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Model updating based on intelligent algorithms has achieved great success in

structural damage detection (SDD). But the appropriate selection of objective

functions remains unclear and becomes an obstacle to applying themethods to

real-world steel structures. In this paper, a multi-objective identification

method based on modal feature extraction and linear weight sum was

proposed, and the best weight values to gain the best solution were also

determined. A hybrid particle swarm optimization (HPSO) was selected as a

solver to update structural parameters for accurate SDD results. First of all, six

single objective functions based on modal feature extraction were considered,

and numerical simulations show that the one based on MTMAC indicator

exhibits certain superiority over the other. In order to provide a fair

comparison among different objective functions, a quantified indicator

named damage vector consistency (DVC) is also defined, which describes

the consistency between identified result and the assumed one. After that, a

multi-objective identification method is formulated by linearly combining an

MTMAC-based objective function and another selected single objective

function. Different weight values were also investigated to find out the best

solution for accurate SDD. Three numerical simulations were conducted,

including a simply-supported beam, a two-story steel frame, and a 31-bar

plane truss. Their SDD results verify the applicability of the proposed multi-

objective optimization method. Some relative discussions are also described in

detail.
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Introduction

During the past decades, structural health monitoring (SHM)

has received rapidly increasing attention because it can help to

protect structures from severe damage (Hou and Xia, 2021). An

integral SHM system contains a lot of different kinds of sensors

that should be installed on structures to record various types of

responses (Yi et al., 2015, 2017; Xiong et al., 2021). Nowadays

civil structures such as Guangzhou New TV Tower, Tsing Ma

Bridge, and Hong Kong-Zhuhai-Macao Bridge are equipped with

advanced SHM systems to ensure the serving structures are in

healthy condition (Miguel et al., 2009; He et al., 2022). Structural

damage detection (SDD) is an important issue in the SHM field,

and it is the ultimate goal of SHM. There have been lots of SDD

methodologies proposed to extract damage-sensitive features

from the recorded responses and identify structural damage

ultimately.

A comparison between two different structural states is

required for SDD results (Worden et al., 2007). But actually,

it is hardly possible to discover anomalies directly from the

measured responses. Therefore, some damage-sensitive

features should be previously extracted to obviously show

changes due to damage (Lin et al., 2017). The application of

damage-sensitive features for SDD can be divided into two

categories: model-free and model-based identification methods.

The model-free identification methods aim to detect

variation in damage-sensitive features and then identify

damages based on the variation. Modal feature extraction has

been widely used to generate damage-sensitive indicators.

Changes in natural frequencies (Cawley and Adams, 1979)

were verified effective to be effective in detecting damage in

two-dimension structures. However, it possibly becomes invalid

because two scenarios with symmetrical damages in a

symmetrical structure would give the same changes in natural

frequencies. So, indicators based onmode shapes emerged, which

are more sensitive to damage location (West, 1986). After that,

more indicators based on the derivation of mode shapes and

natural frequencies, such as mode shape curvatures (Pandey

et al., 1991), modal flexibility (Pandey and Biswas, 1994), and

modal strain energy (Shi et al., 1998; Zhang et al., 2022), were

subsequently presented for better SDD results. Moreover,

damage-sensitive features extracted from recorded responses

based on statistical methods or special transformations have

also been developed. The principal component analysis is a

typical statistical technique, and the error between the

reconstructed response, a combination of the first few

principal components, and the original one is verified

available to recognize the onset of damage (Boe and Golinval,

2003; Yan et al., 2005). Methodologies based on higher statistical

moments show their capability to distinguish nonlinear damage

from responses affected by environmental and operational

conditions (Yu and Zhu, 2015, 2017). Furthermore, methods

of time series analysis model are also feasible in model-free

identification (Yu and Zhu, 2015; Yu and Lin, 2017). Besides,

the variation of translated coefficients according to signal

processing methods, such as wavelet transformation (Hou

et al., 2000), wavelet package transform (Law et al., 2005),

Hilbert-Huang transformation (Yang et al., 2004), and

empirical mode decomposition (Xu and Chen, 2004), have

also been introduced to SDD. Recently, a widespread interest

in feature extraction based on Bayesian inference has also been

developed (Mu and Yuen, 2017). However, the model-free

identification method is usually only used to determine the

occurrence of damage because it can hardly quantify or locate

structural damage. On the contrary, the model-based

identification method can effectively identify damages’ extent

and location so that it becomes more and more popular in SDD.

