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The modified uncoupled lower-order beam theory (LBT) based on the third-

order shear deformation model was established for functionally graded (FG)

beams with circular cross-section in this paper. Based on the shear stress free

condition on the boundary of the circular cross-section, the bidirectional

warping function of the axial displacement is mathematically derived for the

first time. The power-law form in the radial direction is adopted to describe

continuous variation of material properties. Generalized stresses are defined

through the orthogonal form of the axial displacement and then expressed in

the decoupling form, in which the shear correction factor and three relatively

small coefficients are involved. The frame independent uncoupled equilibrium

equations and the corresponding boundary conditions are obtained via the

asymptotic principle of virtual work. The present LBT is validated through the

pure bending of a Clamped-Clamped FG beam by comparing the obtained

deflections with the published results. Accordingly, the effects of shear, warping

and stress mitigation acting on the cross-section influenced by the power-law

exponent have been described graphically and discussed.
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1 Introduction

Functionally graded (FG) materials are a class of composites, the properties of which vary

continuously and smoothly from one surface to another. Typically, these materials are made

from a mixture of ceramic and metal or from a combination of materials. The ceramic

constituent provides high-temperature resistance due to its low thermal conductivity. Beams

with solid or hollow circular cross-section are widely used in macro and micro fields, such as

the steel ropes of bridges and the landing gears of aircrafts, the cylindrical beams for building

support, oil pipelines in the transportation field, carbon nanotubes and microtubules in the

fields of medicine, biotechnology and smart material (Kapuria et al., 2008; Şimşek, 2010; El

Meiche et al., 2011; Shi and Voyiadjis, 2011; Neves et al., 2013; Belabed et al., 2014; Pradhan

and Chakraverty, 2014).When the beamswith circular cross-section aremade of FGmaterials,

the mechanical properties will be significantly improved.
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Theories for FG beams or plates have been proposed successively.

In the early stage, in order to take the shear effect on the cross-section

into account, it is very common to use Timoshenko beam theory

(TBT) to study the FG beam problems (Timoshenko, 1921; Popescu

and Hodges, 2000; Yu et al., 2002; Li, 2008; Dong et al., 2010). Due to

the linear variation of the normal strain on the cross-section, the TBT

can be regarded as the first-order shear deformation theory with the

shear coefficientKT. The shear coefficientKT is introduced to improve

the calculation accuracy, that has been studied in detail by many

scholars (Cowper, 1966; Hutchinson, 2001; Dong et al., 2010).

According to the results of Cowper’s (Cowper, 1966) study on

homogeneous beams, the shear coefficient is close to 5/6 for

rectangular cross-section and is close to 6/7 for circular cross-

section. However, it is difficult to determine the value of shear

coefficient for FG beams because of different cross-section shapes

and material distribution. In addition, the shear stress free condition

on the boundary of cross-section is not satisfied in TBT.

In order to overcome the disadvantages of TBT, Levinson

(Levinson, 1981) first proposed the beam theory based on the

third-order shear deformation model that has received the most

attention. In the higher-order shear deformation (HSD) model, the

warping effect on the cross-section is taken into consideration and

the shear stress free condition is satisfied. Since then, a variety of

theories based on HSD models have been proposed by many

scholars (Reddy et al., 2001; Aydogdu, 2009; Şimşek, 2010; El

Meiche et al., 2011; Shi and Voyiadjis, 2011; Huang et al., 2013;

Belabed et al., 2014; Pradhan and Chakraverty, 2014; Duan and Li,

2016a; Duan and Li, 2016b; Geng et al., 2017; Pei et al., 2018; Pei

et al., 2019; Huang, 2020; Ma et al., 2021), and can be divided into

two types according to the differential order of the governing

equations, i.e., the higher-order beam theory (HBT) and the

lower-order beam theory (LBT).

The proposal of HBT is mainly inspired by Reddy’s (Reddy et al.,

2001) idea of deriving the governing equations through the variational

principle. Based on different HSDmodels, the sixth-order differential

governing equation of the deflection is obtained in HBT, that results

in high computational accuracy.Meanwhile, the boundary layer effect

near concentrated load and fixed support constraints is revealed by

HBT (Shi and Voyiadjis, 2011; Duan and Li, 2016c). This has since

become a common way of deriving the governing equations (Reddy

et al., 2001; Aydogdu and Taskin, 2007; Şimşek, 2010; ElMeiche et al.,

2011; Shi and Voyiadjis, 2011), even ignoring the difficulty of solving

the equations analytically or numerically.

