through one-time

process. Choosing 2024 aluminum alloys as the research object, the

formation, microhardness and tensile strength of N-KFSLW joint were

investigated. The improved particle swarm optimization (IPSO) algorithm was

newly developed and had the advantages of large convergence speed and

strong search ability, bywhich the radial basis function (RBF) neural networkwas

optimized to enhance its prediction accuracy. After that, the RBF and IPSO

(IPSO-RBF) system was used to predict the joint strength and optimize the

process parameters combination. The results showed that the lap joint had not

only the SZ with the thickness almost equal to the thickness of upper sheet but

also the cold lap with a very small height, thereby leading to the high tensile

strength of joint. The optimized parameters of welding speed, rotating speed

and pin type by the IPSO-RBF system were respectively 612 rpm, 80 mm/min,

and upper half-thread pin, and the tensile strength of lap joint reached 11.88 kN/

mm. The N-KFSLW technology assisted by upper half-thread pin provides an

effective way to obtain the lap joint with high performance, and the IPSO-RBF

system can be used to maximize the strength of welding joint.

KEYWORDS

non-keyhole friction stir lap welding, 2024 aluminum alloy, IPSO-RBF system, upper
half-thread pin, tensile strength

OPEN ACCESS

EDITED BY

Mingyi Zheng,
Harbin Institute of Technology, China

REVIEWED BY

Jacek Tomków,
Gdansk University of Technology,
Poland
Mohammed Asmael,
Eastern Mediterranean University,
Turkey
Peng Xue,
Institute of Metal Research (CAS), China

*CORRESPONDENCE

Peng Gong,
Gongpeng2020@163.com
Shude Ji,
superjsd@163.com

†These authors have contributed equally
to this work and share first authorship

SPECIALTY SECTION

This article was submitted to Structural
Materials,
a section of the journal
Frontiers in Materials

RECEIVED 08 September 2022
ACCEPTED 03 October 2022
PUBLISHED 20 October 2022

CITATION

Li Y, Sun Z, Qi X, Gong P, Ji S, Wang B,
Zhang Z and Zhang J (2022), Improving
the tensile strength of non-keyhole
friction stir lap welding joint of 2024-T4
Al alloy by radial basis function neural
network and improved particle swarm
optimization algorithm.
Front. Mater. 9:1039580.
doi: 10.3389/fmats.2022.1039580

COPYRIGHT

© 2022 Li, Sun, Qi, Gong, Ji, Wang,
Zhang and Zhang. This is an open-
access article distributed under the
terms of the Creative Commons
Attribution License (CC BY). The use,
distribution or reproduction in other
forums is permitted, provided the
original author(s) and the copyright
owner(s) are credited and that the
original publication in this journal is
cited, in accordance with accepted
academic practice. No use, distribution
or reproduction is permittedwhich does
not comply with these terms.

Frontiers in Materials frontiersin.org01

TYPE Original Research
PUBLISHED 20 October 2022
DOI 10.3389/fmats.2022.1039580

https://www.frontiersin.org/articles/10.3389/fmats.2022.1039580/full
https://www.frontiersin.org/articles/10.3389/fmats.2022.1039580/full
https://www.frontiersin.org/articles/10.3389/fmats.2022.1039580/full
https://www.frontiersin.org/articles/10.3389/fmats.2022.1039580/full
https://www.frontiersin.org/articles/10.3389/fmats.2022.1039580/full
https://www.frontiersin.org/articles/10.3389/fmats.2022.1039580/full
https://crossmark.crossref.org/dialog/?doi=10.3389/fmats.2022.1039580&domain=pdf&date_stamp=2022-10-20
mailto:Gongpeng2020@163.com
mailto:superjsd@163.com
https://doi.org/10.3389/fmats.2022.1039580
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.frontiersin.org/journals/materials
https://www.frontiersin.org
https://www.frontiersin.org/journals/materials
https://www.frontiersin.org/journals/materials#editorial-board
https://www.frontiersin.org/journals/materials#editorial-board
https://doi.org/10.3389/fmats.2022.1039580


Introduction

As a representative of lightweight alloy, aluminum (Al) alloys

are essential in the automotive, aerospace, and shipbuilding

industries for their high specific strength and favorable

formability (Naumov et al., 2019; Xie et al., 2022). Friction

stir welding (FSW) is a solid-state welding technique which

has been widely investigated to join light alloys due to its high

weld quality, no pollution, and low energy consumption (Ren

et al., 2020b). However, for the traditional FSW process, the

rotating pin is withdrawn from the plate at the end of welding,

thereby forming a keyhole. The existence of keyhole not only

reduces the mechanical properties of joint but also affects the

overall aesthetics of weld (Meng et al., 2021b). In recent years,

eliminating the keyhole has been becoming a hotspot of research.

The reported method to eliminate the keyhole is mainly focused

on repairing the keyhole after welding, such as self-refilling

friction stir welding (SRFSW) (Zhou et al., 2013), friction plug

welding (FPW) (Du et al., 2019), filling friction stir welding

(FFSW) (Huang et al., 2013) and active-passive filling friction stir

repairing (A-PFFSR) (Meng et al.; Zhao et al., 2021) and so on.