The model-based identification method aims at minimizing

the discrepancy of damage-sensitive features between the target

structure and the numerical one so that the latter can serve as a

surrogate to reflect structural health condition. In this way, the

SDD problem is usually simplified as an optimal problem

mathematically, and the corresponding approach is named

model updating. A typical model updating contains three

major parts: damage-sensitive features extraction, optimization

algorithm selection, and objective function definition. The first

part is the same as that mentioned in the above paragraph. In the

second part, a proper optimization algorithm should be selected

to do repeated iterations until an accurate SDD result is gained.

There are now three major types of optimization algorithms:

sensitivity analysis, intelligent algorithm, and Bayesian theory.

The sensitivity analysis usually involves the ill-conditioned

problem because of the sensitivity matrix’s singularity and

noise involvement (Jaishi and Ren, 2006). It leads to

inaccurate and unstable SDD results. To improve the method,

various types of regularization methods, such as Tikhonov

regularization (Lu et al., 2017), truncated singular value

decomposition (Chen, 2008) and sparse regularization (Hou

et al., 2018), have been introduced. Bayesian theory is firstly

presented by James (Beck et al., 2001). Parameters and responses

in this method are all considered uncertain, which is verified

effective in dealing with SDD problems involving uncertainty,

such as model error, noise contamination and uncertain supports

(Lu et al., 2020, 2021). The SDD results based on Bayesian model

updating are probabilistic, and it is a significant difference

compared with those determined model updating such as

sensitivity analysis. A great challenge in Bayesian model

updating is the calculation of marginal probabilities, which

involves high-dimension integration (Cheung and Beck, 2009).

Methods such as Metropolis-Hastings algorithm (Beck and Au,

2002), transitional Markov chain Monte Carlo method (Ching

and Chen, 2007), hybrid Monte Carlo simulation (Cheung and

Beck, 2009) and so on, have made improvement. Moreover,

robust Bayesian compressive (Huang et al., 2014), hierarchical

Bayesian model updating (Behmanesh et al., 2015), sparse

Bayesian learning (Hou et al., 2019) and Robust sparse
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Bayesian learning (Wang et al., 2022) have been developed to

improve the SDD efficiency as well. However, the complicated

determination of marginal probabilities and low calculation

efficiency remains challenge and restrict the method’s

application in complex structures. Finally, the intelligent

algorithm has been popularly applied to SDD because of its

simplicity and outstanding performance in use. The intelligent

algorithm is a trial-and-error algorithm. Different kinds of

intelligent algorithms (Yu and Li, 2014; Chu-Dong et al.,

2016; Chen and Yu, 2018; Ding et al., 2019a, 2022; Chen

et al., 2019; Minh et al., 2022) have been proposed and

achieved successful application in SDD. The basic procedures

of an intelligent algorithm include candidate generation,

candidate updating, and stop criterion. However, stable and

efficient optimal strategies are significant to improve the

algorithms. The first commonly used strategy introduces new

updating strategies into the original algorithm in order to make it

much more capable for specific SDD cases (Rao et al., 2004; Liu

et al., 2005; Ding et al., 2018). The second one is to formulate a

hybrid algorithm combined with two or more different

algorithms so that each can show its advantages (He and

Hwang, 2006; Baghmisheh et al., 2012; Ding et al., 2019b).

The final one is a multi-step algorithm that different

algorithms are applied to different SDD levels in order to

accelerate the solving process with satisfactory accuracy

(Perera and Ruiz, 2008; Seyedpoor, 2012). In this paper, a

hybrid algorithm proposed by Chen and Yu (2018) is utilized

to deal with SDD.

As the critical component, the objective function definition is

essential in connecting the damage-sensitive features and the

optimization algorithms. The objective function is essentially a

calculation of distance. It measures the difference between the

numerical model and the target one by determining the

discrepancy of the damage-sensitive features. And SDD results

will be gained if the discrepancy is minimized. The single

objective function is commonly used in SDD. Modal

parameters, such as frequencies and mode shapes, have been

widely applied to define objective functions based on Euler

distance or cosine distance (Chen and Yu, 2018; Chen et al.,

2019). Furthermore, modal assurance criterion (MAC),

coordinate modal assurance criteria (COMAC) (Lieven and

Ewins, 1988), multiple damage location assurance criterion

(MDLAC) (Messina et al., 1998), total modal assurance

criterion (TMAC) (Gao and Spencer, 2002), modified total

modal assurance criterion (MTMAC) (Perera and Torres,

2006) and so on have been successfully applied for objective

function definition and showed good performance in SDD.