Compared with HBT, the fourth-order differential governing

equation of the deflection is obtained in HBT or TBT. Although the

calculation accuracy of LBT is not as high as that of HBT, LBT is

more convenient to solve and can be widely used in engineering with

sufficient calculation accuracy like TBT. In view of this, the

governing equations of TBT should be derived by reasonable

approximation of the variational principle, which depends on the

proper definition of the generalized stresses to decompose the higher

order small quantities of the energy functional (Duan and Li, 2016a;

Pei et al., 2018). However, some LBTs are established by the

differential equilibrium relationship of the forces (Huang et al.,

2013; Huang, 2020), that are often questioned.

Compared with FG beams with rectangular cross-sections, there

are a few studies on FG beams with circular cross-sections. The LBT

for FG beams with circular-section based on the third-order HSD

model was proposed by Huang (Huang et al., 2013; Huang, 2020)

through the differential equilibrium relationship of forces, in which

the axial displacement can be considered to be obtained by trial and

error. Ma (Ma et al., 2021) also proposed the LBT to study the

buckling and vibration behavior of axially-loaded hollow cylindrical

FG pipes. Li (Li et al., 2019) investigated the vibration control and

analysis of a rotating FG beam with a lumped mass and bonded

piezoelectric films in temperature field. Dong (Dong et al., 2019)

studied the dynamic modeling and free vibrations of rotating FG

tapered cantilever beams with hollow circular cross-section. The

significant effects of extensional–coupling bending are studied for

the tapered beam–column with FG cross-sections (Rezaiee-Pajand

and Masoodi, 2019).

For FG beams, due to the inappropriate selection of coordinate

system and the definitions of basic variables, the coupling between

bending and stretch which does not exist for the uniform beam

appears unexpectedly. For example, there are coupled expressions of

bending and stretch in (Aydogdu and Taskin, 2007; Thai and Vo,

2012; Huang, 2020). For the uncoupled beam theory (Geng et al.,

2017; Pei et al., 2019), the bending content is decoupled with the

stretching content in the constitutive relations, and hence, the

governing equations are greatly simplified.

FIGURE 1
A straight radial FG beam with uniform circular cross-section.
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Motivated by the great importance to overcome disadvantages,

this paper begins with the fundamentals of beam problems to

develop the modified uncoupled LBT for FG beams with circular

cross-section. To this end, this paper is organized as follows. In

Section 2, the FG beam with circular cross-section is described and

the bidirectional warping function of axial displacement is

mathematically derived. In Section 3, the generalized strains and

stresses are defined, then the constitutive relations are expressed in

the decoupling form, and the rigidity coefficients are calculated. In

Section 4, the equilibrium equations and the corresponding

boundary conditions are derived based on the principle of virtual

work, which ignores the virtual work generated by the higher-order

moment. In Section 5, the pure bending problems of the radial

graded material beam with circular cross-section are analytically

solved and compared with the published results. The concluding

remarks are finally made in Section 6.

2 Kinematics of FG beamwith circular
cross-sections

2.1 Description of the FG beam with
circular cross-sections

To focus our attention on the FG beam, a straight beam

structure with circular cross-section is taken into consideration,

as shown in Figure 1. For convenience, the origin o is chosen as

the central point of the circular cross-section on the left end, the

x-axis is the centroid line of cross-sections, and the Cartesian

coordinate system (x, y, z) is established. Meanwhile, the

cylindrical coordinate system (x, r, θ) (see Figure 1) is

introduced as well, which have the same origin o and the

same x-axis described before. R is the radius of the circular

cross-section. So, the coordinate transformation relationships are

z � r cos θ, y � r sin θ, r �
������
z2 + y2

√
(1)

To exclude the coupling of bending and torsion it will be

assumed that the applied loads are symmetric about the x-z

plane.