The repairing methods after welding increase the process

complexity. Gong et al. (Gong et al., 2021; Gong et al., 2022)

proposed a new FSW technique named as non-keyhole friction

stir welding (N-KFSW) to eliminate the keyhole during the

welding process. This technique effectively combines the refill

friction stir spot welding (RFSSW) and the FSW because its

rotational tool is the same as that for RFSSW, and can obtain the

non-keyhole welding joint through one-time process. So far, the

N-KFSW process has only been used to weld the butt joint rather

than the lap joint.

In the process of FSW, welding process parameters (welding

speed, rotating speed, and so on) are the key factors in

determining the strength of welding joint, and the

relationships between them are nonlinear and complicated

(Chien et al., 2011). The control variate method is always

used to obtain reasonable process parameters by plenty of

experiments (Liu et al., 2015), but the corresponding result

is difficult to achieve the optimal parameter combination

precisely. To obtain the joint with higher strength, more and

more experimental design methods have been introduced into

the parameter optimization of FSW process, such as response

surface methodology (Kim et al., 2010) and Taguchi method

(Chanakyan and Sivasankar, 2020). Compared with these

experimental design methods, the combination of artificial

neural network (ANN) and population-based intelligence

algorithm has greater advantages in parameter prediction

and hybrid multi-objective optimization, which can find out

the better process parameters combination to improve the

strength of welding joint (Soori et al., 2021; Asmael et al.,

2022). Song et al. (2020) used radial basis function (RBF)-grey

wolf optimizer (GWO) system to optimize the welding process

parameters of Al/Mg dissimilar alloys FSW. Their results

showed that the predicted error of model established by RBF

neural network was 3.2%, and the tensile strength of the

optimized joint reached 158 MPa, which was 3.9% higher

than the reported maximum strength value. Medhi et al.

(2021) established the NSGA-Ⅱ-ANN system to optimize

welding process parameters of dissimilar Al/Cu hybrid FSW.

They stated that the prediction error of 2.8% was acquired by

the ANNmodel, and the joint tensile strength of 142.32 MPa by

optimal process parameters was 17% higher than the maximum

strength before optimization.

As a shallow neural network, RBF neural network is very

popular because of its fast training speed and good nonlinear

fitting performance. Although RBF neural network has been

widely used, improperly selecting its some key parameters

such as the center and width of hidden layer basis functions

and connected weight between hidden layer and output layer

always leads to large network convergence error and bad

generalization capacity (Sun et al., 2016). In order to further

determine the mapping relationship between input and output

and then improve the generalization ability of RBF neural

network, optimizing the key parameters of RBF neural

network by population-based intelligence algorithm with

superior search ability is proved to be an effective way. Yu

et al. (2020) introduced the particle swarm optimization

(PSO) algorithm to optimize the center vector and width of

RBF in the hidden layer and the link weight of line output in the

output layer. Their results showed that the average recognition

rate using PSO-RBF neural network was 97.115%, which was 4%

higher than that using RBF neural network. As one of the

population-based intelligence algorithms, PSO algorithm is

widely used in parameter optimization, neural network

optimization and other fields due to its advantages of simple

implementation and few adjustment parameters (Dong et al.,

2020; Yin et al., 2020). However, the single PSO algorithm has the

problem of easily falling into local extremum. This problem can

be solved by several reported methods such as optimizing its

initial population (Ren et al., 2020a) and introducing multi

swarm improvement method to increase search ability

(Srinivasulu, 2021).

In this study, the N-KFSW technology was used to weld the

lap joint, and this technology was called as non-keyhole friction

stir lap welding (N-KFSLW). The improved PSO (IPSO)

algorithm was firstly developed by increasing a new search

method which was inspired by PIO algorithm to overcome

the problem of easily falling into local extremum of single

PSO algorithm. Then, the IPSO-RBF system was established

to predict the joint strength and optimize the process

parameters combination. Finally, the lap interface

morphologies, microstructures, microhardnesses and fracture

behaviors under different process parameter combinations

were compared to explain why the optimal process

parameters combination could obtain the highest tensile

strength of N-KFSLW joint.
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Materials and methods

Two and four millimeter thick 2024 Al alloy plates were used

as the base materials (BMs), and other dimensions of plate were

300 and 150 mm. The chemical composition and mechanical

properties of BM are shown in Table 1. Two plates were lap

combined with a lap width of 50 mm, while 2 mm thick plate was

selected as upper sheet of joint to be welded. Figure 1 shows the

lap configuration of plates and the specific dimensions of the

N-KFSLW tool. Similar to the N-KFSW process (Gong et al.,

2021; Gong et al., 2022), the N-KFSLW process also has four

stages including plunging stage, welding stage, refilling stage and

leaving stage, and this study mainly studied the joint

performance at the welding stage. Therefore, a simplified

welding tool consisting of the stationary shoulder and an

internal rotating hollow pin was designed, as shown in

Figure 1B. The inside and outside diameters of stationary

shoulder were 6 and 16 mm, respectively. The diameters of

pin and hollow part were respectively 6 and 3 mm, and the

pin length was 2.5 mm (Figure 1B). Before welding, the plate

surfaces contacting the tool during welding were cleaned with

500# sand papers to wipe off oxide films. During welding, the

plunge depth of stationary shoulder was 0.15 mm. For the FSLW

process, the tool shoulder need slightly plunges into the upper

surface of plate to provide a forging function on the welded joint.