However, the single objective functions sometimes converge to

an incorrect solution because the noise-contaminated response

brings errors in the extracted features. A feasible solution to deal

with this problem is using multi-objective optimizations (Jung

et al., 2010). On the one hand, feasible solutions based on multi-

objective optimization are less than that based on single-objective

optimization. On the other hand, the Pareto-optimal solutions

provide a higher possibility of capturing the true solution. Perera

et al (2007) investigated the multi-objective optimization based

on niched Pareto genetic algorithm (NPGA), and their SDD

results showed the feasible application of modal flexibility in

multi-objective optimization. After that, they also firstly

compared capability of several evolutionary techniques

utilizing multi-objective optimization (Perera et al., 2009).

Furthermore, the combination of dynamic and static

measurements in multi-objective function definition also

showed enhancement of prediction in SDD (Perera et al.,

2013). In the work of Cha and Buyukozturk (2015), they

proposed a hybrid multi-objective optimization based on

modal strain energy and successfully applied the method for

detecting minor damages in three-dimensional (3-D) steel

structures. However, the appropriate selection of objective

function still remains unclear in SDD and becomes an

obstacle for the application of the methods to real-world steel

structures.

In this paper, a multi-objective identification method based

on modal data and linear weight sum was proposed. First, a

comparison of SDD results among six single objective functions

based on modal feature extraction was conducted, and the most

accurate one was determined for multi-objective function

definition. Then, the best weight values to combine two

different objective functions into an excellent multi-objective

function was also determined. In this way, the most suitable

objective function for SDD of steel structures can be obtained and

it also provides guidance in selecting a proper objective function.

A HPSO is selected to solve SDD problems, and a quantified

indicator named damage vector consistency (DVC) is also

defined to make a fair comparison among different SDD

methods. Numerical simulations, including a simply-

supported beam, a two-story steel frame, and a 31-bar plane

truss with several assumed damage cases, are performed to verify

the proposed methods’ effectiveness.

This paper is organized as follows. Section one is devoted to

the literature review, containing an introduction of the SDD

problem and a detailed description of model updating in SDD.

The basic theory of SDD is briefly described in section two. A

detailed description of the proposedmulti-objective optimization

method and the proposed quantified indicator are also presented

in this section. Numerical simulation of a simply-supported

beam is presented in section three, and some factors, such as

weight values and noises, are also discussed based on the beam

model. In section four, two two-dimensional structures,

including a frame and a truss, are further investigated to show

the method’s applicability in different structures. Finally, some

conclusions are drawn and discussed in section five.
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Theoretical background

Basic theory of model updating

Based on the finite element (FE) model theory, the analytical

structure is divided into several elements with specific material

and physical parameters. And SDD tries to figure out the changes

in the elemental parameters. Several methods have been

proposed to describe structural damage; among them, the

reduced stiffness method is widely used because of its

simplicity and specific physical meaning. In the method, a

damage factor vector α is introduced in a prior, and then the

damaging effect on structural stiffness K can be therefore

described as a linear combination of element stiffness matrix,

which is mathematically shown as follows,

K(α) � ∑Nele

i�1
(1 − αi)Ki (1)

where Nele is the number of elements. And αi, the damage factor

component at the ith element, ranges from 0 to 1. Especially, αi =

0 means the ith element is healthy. Ki represents the ith element

stiffness matrix. Combining with the reduced stiffness method,

the model updating is formulated as follows,

αopt � argmin
α

J(α) (2)

in which αopt is the optimal damage factor vector, and J(α) is the

objective function.