It is assumed that the material properties of FG beam vary

along the radial direction. For simplicity, the power-law variation

of Young’s modulus can be expressed as

E(r) � (E2 − E1)(rR)
k

+ E1 (2)

where E1 and E2 denote the Young’smodulus of themetal (material-

1) and ceramic (material-2) constituents of the FG beam

respectively, k is the non-negative variable parameter (power-law

exponent). Poisson’s ratio is assumed to be a constant, and this can

be found in the relevant references (Pradhan and Chakraverty, 2014;

Pei et al., 2019). Thus, the Young’s modulus of metal with respect to

r/R is depicted for various k, as shown in Figure 2.

It can be seen from Figure 2 that k = 0 represents the

homogeneous material, k = 1 represents the linearly

distributed material and k = 5 represents the exponential

distribution material which changes rapidly in r-direction.

FIGURE 2
The volume fraction of material-1 (metal) with respect to r/R for various k.
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2.2 Assumptions and definitions for FG
beam problem

Firstly, in order to facilitate theoretical derivation, the basic

assumptions and definitions of beam problem are introduced.

Assumption 1: stress assumption.

Based on the elasticity theory for bending of a column, it is

reasonable to assume that the following stress components

vanish (Huang et al., 2013)

σz � σy � τzy � 0 (3)

The Assumption 1 adopted for columns is totally different

from the plane stress assumption (Aydogdu, 2009; Şimşek,

2010; Pei et al., 2018) for beams with rectangular cross-

section.

Assumption 2: displacement field assumption.

Based on Assumption 1, the displacement field of the

column can be assumed in a general form as

⎧⎪⎨⎪⎩
ux(x, y, z) � fc(x) + (z − zc) · f1(x) + g(y, z) · fR(x)
uy(x, y, z) � uy(y, z)
uz(x, y, z) � uz(x, 0, 0)

(4)
where fc(x), f1(x) and fR(x) are three unknown functions to be

determined, g (y,z) is called the bidirectional warping function in

(Geng et al., 2017) with two properties

{ g(y, z)∣∣∣∣y�0,z�0 � 0

zg(y, z)/zz∣∣∣∣y�0,z�0 � 0
(5)

It should be pointed out that, the displacement field

assumption Eq. 4 in the present work is different from the

displacement field in the theory for beams with rectangular

cross-section (Geng et al., 2017; Pei et al., 2019) due to the

bidirectional warping function g (y,z).

In the first of Eq. 4, zc is the neutral point defined in

Definition 1.

Definition 1: the definition of neutral point. (Pei et al., 2018)

zc � (1/B0)∫
A
E(r) · zdA � 0 (6)

where A is the area of cross-section and

B0 � ∫
A
E(r)dA ≠ 0 (7)

is the tensile rigidity. Unlike homogeneous material beams, the

neutral axis of FG beam is often inconsistent with the centroid

axis, except for some special distribution of material, such as the

radial FG distribution.

In addition, based on the displacement field Eq. 4, the

definition of basic variables in the beam theory is also introduced.

Definition 2: the definition of generalized displacement.

Based on Eq. 4, the variables in beam theory are defined as

⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

�u(x) � (1/B0)∫
A

E(r) · ux(x, y, z)dA
ϕ(x) � (1/B2)∫

A

E(r) · (z − zc) · ux(x, y, z)dA
w(x) � (1/B0)∫

A

E(r) · uz(x, y, z)dA ≡ uz(x, 0, 0)

(8)

where �u(x) is the average stretch,ϕ(x) is the rotation of cross-section
andw(x) is the deflection of the FG beam.Without loss of generality,

the neutral point zc is involved in the definition of ϕ(x), and

B2 � ∫
A
E(r) · (z − zc)2dA ≠ 0 (9)

is the flexural rigidity.

2.3 Derivation of g (y,z) for circular cross-
section

In order to derive the explicit expression of axial

displacement, the shear stress free condition on the outer

lateral surface is introduced as well which requires

γxr � 0 on S (10)

where S is the outer boundary

S: S(y, z) � z2 + y20S(y, z)∣∣∣∣S � R2 (11)

According to Eq. 4, the radial shear strain γxr which can be

expressed by

γxr � nyγxy + nzγxz

� nz(f1 + w′) + [nyzg(y, z)
zy

+ nz
zg(y, z)

zz
] · fR (12)

where ny and nz are the cosines of outward normal on boundary S

which are expressed

TABLE 1 Material Properties of FG beam.