The rational tilting angle of tool can not only ensure the forging

function to avoid the appearance of defects in the stir zone (SZ),

but also reduce the forward resistance of tool by the materials

before the tool. Wan and Huang (2017) reported that the tilting

angle of 2.5° rather than 0° or 1.5° eliminated welding defects

including micro voids, cracks and even tunnel defects in FSLW.

In this paper, the 2.5° tilting angle of welding tool was chosen, and

this tool rotated counterclockwise and moved along the weld

centerline. After welding, an electrical discharge cutting machine

was used to cut the tensile specimens and the metallographic

samples. Tensile test specimens were prepared as per the ISO

9018:2003, and the static tensile strength test were carried out at a

loading rate of 2 mm/min on tensile testing machine

(SHIMADZUEHF-UV200K2) at room temperature. Three

tensile specimens for N-KFSLW process were used to

determine the average tensile strength of the joint under each

set of process parameters. Metallographic samples were prepared

as per the ISO 17639:2003(E), and they were cut next to the

tensile specimen. Then, an optical microscope (OM, Olympus-

GX71) was used to observe the joint microstructure. A scanning

electron microscope (SEM, SU3500) was used to analyze the joint

fracture characteristics. The microhardness of joint was

measured by a microhardness tester (Wilsen VH1102) and the

corresponding specimens were prepared according to the ISO

9015-2:2003.

Radial basis function modeling

The RBF neural network is used to map the non-linear

relationship between a series of inputs and the investigated

TABLE 1 Chemical composition and mechanical properties of the 2024 Al alloy.

Chemical compositions (mass%) Mechanical properties

Si Fe Cu Mn Mg Zn Ti Al Tensile
strength
(MPa)

Elongation
(%)

Hardness
(HV)

0.5 0.5 3.8–4.9 0.3–0.9 1.2–1.8 0.3 0.15 Bal. 425–470 10 ± 1 120–145

FIGURE 1
Schematic diagrams: (A) N-KFSLW process, (B) dimensions of stationary shoulder and rotational pin.
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outputs, and is extensively applied in the domain of data

prediction due to its strong self-learning ability and

generalization ability (Nasir et al., 2020). The RBF structure

is comprised of input layer, hidden layer and output layer. The

input layer plays the role of transmitting signals, the radial

basis function including the center and width parameters of

radial basis in the hidden layer maps the input vector to the

hidden layer space, and the output vector is weighted and then

linearly mapped from the hidden layer space. Therefore, the

adjustable parameters in the RBF neural network include the

center vector and width of radial basis function in the hidden

layer and the link weight of line output in the output layer

(Gong et al., 2012). The numbers of neurons at input layer,

hidden layer and output layer are equal to the inputs, the size

of input data and the outputs, respectively. The RBF neural

network model established in this study is shown in Figure 2.

The centers, widths and weights of RBF neural network decide

the network convergence speed and accuracy. They are

randomly generated in traditional RBF neural network,

which always negatively influences the model accuracy.

Therefore, the intelligent algorithm of IPSO is used to

optimize the RBF neural network in this study.

Improved particle swarm optimization
modeling

The swarm intelligence optimization algorithm is designed

by the mechanisms of group biosocial behavior. As the swarm

intelligence optimization algorithm, PSO has the advantages of

simplicity, few parameters and fast convergence (Sun et al.,

2016). The particles in PSO algorithm update their velocities

and positions by the follow formula (Sun et al., 2016) at k − th

iteration.

Vk+1
i � ωpVk

i + c1pr1p(Pk
ibest −Xk

i ) + c2pr2p(Pk
gbest −Xk

i ) (1)
Xk+1

i � Xk
i + Vk+1

i (2)

Whereω is inertia weight; c1 and c2 are learning factors; Pibest and

Pgbestare respectively individual extreme position and global

optimum position, which can be obtained by calculating the

fitness values of particles; r1 and r2 are two independent random

numbers.

However, the PSO algorithm has the disadvantages of easily

falling into the local optimum and long training time. To make

particles in iterations move closer to a search area to get the

optimal solution at a faster speed, it is necessary to improve the

PSO algorithm (Liang et al., 2006).

As another swarm intelligent optimization algorithm, the

PIO algorithm was innovatively proposed by Sun et al. (2014)

based on simulating pigeons’ homing behavior. There are two

iterative operators in the process of PIO algorithm, which are the

map and compass operator and the landmark operator. The

general direction of iteration is firstly judged by the map and

compass operator, and then the current direction is revised by the

landmark operator. Therefore, the PIO algorithm has the

advantages of clear search direction and strong robustness. In

the process of landmark operator, the position Xi and the center

Xc of pigeon at n − th iteration are calculated by the following

equations (Sun et al., 2014).