Hybrid particle swarm optimization
(HPSO)

PSO is an intelligent algorithm and also a population-based

and self-adaptive search technique. Kennedy and Eberhart

(1995) formulated the original PSO mathematically. It has

shown well-performance in SDD. The updating process of

PSO is formulated as below,

vk+1i � w · vki + c1 · r1 · (xk
ib − xk

i ) + c2 · r2 · (xk
g − xk

i )
xk+1
i � xk

i + vk+1i

xk+1
ib � {xk+1

i , J(xk+1
i )< J(xk

ib)
xk
ib, otherwise

, xk
g �

⎧⎨⎩ xk+1
g , J(xk+1

g )< J(xk
g)

xk
g, otherwise

(3)
in which the subscript i and the superscript k mean the ith

particle and the kth iteration, respectively; v and x are the velocity

and position of the particle, respectively.W is an inertia weight; r1
and r2 are two uniformly distributed numbers ranging from 0 to

1; c1, c2 are learning factors named cognitive and social

coefficients, respectively; xib is the best-known position of

individual particle and xg is the best-known position of the

entire swarm. J(α) is the objective function.

The PSO randomly select a specific number of candidate

solutions from the feasible region and then updates them

based on Eq. 3 until the stop criterion is met. However, the

original PSO easily converges to a local minimum in some

SDD cases. HPSO is one of the improving methods combining

the PSO and improved Nelder-Mead optimization. The

effectiveness and efficiency of HSPO both in numerical

simulations and experimental tests have been verified in the

paper of Chen and Yu (2018). Therefore, the HSPO is selected

as the optimization method in this paper.

Multi-objective identification method

In the multi-objective identification method, the SDD is

achieved by minimizing more than one single objective

function simultaneously. So, the multi-objective function is

mathematically formulated as,

J(α) � [J1(α), J2(α), . . . , J3(α)] (4)

The solution to the multi-objective optimization problem is

more than one because a single point cannot be an optimum for

all the objectives. Instead, a set of alternative solutions will be

gained, and the best one should be selected from them. There are

different methods to solve multi-objective damage identification

problems, such as linear weighting sum method, weighted min-

max method, niched-Pareto genetic algorithm, strength Pareto

evolutionary algorithm, and so on. This paper considers only two

single objective functions because more than three objectives will

be computationally too expensive.

The linear weighting sum method (LWS) is applied to the

proposed method. Based on LWS, a single objective is formulated

based on the linear combination of two objectives, and two

weighting factors, w and (1-w), are therefore introduced. The

aggregating function is formulated as,

J(α) � wJ1(α) + (1 − w)J2(α) (5)

The selection of weights creates a balance between

different objectives, and their relative value also shows the

relative importance of the objectives. However, the choice of

weights is arbitrary because the importance of each objective

is unknown in advance. By varying the weights, a set of

Pareto-optimal solutions is obtained. After that, the

Pareto-optimal solutions are compared with each other

based on damage vector consistency (DVC) which will be

described below.

Six single objective functions based on modal feature

extraction are selected in this paper. The first one is based on

frequency change rate (FCR), which is shown as,

SObj1(α) � ∑nM
i�1
FCR(fi, fi(α)) � ∑nM

i�1

∣∣∣∣∣∣∣∣f
m
i − fi(α)

fm
i + fi(α)

∣∣∣∣∣∣∣∣ (6)
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in which fi and fi(α) are the ith targeted and the ith calculated

frequency, respectively. nM is the selected number of modes. The

second one is formulated by the MAC shown as,

SObj2(α) � ∑nM
i�1
[1 −MAC(φi,φi(α))]

� ∑nM
i�1
[1 − (φT

i φi(α))2(φT
i φi)φT

i (α)φi(α)
] (7)

in which φi and φi(α) are the ith targeted and the ith

calculated modal shape, respectively. The third one is

defined based on the TMAC, and its mathematical

expression is shown as,

SObj3(α) � 1 − TMAC � 1 −∏nM
i�1

MAC(φi,φi(α)) (8)

As seen above, only the frequency or the modal shape is

considered in an objective. In order to improve the application of

the objectives in different kinds of damage cases, both

frequencies and mode shapes should be further contained.

Therefore, the TMAC can be improved by introducing the

frequency, and the fourth single objective function is

subsequently formulated as,

SObj4(α) � 1 −MTMAC � 1 −∏nM
i�1

MAC(φi,φi(α))
(1 + ∣∣∣∣∣fi−fi(α)

fi+fi(α)
∣∣∣∣∣) (9)

in which |fi−fi(α)
fi+fi(α)| is regarded as a penalty function due to

the differences between targeted and calculated frequencies.