Material type Young’s modulus (GPa) Density Poisson’s ratio

1-Aluminum 70 2,702 kg/m3 0.3

2-Zirconia 200 5,700 kg/m3 0.3
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⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
ny � zS

zy

nz � zS

zz

(13)

Substituting Eq. 13 into Eq. 12, the shear stress free condition

is re-expressed as

{nz(f1 + w′) + [nyzg(y, z)
zy

+ nz
zg(y, z)

zz
] · fR}∣∣∣∣∣∣∣∣S � 0 (14)

In order to make Eq. 14 be satisfied, considering a simple

case, the partial differential equation is given by

1
nz

[nyzg(y, z)
zy

+ nz
zg(y, z)

zz
] � S(y, z) (15)

It is worth mentioning that the right term of Eq. 15 can also

be selected as sinusoidal function, exponential function,

logarithmic function and other forms with respect to S (y, z),

which will derive a variety of HSD models.

On the one hand, by solving partial differential equation Eq.

15, the explicit expression of g (y,z) can be derived as

g(y, z) � (z3 + zy2)
3

(16)

and the third-order HSD model is obtained.

On the other hand, Eq. 14 is further recast as

(f1 + w′) + R2 · fR ≡ 0 (17)

Based onDefinition 1 Eq. 8 and making use of Eq. 17, the axial

displacement of the FG beam can be represented by generalized

displacements and arranged in the following orthogonal form

ux(x, y, z) � �u(x) + z · ϕ + ~g(y, z) · (ϕ + w′) (18)
with

⎧⎪⎨⎪⎩
~g(y, z) � [λ · z − g(y, z)]/(R2 − λ)
λ � (1/B2)∫

A
E(r) · z · g(y, z)dA (19)

In addition, we have following three properties to guarantee

decoupling of the three terms in Eq. 18

⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

∫
A
E(r) · 1 · zdA � 0

∫
A
E(r) · 1 · ~g(y, z)dA � 0

∫
A
E(r) · z · ~g(y, z)dA � 0

(20)

TABLE 2 The calculated value of non-dimensional rigidity coefficients.

k λ/R2 Kz ξz ξy Ks η KT

0.0 0.222 0.857 -0.031 0.031 0.857 0.010 0.857

0.2 0.225 0.847 -0.037 0.032 0.842 0.010 0.857

0.5 0.228 0.834 -0.045 0.034 0.823 0.010 0.857

1.0 0.232 0.820 -0.053 0.036 0.803 0.009 0.857

2.0 0.238 0.804 -0.059 0.040 0.785 0.009 0.857

5.0 0.245 0.798 -0.054 0.043 0.787 0.009 0.857

FIGURE 3
The comparison of the dimensionless deflections curves w(x)* 100E1R

3/q0L
3.
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It will be seen later that the orthogonal decomposition form

of the axial displacement Eq. 18 is conducive to the complete

decoupling of stretching, bending and warping of the FG beam,

which lays a foundation for the simplification of the theoretical

expression in this paper.

3 Constitutive relations of FG beam
with circular cross-sections

3.1 Definition of generalized strains and
generalized stresses

According to Eq. 18 and the last two of Eq. 4, the strains of

the FG beam are further cast as

⎧⎪⎪⎨⎪⎪⎩
εx � �u′ + z · ϕ′ + ~g(y, z) · (ϕ′ + w″)
γxz � (1 + z~g(y, z)/zz) · (ϕ + w′)
γxy � (z~g(y, z)/zy) · (ϕ + w′) (21)

Based on the first of Eq. 21, the normal strain of present LBT

can be decomposed into 3 parts, i.e., the uniform stretching, the

linear normal strain and the warping strain. The linear normal

strain (zϕ’) is the same as that obtained by the first-order model

or TBT, while the warping strain a high-order deformation

determined by bidirectional warping function g (y,z).