Np(n) � Np(n − 1)
2

(3)

Xc(n) � ∑Xi(n)pfitness(Xi(n))
Npp∑fitness(Xi(n)) (4)

Xi(n) � Xi(n − 1) + randp(Xc(n) −Xi(n − 1)) (5)

WhereNpis the number of pigeon; fitness(Xi(n))is the fitness
value of pigeon i at n − th; randis a random number between 0-1.

Based on these above-mentioned equations, the IPSO

algorithm is obtained by utilizing the PIO algorithm to

optimize the PSO algorithm. After the PSO algorithm updates

the position and velocity of particle, the new position updating

equations which are inspired by the idea of landmark operator in

PIO algorithm are used to update the particle position again. The

new position updating equations are as follows.

center � Xg (6)
Xi(t) � αp(center −Xt−1)pλ +Xt−1 (7)

Where Xg is the min fitness value of pigeon; α is a constant

greater than 0; λ is the step length.

In order to verify the effectiveness and advantages of the

IPSO algorithm, four unimodal benchmark functions and four

multimodal benchmark functions were selected from 23 classical

benchmark functions utilized by many researchers to test the

IPSO algorithm (Liang et al., 2006; Mirjalili et al., 2014). These

benchmark functions are listed in Tables 2, 3 where Dim

indicates dimension of the function, Range is the boundary of

FIGURE 2
RBF neural network model for N-KFSLW process.
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the function’s search space, andf min is the optimum. Figures 3, 4

illustrate the 2-D versions of the benchmark functions used in

this study.

The PSO algorithm and IPSO algorithm were run 30 times

on each benchmark function, and the statistical results (average

and standard deviations) are listed in Table 4. It is found that

IPSO algorithm shows strong competitiveness in the search for

optimum of the unimodal benchmark functions, and the average

and standard deviations by IPSO algorithm are better than those

by PSO algorithm. The unimodal benchmark function is suitable

for benchmark test development (Mirjalili et al., 2014), and the

results in Table 4 demonstrate the superior performance of IPSO

algorithm in developing optimal parameters. Compared with

unimodal benchmark functions, multimodal benchmark

functions have many local optimums and can be used to

benchmark the abilities of algorithm including searching and

avoiding local optimum (Mirjalili et al., 2014). On the basis of the

results in Table 4, it is known that the IPSO algorithm also has the

advantages of finding optimum on multimodal benchmark

functions, which proves that the proposed algorithm is not

easy to fall into local optimum and has good searching

performance. These two superior abilities of IPSO algorithm is

because the locations of individuals of the population are

increased under the new position updating equations.

Therefore, the improvement strategy of PSO algorithm

proposed in this study is reliable.

Improved particle swarm optimization-
radial basis function system

In this study, the IPSO-RBF system means the combination

of IPSO-RBF neural network and IPSO algorithm. The IPSO-

RBF neural network means the RBF neural network whose

parameters are optimized by the IPSO algorithm, which is

used to establish the prediction model of joint tensile strength

for the N-KFSLW technology. On basis of this prediction model,

the IPSO algorithm is further used to obtain the optimal welding

process parameters of N-KFSLW technology. Figure 5 shows the

flow chart of the optimization process by IPSO-RBF system.

The IPSO-RBF neural network established in this study

needs experiment data to train and then achieve the desired

prediction accuracy. For the butt joint by FSW, the tensile

properties include the tensile strength and elongation (Chien

TABLE 2 Unimodal benchmark functions.

Function Dim Range fmin

f1(x) � ∑n
i�1 x2i 30 [−100, 100] 0

f2(x) � ∑n
i�1 |xi| +∏n

i�1 |xi| 30 [−10, 10] 0

f3(x) � ∑n
i�1 (∑i

j−1xj)2 30 [−100, 100] 0

f4(x) � max i{|xi|, 1≤ i≤ n} 30 [−100, 100] 0

TABLE 3 Multimodal benchmark functions.

Function Dim Range fmin

F9(x) � ∑n
i�1[x2

i − 10 cos(2πxi) + 10] 30 [−100, 100] 0

F10(x) � −20 exp(−0.2
���������
1/n∑n

i−1 x2
i

√
) − exp(1/n∑n

i−1 cos(2πxi)) + 20 + e 30 [−10, 10] 0

F11(x) � 1/4000∑n
i�1 x2

i −∏n
i−1 cos(xi/

�
i

√ ) + 1 30 [−100, 100] 0

F13(x) � 0.1{sin 2(3πxi) + ∑n
i�1 (xi − 1)2[1 + sin 2(2πxn)]} +∑n

i�1 μ(xi, 5, 100, 4) 30 [−100, 100] 0

FIGURE 3
2-D versions of unimodal benchmark functions in Table 1: (A) f1(x), (B) f2(x), (C) f3(x), (D) f4(x)
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et al., 2011; Venkateswarlu et al., 2013). However, researchers

always choose the tensile shear load as the tensile property to

evaluate the quality of FSLW (Li et al., 2016; Liu et al., 2018;