The MTMAC varies from 0 to 1, and MTMAC equaling to

1 means the corresponding α is the same as the assumed

one. Furthermore, the modal flexibility defined by

frequencies and mode shapes is also selected as a damage

indicator and therefore formulates the fifth objective

function shown as,

SObj5(α) � 1 −MACFLEX � 1 −∏nM
i�1

(FT
i Fi(α))2(FT

i Fi)FT
i (α)Fi(α) (10)

in which Fi and Fi(α) represent the ith targeted and the ith

calculated modal flexibility, respectively. And Fi = (φi φi
T)/fi

2.

FIGURE 1
Finite element model of simply-supported beam.

FIGURE 2
SDD results in case 1 (A) NM = 3. (B) NM = 5.
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Indicator defined by the MDLACmeasures the differences in

mode shapes between the undamaged and damaged structure. It

not only can well predict damage location but also determine

damage extent. Therefore, the final objective function is defined

by MDLAC, and it is shown as,

SObj6(α) � ∑nM
i�1
[1 −MDLAC(Δφi,Δφi(α))]

� ∑nM
i�1
[1 − (ΔφT

i Δφi(α))2(ΔφT
i Δφi)ΔφT

i (α)Δφi(α)
] (11)

FIGURE 3
SDD results in case 2 (A) NM = 3. (B) NM = 5.

FIGURE 4
SDD results in case 3 using the first five modes.

TABLE 1 DVC100 values of SDD results in case 3 based on w = 0.5.

J1(α) J2(α) case 2 case 3

3 modes 5 modes 3 modes 5 modes

SObj4 SObj1 32% 85% 20% 71%

SObj4 SObj2 4% 44% 29% 84%

SObj4 SObj3 7% 40% 44% 96%

SObj4 SObj5 11% 52% 31% 87%

SObj4 SObj6 60% 93% 97% 84%
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in which Δφi equals that φi minus φi(α).

Damage vector consistency (DVC)

In order to provide a quantificational description of

identification accuracy, the DVC is presented describing the

consistency between the optimal and the assumed damage

factor vector, represented by αopt and αass respectively. The

formulization of the DVC is shown as.

DVC �
∣∣∣∣∣αTopt × αass

∣∣∣∣∣∣∣∣∣αopt∣∣∣∣2 × |αass|2
× 100% (12)

When a vector is closely equaled to another one, the value of DVC

approximately equals to 100%. It means the SDD result is accurate

and the correspondingmethod has great ability in dealingwith SDD.

Intelligent algorithms sometimes converge to a local optimal in

a single calculation. In order to obtain a stable SDD result, an

identification run of one damage case usually contains several

times of calculations. So, DVC100, the percentage of DVC

equaling to 100% in a run, is defined to show how stable SDD

results are in repeated calculations. And its value is equaled to,

DVC100 � Nacu

Nrun
(13)

in which, Nacu and Nrun mean the number of calculation times

with DVC equaling to 100% and the total calculation times in a

run, respectively.

Numerical verifications of simply-
supported steel beam

As shown in Figure 1, a simply-supported beam structure

model is considered. The beam has the length of 3 m and is

divided into 10 elements equally. The material parameters are

simulated as Young’s modulus 210 GPa and density 7,850 kg/m3.

The area and the moment of inertia of the cross-section are A =

1.164e-3 m2 and I = 7.6165e-7 m4, respectively. The first five

frequencies of the structure are 23.0917, 92.3762, 207.9352,

370.0772, and 579.5677 Hz.

Three different kinds of damage cases, including single

and multiple damages, are assumed. Three assumed cases are

shown as, case 1: 20%@5; case 2: 20%@3, 20%@5; case 3: 20%

@3, 40%@5, 20%@10; The symbol 20%@5 indicates that the

stiffness reduction of the 5th element is 20%, similar meaning

for other cases. The SDD based on intelligent algorithms

sometimes converges to a local optimal in a single

calculation. In this paper, 100 times of calculations based

on HPSO is regarded as a run of SDD, and 10 runs

are conducted to show the SDD results of different damage

cases.