And the stresses are expressed as

⎧⎪⎪⎨⎪⎪⎩
σx � E(r) · [�u′ + z · ϕ′ + ~g(y, z) · (ϕ′ + w″)]
τxz � G(r) · (1 + z~g(y, z)/zz) · (ϕ + w′)
τxy � G(r) · (z~g(y, z)/zy) · (ϕ + w′) (22)

Similarly, the normal stress of present LBT can be

decomposed into 3 parts corresponding to the three strains,

which are the uniform stretching, the first-order normal stress

and the warping stress, respectively.

According to the expression of Eq. 21, the generalized strains

of FG beam can be defined as

⎧⎪⎪⎪⎨⎪⎪⎪⎩
�ε � �u′(x)
κ � ϕ′(x)
Γ � ϕ + w′
Γ′ � ϕ′ + w″

(23)

And the generalized stresses (also called stress resultants) for the

FG beam problem are defined as

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

N � ∫
A
σx · 1dA

M � ∫
A
σx · (z − zc)dA

P � ∫
A
σx · (~g(y, z) − ~gc)dA

~Q � ∫
A
τxz · 1dA

Rz � ∫
A
τxz · [z~g(y, z)

zz
]dA

Ry � ∫
A
τxy · [z~g(y, z)

zy
]dA

(24)

where N, M and ~Q are, respectively, the membrane force, the

moment and the shear force well known in Engineering, P is

called the higher-order moment, Rz and Ry are two higher-

order shear forces in the present work which are different

from the Rz in the theory for beams with rectangular cross-

section (Geng et al., 2017; Pei et al., 2019). It should be noted

that the three factors, i.e., 1, z and ~g(y, z), are extracted from

the three terms in Eq. 18, respectively.

TABLE 3 Dimensionless maximum transverse deflections w (0)* 100E1R
3/q0L

3.

L/R k Present LBT Huang (Huang, 2020) TBT (KT = 6/7)

5 0.0 1.425823 1.425823 1.425823

0.2 1.514111 1.508403 1.497451

0.5 1.637216 1.623813 1.597321

1.0 1.819026 1.795627 1.746371

2.0 2.109049 2.075743 1.993384

5.0 2.627367 2.603396 2.486530

10 0.0 1.583731 1.583731 1.583731

0.2 1.655691 1.652837 1.647360

0.5 1.757217 1.750515 1.737269

1.0 1.910456 1.898756 1.874128

2.0 2.166210 2.149556 2.108377

5.0 2.676706 2.664721 2.606288
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3.2 Constitutive relations

Substituting Eq. 22 into Eq. 24 and making use of Eq. 20,

the uncoupled constitutive relations of the FG beam expressed

by generalized stresses and strains are

⎧⎪⎪⎪⎨⎪⎪⎪⎩
N � B0 · �ε
M � B2 · κ
Q � KsBs · Γ
P � ηB2 · Γ′

(25)

with

⎧⎪⎪⎪⎨⎪⎪⎪⎩
Q � ~Q + Rz + Ry

Ks � Kz + ξz + ξy

Bs � ∫
A
G(r)dA

(26)

and

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

Kz � ( 1
Bs
)∫

A
G(r) · [1 + z~g(y, z)

zz
]dA

ξz � ( 1
Bs
)∫

A
G(r) · [1 + z~g(y, z)

zz
] · [z~g(y, z)/zz]dA

ξy � ( 1
Bs
)∫

A
G(r) · [z~g(y, z)

zy
]2

dA

η � ( 1
B2
)∫

A
E(r) · [~g(y, z)]2dA

(27)
where Bs is the shear rigidity, Kz, η, ξz and ξy are the four

non-dimensional rigidity coefficients, and Ks is like the

shear coefficient KT in TBT. It is interesting to see that, the

four of Eq. 25 are respectively related to stretching, bending,

shearing and higher-order bending which are in the decoupling

form (Pei et al., 2018). Besides, these four coefficients will vary

with the shape of the cross-section and the power-law

exponent k.

3.3 Calculation of the non-dimensional
rigidity coefficients

By the way, the higher-order non-dimensional rigidity

coefficients η, ξz and ξy are relatively small which have been

proved in the theory for FG beams with rectangular cross-section

(Pei et al., 2018; Pei et al., 2019), and this property still need to be

verified in the present work.