Wang et al., 2020). Thus, the welding speed, rotating speed and

the pin type in experiment data are used as the input of neural

network, and the output is the tensile strength of joint in this

paper. Table 5 lists the experiment results in this study. Figure 6

showed the load-displacement curves of lap joints under typical

parameter combinations. During FSLW, tool geometries have a

strong influence onmaterial flow in SZ (Ji et al., 2017). To explore

the effect of pin thread on the quality of welding joint, three types

of pin were used in welding experiment. They are respectively the

pin with full right hand thread, the pin with a half thread starting

from pin tip to its middle position, and the pin with a half thread

starting from the pin middle position to its bottom, which are

respectively named as the full-thread pin, the upper half-thread

pin and the below half-thread pin in this study. In the IPSO-RBF

neural network, the upper half-thread pin, the full-thread pin and

the below half-thread pin are respectively represented by the

numbers of 0, 1 and 2.

The establishment of prediction model by IPSO-RBF neural

network and the optimization of welding process parameters by

IPSO algorithm were performed by the MATLAB software. In

training stage of IPSO-RBF neural network, 27 data sets and

3 data sets in Table 5 were used to train and then test the IPSO-

RBF neural network, respectively.

The relative error between predicted value and experimental

value is used to evaluate the prediction accuracy of IPSO-RBF

neural network, and its equation is as follows (Medhi et al., 2021).

error � |Sz − Yz|
Yz

(8)

Where Sz is the predicted value; Yz is the experimental value.

Figure 7A displays the evolutionary curves of the error under

RBF neural network, PSO-RBF neural network and IPSO-RBF

neural network. The results present that IPSO-RBF neural

network has the minimum prediction error of 1.7%, and the

larger prediction errors of 3.2% and 7.3% are obtained

respectively under PSO-RBF neural network and under RBF

neural network. The prediction model of joint tensile strength

converges after 50 times of training under IPSO-RBF neural

network, and the corresponding times are 100 under PSO-RBF

neural network and 130 under RBF neural network. Compared

with RBF neural network and PSO-RBF neural network, the

IPSO-RBF neural network has the largest predicted accuracy and

the fastest convergence speed. Therefore, the prediction model of

welding parameters was established quickly and accurately by

IPSO-RBF system. Figures 7B,C show the predicted tensile

strengths and the relative errors of three different neural

networks. The prediction error of IPSO-RBF neural network

has the smallest fluctuation. It is known that compared with RBF

neural network and PSO-RBF neural network, the IPSO-RBF

neural network has the lowest error.

Based on IPSO-RBF neural network, the next stage is

optimizing the welding process parameters of N-KFSLW by

IPSO algorithm. After 500 iterations of IPSO algorithm

FIGURE 4
2-D versions of multimodal benchmark functions in Table 2: (A) F9(x), (B) F10(x), (C) F11(x), (D) F13(x)

TABLE 4 Results of benchmark functions.

PSO IPSO

F Ave Std Ave Std

f1(x) 3.31853E-14 9.12935E-14 0.57159E-19 2.60694E-19

f2(x) 0.49174E-18 1.444632E-18 0.63034E-23 2.92406E-23

f3(x) 0.00001 0.0005 0 0.00012

f4(x) 0.24021E-06 1.35608E-06 0.42064E-10 3.90048E-10

F9(x) 0.06484 0.24857 3.07256E-10 1.37215E-09

F10(x) 0.8237E-14 6.80899E-13 1.32942E-15 2.96789E-14

F11(x) 0.7133E-09 2.16379E-08 1.6168E-10 6.51711E-14

F13(x) 0.79856 0.36677 0.64173 0.26482
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optimization, the best parameters of thread, welding speed and

rotational velocity are achieved, which are the upper half-thread

pin, 80 mm/min and 611.97 rpm, respectively.

Results and discussion

According to the optimum process parameter

combination, the executable solution of N-KFSLW

technique is selected to perform the confirmation

experiment. Table 6 shows the executable optimum process

parameters and the corresponding tensile strength. The tensile

strength acquired by the IPSO-RBF system is 11.74 kN/mm.

The experimental tensile strength of 11.88 kN/mm is close to

the predicted result and the corresponding deviation is 1.2%,

which is within the acceptable range and verifies the accuracy

of the IPSO-RBF system. Moreover, compared with the

highest tensile strength of 11.37 kN/mm in Table 5, the

tensile strength under optimum process parameters is

increased by 4.5%, which reveals the effectiveness of the

IPSO-RBF system established in this study.

In this study, the high-strength lap joint presented the tensile

fracture mode, and the void and cracks defects were discussed in

order to more clearly explain the fracture mechanism of

N-KFSLW joint, as displayed in Figure 8. When the low ratio

of rotational velocity and welding speed is used, the void defect

may appear in the advancing side (AS) of SZ (Figure 8A) due to

the insufficient material flow. For the lap joint, the cold lap is

made up of two alclad layers including the bottom surface of

upper sheet and the top surface of lower sheet, and these two

layers are bonded only by atom diffusion (Glaissa et al., 2020).