Comparison of SDD results based on
single objectives

In this section, the first three and five modes are considered

in the objectives definition to show the effect of NM on SDD

accuracy. The SDD results of case 1, utilizing the six different

single objectives, are shown in Figure 2. The fluctuation of the

DVC100 values due to a specific objective function is small,

which means DVC100 is an effective index to quantify the

accuracy of the SDD methods. Besides, DVC100 values show a

noticeable difference if the objective functions differ. Among all

TABLE 2 DVC100 values of SDD results in case 3 based on varying w and NM = 5.

J1(α) J2(α) NM w

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0

SObj4 SObj1 5 22% 57% 59% 57% 66% 71% 78% 78% 78% 78% 95%

SObj4 SObj2 5 32% 94% 92% 90% 91% 88% 87% 87% 84% 79% 95%

SObj4 SObj3 5 28% 100% 99% 98% 97% 96% 92% 90% 83% 78% 95%

SObj4 SObj5 5 30% 97% 97% 96% 94% 87% 92% 90% 91% 86% 95%

SObj4 SObj6 5 11% 79% 83% 83% 83% 84% 90% 92% 94% 96% 95%

FIGURE 5
Mean values of SDD results in case 3 based on (0.1*SObj4 +
0.9*SObj3).
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the selected single objectives, the SObj4 defined based on

MTMAC has the highest DVC100 value even if only the first

three modes are considered, and the SObj1 based on FCR comes

second. However, the other objectives have poor

DVC100 values, which means the accuracy of their SDD

results is far from enough. Also, it can be found that the

value of NM has only a slight effect on SDD accuracy of the

single damage cases because their mean DVC100 values are

almost the same.

However, the SDD results shown in Figure 3 of case 2 show a

little difference. A significant decline occurs in DVC100 when

only the first three modes are considered. It means the SDD

results based on the first three modes are less accurate than those

based on the first five. This is different from that in the single

damage case, indicating that more modes should be required for

accurate SDD in multi-damage cases. On the other hand, no

matter howmany modes are considered, the SObj4 defined based

on MTMAC exhibits certain superiority over the other objectives

as its DVC100 values are all greater than others.

Therefore, the first five modes are considered in case 3, and

the SDD results are shown in Figure 4. The results also provide

strong evidence that the SObj4 performs better than the other

objectives.

Verifications of the proposed method

Based on the above section, the best single objective among the

selected six is SObj4. Therefore, SObj4 is selected as J1(α) as shown in

Eq. 5, and the other five single objectives are regarded as J2(α)

alternatively. Firstly, the weight value of J1(α) is set to be 0.5, which

means equal importance for both objectives. Then, the

DVC100 values of SDD results for cases 2 and 3 are listed in

Table 1, which are calculated based on the 100 times of calculation

results. It can be seen that the DVC100 values only considered the

first three modes are pretty low. Moreover, it also means more than

three modes should be considered even in multi-objective

optimization. However, once the first five modes are considered,

the DVC100 values significantly increase. Under the conditions of

w = 0.5 and NM = 5, the multi-objective function combining

SObj4 and SObj6 is the best because DVC100 values based on it

keep a high value in both cases. However, the summation of

SObj4 and another single objective may lead to worse SDD

results than only SObj4, such as SObj4 plus SObj1. Therefore, the

weight in multi-objective optimization should be properly selected

for an accurate SDD result.

As the multi-objective function shown in Eq. 5, the weight value

w ranges from 0 to 1 to generate different solutions. Therefore, the w

varying from 0 to 1.0 at a regular interval of 0.1 is considered.

Specially, the multi-objective function reduces to single-objective

function when w equals to 0 and SObj4 when w equals to 1.

NM = 5 and the 100 times of calculation are used to determine

DVC100. The DVC100 values of SDD results in case 3 based on

varying w are listed in Table 2. Obviously, the combination of

SObj4 is able to improve the performance of the other five single-

objective functions as DVC100 values at the column of w = 0 in

Table 2 are significantly smaller than those at the other columns.

However, the increasing weight of SObj4 does not always increase

SDD accuracy but sometimes leads to a decline in DVC100 values

such as the combination with SObj2. Meanwhile, the combination of

SObj4 and SObj3 shows superiority over the other four multi-

objective functions. Its DVC100 value increases when the weight

value is smaller than 0.1 and then gradually decline. Hence, the

combination of SObj4 and SObj3 with w equaling to 0.1 provides the

best solution for SDD and the conclusion will be further verified in

the following two numerical simulations. The mean values of SDD

results in case 3 based on the best solution are shown in Figure 5. The

figure shows that the identified results without noise are highly

accurate, which means the best solution effectively shows the actual

structural damages.