Since the explicit expression of g (y,z) have already been

obtained in Eq. 16, the non-dimensional rigidity coefficients

in Eq. 27 are derived in the following form

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

Kz � R2

R2 − λ
− 4

3(R2 − λ)
B2

B0

ξz � λR2

(R2 − λ)2 − 4R2 − 5λ

3(R2 − λ)2 B2

B0

ξy � λ

3(R2 − λ)2 B2

B0

η � λ2(R2 − λ)2 +
−6λ∫R

0
r5H(r)dr + ∫R

0
r7H(r)dr

9(R2 − λ)2∫R

0
r3H(r)dr

(28)

with the following integral

∫R

0
rnH(r)dr � (H2 −H1) Rn+1

k + n + 1
+H1

Rn+1

n + 1
with n

� 1, 2, 3 . . . (29)
For comparative purpose, aluminum is chosen as the

material-1 and zirconia is the material-2, of which the

material properties are listed in Table 1.

The non-dimensional rigidity coefficients in Eq. 28 are

calculated and listed in Table 2. It is very interesting to notice

the fact that the three higher-order rigidity coefficients (i.e. ξx, ξy and

η) in Table 3 are indeed small quantities for the FG beam with the

third-orderHSDmode, which are usually ignored in traditional LBT

(Huang et al., 2013; Huang, 2020). As for the shear coefficients Kz

and Ks, we know that Kz is the shear coefficients in traditional LBT

(Huang et al., 2013; Huang, 2020) and Ks is the shear coefficient

corrected by the algebraic sum of ξx and ξy. For the homogeneous

beam (when k = 0) with circular cross-section, there is no difference

between the shear coefficient in the present LBT and KT = 6/7 ˜
0.857 in TBT. It is worthmentioning that, according to the change of

material distribution, the shear coefficients Kz and Ks in LBT can be

adjusted automatically, but the shear coefficient KT in TBT cannot.

4 The lower-order uncoupled theory
for FG beam

4.1 Principle of virtual work

In the theory of elasticity, the principle of virtual work for

elastic body can be written as

δWElastic
int � δWElastic

ext or

∫
V
(σxδεx + τxzδγxz + τxyδγxy)dV � ∫

L
q(x) · δw(x)dx

(30)
where δWE

int is the virtual deformation energy and δWE
ext is the

external virtual work, q(x) is the distributed load with respect to

x-coordinate.
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On the other hand, according to the generalized strains and

stresses of the FG beam, the principle of virtual work for FG

beams can be written as

0 � ∫
L
[Nδ�u′ +Mδϕ′ + Qδ(ϕ + w′) + Pδ(ϕ′ + w″)]dx

− ∫
L
q(x) · δw(x)dx (31)

Noticing Eqs. 21–24 andmaking use of the orthogonal properties

Eq. 20, it is easy to prove the equivalence of Eq. 30 and Eq.(31). That is

to say that the principle of virtual work of FG beam is variationally

consistent with the one of elastic body which will lead to the HBT.

However, considering the characteristic of the small

parameter η in Table 2 and ignoring the virtual deformation

energy caused by high-order bending moment P, Eq. 31 will

degenerate into an approximate form which is

0 � δWBeam
int − δWBeam

ext

� ∫
L
[Nδ�u′ +Mδϕ′ + Qδ(ϕ + w′)]dx − ∫

L
q(x) · δw(x)dx

(32)

4.2 Modified uncoupled LBT for FG beam

Via integration by parts, Eq. 32 yields

0 � [Nδ�u]|L0 + [Mδϕ]∣∣∣∣L0 + [Qδw]|L0 − ∫
L
N′δ�udx − ∫

L
[M′ − Q]

·δϕdx − ∫
L
[Q′ + q(x)] · δwdx (33)

From Eq. 33, the equilibrium equations are obtained as

⎧⎪⎨⎪⎩
δ�u: N′ � 0
δϕ: M′ − Q � 0
δw: Q′ + q(x) � 0

(34)

And the corresponding BCs (e.g. at the end of x = x0) are

⎧⎪⎨⎪⎩
given N|x�x0 or �u|x�x0
given M|x�x0 or ϕ

∣∣∣∣x�x0
given Q|x�x0 or w|x�x0

(35)

It can be seen from Eq. 34 that, equilibrium equations are

frame independent, and the stretching, bending, higher-order

bending are reciprocally uncoupled in the present framework

FIGURE 4
The normal strain and its decomposition for k = 0.
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with the help of the definitions of neutral point and

generalized displacements, i.e., Eq. 6 and Eq. 8. In contrast,

due to the coupled constitutive relations, the equilibrium

equations will inevitably be coupled between bending and

tension for the higher-order theories in (Aydogdu and Taskin,

2007; Thai and Vo, 2012).