The cold lap on the retreating side (RS) extends into SZ

presenting the morphology of first upwards-bending and then

downwards-bending (Liu et al., 2018). Therefore, the crack

always appears in the cold lap around the SZ outline due to

the existence of the original lap interface and the relatively low

temperature during welding, and its tip may be in the SZ (Li et al.,

2016) or outside the SZ (Xiao et al., 2021). In this study, the crack

tip in the high-strength lap joint is located outside the SZ

(Figure 8B). The lap joint can be divided into configurations

A and B, and configuration B means the RS of lap joint bears the

main load during the tensile test (Ji et al., 2017). When the lap

FIGURE 5
Flow chart of optimization process of IPSO-RBF system.
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joint with configuration B undergoes the external tensile load, the

crack propagates along the cold lap at the RS to the highest point

of cold lap and then upwards, thus leading to the tensile fracture

mode (Figure 8C). In this case, the crack path is located at the RS

of SZ which owns microhardness higher than the thermo-

mechanically affected zone (TMAZ), so the corresponding

tensile shear load of joint is mainly related to the crack in

Figure 8B rather than the void at the AS of SZ (Figure 8A).

Figure 8D displays the macro morphology of joint fracture

surface, and the enlarged views of local regions marked in

Figure 8D are displayed in Figures 8E–G. The microstructure

of the whole fracture was observed by the SEM, and it shows

inconsistent illumination and roughness (Figure 8D). In region

E, there exist some small-size dimples with low depth (Figure 8E).

From the above-mentioned analysis, it is concluded that region E

located in the alclad layer has the very low bonding strength. This

is why the dimples in region E are few and shallow (Figure 8E).

Regions F and G are located above the cold lap and have relatively

high bonding strength between materials, so these regions are

characterized by many dimples with various sizes, as displayed in

Figures 8F,G. Certainly, the dimples in Figures 8F,G are

elongated and directional under the action of shear force. The

fracture surface morphology presents that the fracture mode of

N-KFSLW joint belongs to the ductile fracture mode.

When the lap joint presents the tensile fracture mode, the key

factor on influencing the joint strength is the height of cold lap of

joint and the mechanical properties of material on the fracture

path. Moreover, similar to the joint of No. 5 which owns the

highest tensile strength before optimization in Table 5, the joint

under the optimum process parameters is fabricated by the upper

half-thread pin. Thus, the lap interface feature, microstructure

and mechanical property of joint by upper half-thread pin are

analyzed in detail in the following part. In order to explain why

the joint under optimum process parameters combination by the

TABLE 5 Training and testing data samples for IPSO-RBF.

No Pin type Welding speed (mm/min) Rotational velocity (rpm) Tensile strength (kN/mm)

1 0 40 600 7.77

2 0 50 600 8.24

3 0 60 600 8.52

4 0 70 600 10.92

5 0 80 600 11.37

6 0 40 700 7.46

7 0 50 700 9.48

8 0 60 700 10.65

9 0 70 700 9.93

10 0 80 700 8.74

11 1 40 600 8.71

12 1 50 600 9.21

13 1 60 600 10.25

14 1 70 600 8.85

15 1 80 600 7.34

16 1 40 700 8.41

17 1 50 700 8.54

18 1 60 700 9.83

19 1 70 700 8.38

20 1 80 700 7.67

21 2 40 600 7.96

22 2 50 600 8.68

23 2 60 600 8.21

24 2 70 600 7.93

25 2 80 600 7.20

26 2 40 700 7.71

27 2 50 700 7.34

28 2 60 700 7.13

29 2 70 700 6.65

30 2 80 700 6.35
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IPSO-RBF system has the highest tensile strength, the joint of No.

5 in Table 5 was selected for comparison because it has higher

tensile strength than other joints in Table 5. These two joints by

the upper half-thread pin are respectively named as the

optimized joint and the No. 5 joint.

Joint formation

The joint top surface is shown in Figure 9A. Due to the action

of stationary shoulder (Wu et al., 2015), the joint with a smooth

surface is attained, which has no flashes and shoulder marks. The

joint cross sections under different welding parameter

combinations are displayed in Figures 9B,C. Similar to

traditional FSLW joint (Wang et al., 2020), the N-KFSLW

joint consists of SZ, heat affected zone (HAZ) and TMAZ and

BM. There is no cavity inside the SZ, and the thickness of SZ is

almost equal to that of the BM due to the seal barrier effect of

FIGURE 6
Load-displacement curves.

FIGURE 7
Training and predicted results under different neural networks: (A) evolutionary curves, (B) predicted tensile strengths and (C) relative errors
between predicted and verified results.
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stationary shoulder of N-KFSLW tool in Figure 1. The TMAZ

and HAZ are outside the SZ, which is not directly stirred by

the welding tool. Because the welding tool used in this study

has no rotating shoulder and the stationary shoulder has the

heat-absorbing action (Patel et al., 2022), the HAZ and TMAZ

both present the narrow-band shape. For FSLW process, the

hook defect outside the SZ and cold lap extending into the SZ

are formed inside the joint under the action of welding tool.