Making use of Eq. 23 and Eq. 25, in terms of the generalized

displacements, the governing equations of the variationally

approximated lower-order theory are

⎧⎪⎪⎨⎪⎪⎩
B0�u″(x) � 0
B2ϕ‴ + q(x) � 0
B2ϕ″ − KsBs(ϕ + w′) � 0

(36)

As we can see, the first of Eq. 36 is the separately governing

equation for stretch. Using the second of Eq. 36 to eliminateϕ, in terms

ofw, the third of Eq. 36 yields the governing equation for deflection as

B2w
(4) � q(x) − B2

KsBs
q″(x) (37)

After manipulations, it is not difficult to obtain the

rotation as

ϕ � −w′ − B2

KsBs
(w‴ + 1

KsBs
q′(x)) (38)

Eq. 35 provides three pairs of different boundary

conditions for Eq. 34. Among them, the first pair (2 in

total) is also individually responsible for stretch governed

by the first of Eq. 36 -a second-order ODE, while the last two

pairs (4 in total) are individually for bending governed by Eq.

37 -a fourth-order ODE. Different from the coupled

governing equations in (Huang, 2020), the present theory

has concise mathematical form and clear physical meaning.

Noticing that Eq. 34 and Eq. 35 are derived from the

approximate principle of virtual work Eq. 32, compared

with the variationally consistent HBT (Pei et al., 2018),

the present LBT will bring great convenience to the

calculation due to the reduction of the differential order

of the governing equation.

FIGURE 5
The normal strain and its decomposition for k = 5.
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5 Theoretical results and comparison

5.1 Solutions of a Clamped-Clamped FG
beam by present LBT

In this section, the static bending problem of the FG beam

will be studied to demonstrated the validity and accuracy of the

present LBT. Considering the Clamped-Clamped (C-C)

supported FG beam subjected to uniformly distributed

load (q(x) = q0), based on Eq. 35, the C-C BCs can be

expressed by

x � −L/2:
⎧⎪⎨⎪⎩

�u � 0
ϕ � 0
w � 0

andx � L/2:
⎧⎪⎨⎪⎩

�u � 0
ϕ � 0
w � 0

(39)

Since Eqs. 37, 38 are in the same form as the governing

equations of lower-order theory for homogeneous beams

(Duan and Li, 2016b), it is convenient to obtain the

theoretical solutions expressed as

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
w � q0x

4

24B2
+ d3x

3 + d2x
2 + d1x + d0

ϕ � −q0x
3

6B2
− q0x

KsBs
− 3d3x

2 − 2d2x − d1 − 6d3B2/KsBs

(40)

with

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

d0 � q0L
2(KsBsL

2 + 48B2)
(384KsBsB2)

d1 � 0

d2 � −q0(KsBsL
2 + 24B2)

(48KsBsB2)
d3 � 0

(41)

5.2 Comparison of the transverse
deflections

In order to illustrate the correctness of the calculation results in

this paper, the comparison of dimensionless maximum transverse

FIGURE 6
The normal stress and its decomposition for k = 0.
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deflections w (0)*100E1R
3/q0L

3 by present LBT, by Huang (Huang,

2020) and by TBT with KT = 6/7 are listed in Table 3.

In addition, for the case when L/R = 5 and k = 0 or 5, the

dimensionless transverse deflections w(x)* 100E1R
3/q0L

3 are

compared, as shown in Figure 3.

It can be seen from Figure 3 that the results are the same for a

homogeneous beam (i.e., k = 0). For the FG beam when k = 5, the

deflection obtained by the present LBT is slightly larger than that

obtained by Huang, and is also larger than that obtained by TBT.

5.3 Comparison of the normal strains and
stresses

The fact is that the bidirectional warping effect on the

cross-section can be described based on the present LBT

which is not taken into consideration in TBT because of

the rigid cross-section hypothesis and can only be

described in z-direction for beams with rectangular cross-

section because of the one-variate warping function g(z). In

view of this, it is very interesting to study the warping effect on

FIGURE 7
The normal stress and its decomposition for k = 5.

FIGURE 8
The non-dimensional radial shear strain.
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the circular cross-section through the bidirectional warping

function g (y, z).

Considering the cross-section of the FG beam with L/R =

10 at x = 0, the normal strains are described by the present LBT

for k = 0 and k = 5 are shown in Figure 4 and Figure 5,

respectively.

It can be seen from Figure 4 and Figure 5 that the normal

strains are both symmetric about the z-axis and anti-

symmetric about the y-axis, and this characteristic can also

be found in radial shear strain and stresses (or in Figure 8 and

Figure 9). It can be found from Eq. 21 that, in the pure bending

problem, the normal strains are composed of two parts,

i.e., the linear part and the warping part. Because the

warping part is much smaller than the linear part, the

normal strains are mainly determined by the linear part.

The warping part obeys the variation law of cubic function

in z-direction, and is significantly affected by the power-law

exponent k. By comparing Figure 4 and Figure 5, it can be seen

that there is an obvious transition area of material properties

on the cross-section when k = 5, which leads to a more obvious

difference between tensile and compressive deformation in

the warping part of the normal strain.

Meanwhile, the normal stresses are described by the present

LBT for k = 0 and k = 5 are shown in Figure 6 and Figure 7,

respectively.

It can be seen from Figure 6 and Figure 7 that the stress

distribution is obviously affected by the power-law

exponent k. Compared with the results for k = 0, when

k = 5 the normal stress is obviously eased, and the

transition regions of tensile and compressive stresses

move to the upper and lower boundaries respectively.

Meanwhile, the warping parts of normal stresses have

little effect on the normal stress distribution, and the

warping part is also eased for k = 5.

5.4 Comparison of the radial shear strains
and stresses

Since the shear stress free condition on the outer

lateral surface is adopted in the HSD model, the radial

shear strain and stress state on the cross-section need to

be discussed.

Based on Eq. 12, the non-dimensional radial shear strain and

stress can be expressed as

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩
γxr ·

R2 − λ

6R3(ϕ + w′) � (z
R
)[1 − (r

R
)2]

τxr · R2 − λ

6G1R
3(ϕ + w′) � (z

R
)[1 − (r

R
)2] · [(G2

G1
− 1)(r

R
)k

+ 1]
(42)

Obviously, according to the first of Eq. 42, the non-dimensional

radial shear strain on cross-section of FG beam is independent of k,

which is shown in Figure 8. The peaks of the radial shear strain

appear near the centroid of the upper and lower semi-circles. In

addition, the non-dimensional radial shear stresses on cross-section

of FG beam for k = 0 and 5 are shown in Figure 9.

It can be seen from Figure 8 and Figure 9 that the radial shear

strain and stresses are free on the boundary of the cross-section.

This further verifies the rationality of the HSDmodel. In Figure 9,

compared with radial shear stress for k = 0, the peaks of the radial

shear stress move to the upper and lower boundaries for k = 5,

respectively.

FIGURE 9
The non-dimensional radial shear stresses for k = 0 and k = 5.
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6 Conclusion

In this paper, the modified uncoupled LBT based on the

third-order HSD model has been established for FG beams

with circular cross-section via the asymptotic principle of

virtual work. The pure bending problem of the C-C FG beam

has been studied, and the accuracy and effectiveness of the

present uncoupled LBT can be confirmed by comparing the

results with those calculated by the TBT and the

coupled LBT.

There are three main outcomes of the investigation listed as

follows:

1) The nonphysical coupling between bending and stretch has

been removed in the present theory.

2) The bidirectional warping function of the third-order

HSD model that satisfied the shear stress free condition

on the boundary of circular cross-section has been

derived.

3) The effects of shear, warping and stress mitigation acting on

the cross-section have been described graphically.

The current idea can be extended to the uncoupled lower-

order and higher-order theories for FG beams with elliptic or

thin-walled cross-section. The study on these topics will be

reported elsewhere.
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