These two structures are the key factors affecting the bearing

capacity of joint. A reasonable rotational tool and appropriate

welding parameters can control the morphologies of hook

defect and cold lap and then improve joint quality immensely

(Liu et al., 2016; Meng et al., 2021a). During the FSLW

process, material concentrated area (MCA) is always

produced at the end of thread on the pin (Ji et al., 2017).

For the traditional full-thread pin, the MCA is located around

the pin tip, and pushes the materials in TMAZ to transfer

upwards, thereby making that the hook defect and cold lap

always own large height. In this study, the upper half-thread

pin length is 2.5 mm and the thickness of upper sheet is 2 mm.

Therefore, when the upper half-thread pin is used, the MCA is

located above the original lap interface and exerts a downward

force on the lap interface (Figure 9D), thereby leading to the

relatively small heights of hook defect and cold lap structures.

In this study, the height of cold lap of optimized and No.

5 joints by the upper half-thread pin are 0.491 and 0.584 mm,

respectively. Compared with the No. 5 joint, the height of cold

lap of optimized joint is decreased by 15.9%. Therefore, the

more proper welding parameters are obtained by the IPSO-

RBF system from the viewpoint of reducing the cold lap of

welding joint, which is beneficial to enhancing the joint

bearing capacity.

TABLE 6 Executable optimum process parameters and their corresponding joint strength.

Pin type Welding speed
(mm/min)

Rotational velocity
(rpm)

Predicted tensile
strength (kN/mm)

Actual tensile
strength (kN/mm)

Deviation (%)

0 80 612 11.74 11.88 1.2

FIGURE 8
(A) Cross section of the joint at low rotating speed ratio and (B) enlarged views of region B; (C) Cross section and (D) fracture surface
morphology of joint with tensile fracture mode; enlarged views of local regions marked in (D): (E) region E, (F) region F and (G) region G.
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Microstructure and microhardness

Figure 10 displays the microstructures of typical zones of

N-KFSLW joint. The BM is composed of lath-shape grains with

large size (Figure 10A). During the welding process, HAZ only

experiences the thermal cycle action rather than the mechanical

stirring experienced by the SZ (Li et al., 2016), so its grain is

enlarged and the corresponding size (Figure 10B) is larger than

that in BM (Figure 10A). Different from the HAZ, the SZ

undergoes not only the welding temperature higher than the

recrystallization temperature but also the sufficient material flow,

thereby leading to the complete dynamic recrystallization.

Therefore, the SZ of N-KFSLW joint is characterized by fine

and equiaxed grains and its grain size is much smaller than that in

BM. In this study, the linear intercept measurement method was

used to obtain the grain size of SZ, and the optimized and No.

5 joints were both analyzed for explaining why the optimized

joint owns the highest tensile strength because the fracture path is

located at the SZ (Figure 8A). For the optimized joint

FIGURE 9
Joint formations: (A) joint surface; cross sections of joints: (B) optimized joint and (C)No. 5 joint; (D) schematic diagram of material flow during
N-KFSLW.

FIGURE 10
Microstructures of typical zones: (A) BM, (B) HAZ of
optimized joint, (C) SZ of optimized joint and (D) SZ of No. 5 joint.
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(Figure 10C), the grain size of SZ is 9.58 μm. For the No. 5 joint

(Figure 10D), the grain size of SZ is 8.66 μm. Compared with the

No. 5 joint, the optimized joint has the SZ with slightly larger

grain size. By comparing the welding parameters for the No.

5 joint with that for the optimized joint, it is known that the

rotational velocity of 612 rpm for the optimized joint is larger

than 600 rpm for the No. 5 joint. Higher rotational velocity

causes higher welding temperature (Selvaraj et al., 2013) and

more serious material flow (Kumar et al., 2018). Generally

speaking, more serious material flow is beneficial to refining

the grain size, but higher welding temperature can enlarge the

grain size. Therefore, from the viewpoint of influencing the grain

size, enlarging the grain size by increasing welding temperature

for the SZ of optimized joint plays the dominant role, thereby

making that the optimized joint rather than the No. 5 joint has

the SZ with larger grain size.

The microhardness distributions of the No. 5 and optimized

joints were measured and the results are displayed in Figure 11.

In this study, the two lines were performed to measure the

microhardness. One is parallel to the original lap interface of

joint and is 1 mm away from the top surface of joint, the other is

perpendicular to the original lap interface and is located near the

fracture path of joint (Figure 11A). When the welding process

parameters combination is changed, the microhardness

distribution is nearly the same. The microhardness values of

SZ, HAZ and TMAZ are all smaller that the value of BM, because

the 2024 Al alloy is a kind of age-hardenable Al alloy and the

welding thermal cycle during welding can lead to the softening of

materials (Chen et al., 2017). According to the Hall-Petch

relationship (Tian et al., 2019), decreasing grain size is

beneficial to obtaining higher microhardness. In this study,

the SZ is composed of greatly refined grains due to the

dynamic recrystallization while the grains in HAZ are

enlarged, so the SZ owns the higher microhardness compared

with the HAZ. Therefore, the microhardness distribution parallel

to the original lap interface presents a W shape and the lowest

microhardenss value is located near the boundary between the

TMAZ and the HAZ (Figure 11B), which is similar to the results

reported by Jiang et al. (2016).

As mentioned above, the welding temperature of the

optimized joint is higher than that of the No. 5 joint.

Therefore, the width of softening area of optimized joint is

larger than that of No. 5 joint (Figure 11B). The average

microhardness values of SZ in Figure 11B were calculated,

FIGURE 11
(A) Schematic of microhradness measurement locations; microhardness distributions of optimized and No. 5 joints: (B) parallel to the original
lap interface and (C) perpendicular to the original lap interface.
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and they are respectively 109.0 HV and 110.1 HV for the

optimized and No. 5 joints. Compared with the No. 5 joint,

the optimized joint has the SZ with smaller microhardness due to

the larger gain size displayed in Figures 10C,D. By observing

Figure 11C, it is known that the microhardness of SZ of

optimized joint perpendicular to the original lap interface is

also smaller than that of No. 5 joint. Because the cold lap is made

up of pure Al, the measured point of SZ optimized joint which is

located on the cold lap owns the very small microhardness value

of 29.5 HV. From the experimental results in Figures 11B,C, it is

concluded that the optimized joint owns lower the bearing

capacity compared with the No. 5 joint, which is harmful to

heightening the tensile strength of optimized joint obtained by

N-KFSLW process.

Tensile strength

Figure 12 presents the tensile strengths of 2024 Al alloys

FSLW joints of this study and other reported references. It can be

seen that after the optimization of welding tool and process

parameters, the tensile strength of joints in this paper are

significantly improved. Therein, the joint tensile strength of

this study was calculated by dividing the tensile load by the

thickness of upper sheet, and the value of reported reference was

calculated by dividing the tensile load by the thickness of upper

sheet and the ratio of specimen width and 35 mm. The joint

tensile strength in this study is influenced by not only the height

of cold lap of joint but also the microhardness of SZ. Generally

speaking, lower cold lap height and higher microhardness are

both beneficial to enhancing the tensile strength of FSLW joint.

The height of cold lap of optimized joint is 15.9% lower than that

of No. 5 joint, but the tensile strength (11.88 kN/mm) of

optimized joint is only increased by 4.5% compared with that

11.37 kN/mm of No. 5 joint. The increased percentage in joint

strength is smaller than that in joint EST, because the

microhardness of SZ of optimized joint is smaller than that of

No. 5 joint.

For the N-KFSLW process in this study, the advantages on

heightening the tensile strength of 2024 Al alloys lap joint originate

from the welding tool including not only the stationary shoulder but

also the upper half-thread pin. Therefore, the obtained thickness of

SZ is nearly equal to that of upper sheet, and the height of cold lap is

very small (Figures 9B,C). Under this condition, the joint by the

upper half-thread pin (Table 5) has the tensile strength higher than

11 kN/mm, and this strength value is greatly higher than the

strengths of FSLW joint reported by researchers (Jiang et al.,

2016; Ji et al., 2017; Li et al., 2016; Liu et al., 2018; Ye et al.,

2018). Certainly, based on the IPSO-RBF system, the optimized

parameter combination is obtained and the corresponding tensile

strength of 11.88 kN/mm is further improved.

Conclusion

The N-KFSLW technology was put forward to obtain the lap

joint without keyhole through one-time process, and the 2024 Al

alloys plates were chosen as the research object. In this paper, the

IPSO algorithm was firstly proposed by increasing a new search

method which was inspired by PIO algorithm. Moreover, the

IPSO-RBF system was developed to maximize the strength of

welding joint. The following conclusions were extracted.

1) The self-designed welding tool consisted of the outer

stationary shoulder and the inner upper half-thread

rotating pin. The stationary shoulder made the SZ have

the thickness almost equal to the thickness of upper sheet,

and the rotating pin made the cold lap have a very small

height, thereby obtaining the joint with a high strength.

2) The new IPSO algorithm was developed by optimizing the

PSO algorithm with PIO algorithm, which owned the

advantages of larger convergence speed and stronger

search ability compared with PSO algorithm. Eight kinds

of benchmark functions were adopted to test and verify the

excellent performance of IPSO algorithm.

3) The IPSO-RBF system was established to predict the joint

strength and optimize the process parameters combination.

Due to the advantages of IPSO algorithm, the prediction

accuracy of IPSO-RBF system reached 1.7%, which was

increased by 46.9% compared with that of PSO-RBF system.

4) The optimized parameters of welding speed, rotating speed

and pin type optimized by the IPSO-RBF system were

612 rpm, 80 mm/min, and upper half-thread pin,

respectively. The N-KFSLW joint tensile strength reached

11.88 kN/mm, which was 4.5% higher than the maximum

FIGURE 12
Tensile strengths of FSLW joints of this study and reported
results.

Frontiers in Materials frontiersin.org13

Li et al. 10.3389/fmats.2022.1039580

https://www.frontiersin.org/journals/materials
https://www.frontiersin.org
https://doi.org/10.3389/fmats.2022.1039580


strength before optimization. The high-strength lap joint after

tensile test presented the tensile fracture mode.
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