As the SDD results based on SObj1 come second as shown in

the above section, the combination of SObj1 with the other five

objectives is also investigated using case 3. DVC100 values of the

SDD results in case 3 are listed in Table 3. The results show that

the combination of SObj1 and SObj5 provides the highest

DVC100 values, whether NM = 3 or NM = 5. It means the

solution from SObj1 plus SObj5 can be seen as the best

optimal for multi-objective identification. Furthermore, the

best weight for SObj1 is also investigated, and the results are

listed in Table 4. From the table, the combination of SObj1 and

TABLE 3 DVC100 values of SDD results in case 3 based on w = 0.5.

J1(α) J2(α) Case 3

NM=3 NM=5

SObj1 SObj2 29% 84%

SObj1 SObj3 28% 89%

SObj1 SObj4 20% 71%

SObj1 SObj5 87% 96%

SObj1 SObj6 84% 80%
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SObj5 with w = 0.1 and NM = 5 has the highest value of DVC100,

and the corresponding solution can be regarded as the best one

for multi-objective identification, and accurate SDD results can

be therefore gained.

The mean values of SDD result in case 3 based on (0.1*SObj1

+ 0.9*SObj5) are shown in Figure 6, in which Ass, Iden-3 and

Iden-5 mean assumed damage factor vector, identified results

based on NM = 3 and NM = 5, respectively. The identified

damages are almost equaled to assumed ones with a slight

error, whether NM = 3 or NM = 5.

From the above discussion, it can be found that the weight

value equaling to 0.1 both in LWS1(α) = w*SObj4(α) + (1-w)

*SObj3(α) and LWS2(α) = w*SObj1(α)+(1-w)*SObj5(α) can

provide the best solution for the multi-objective identification

problem.

Influences of measurement noises

In order to study the anti-noise performance of the proposed

method, noise is added into frequencies and mode shapes as well.

The formulation of noise contaminated in measured modal

parameters is formulated as follows,

rn � rcal(1 + EpNoise) (14)

where, rn and rcal are modal parameters with and without noise,

respectively. Ep is the noise level. Noise is a standard normal

distribution vector with zero mean value and unit standard

deviation. Case 3 is investigated with noise levels 1 and 2%. The

first five modes are considered here, and LWS1(α) and LWS2(α) are

both utilized with a weight equaling 0.1. The SDD results of case

3 with noise level 1 and 2% are shown in Figure 7. From the figures,

the identified extent of damage shows good accuracy both by

LWS1(α) and LWS2(α). When the noise level is 1%, the values of

DVC100 of identified results based on LWS1(α) and LWS2(α) are

95 and 99%, respectively, which shows not only the accuracy of the

SDD results but also the high stability among repeated calculations.

However, the DVC100 slightly decrease when the noise level

increase to 2%, and their values are 73 and 90%, respectively.

However, it can be observed that the noise contamination in

modal responses leads to a decline in accuracy because errors

occur in the damaged elements, and misjudgments also happen

to the undamaged elements such as elements 8 and 9. The reason is

TABLE 4 DVC100 values of SDD results in case 3 based on varying w.

J1(α) J2(α) NM w

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

SObj1 SObj5 3 93% 80% 72% 83% 87% 71% 58% 39% 20%

SObj1 SObj5 5 100% 99% 100% 98% 96% 96% 87% 70% 59%

FIGURE 6
Mean values of SDD results in case 3 based on (0.1*SObj1 +
0.9*SObj5)

FIGURE 7
SSDD results in case 3 with noise contamination (A) Noise level 1%. (B) Noise level 2%.
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that the noise contaminated in modal parameters would lead to a

slight shift of the optimal point of the objectives.

SDD of two-dimensional structures

A two-storey plane steel frame

A two-storey rigid frame structure is adopted to assess the

performance of the proposed method in this section. The

diagram of the structure is shown in Figure 8. The elastic

modulus and density of both beam and column are equal to

2.1 × 1011 N/m3 and 7850 kg/m3, respectively. The geometric

parameters of the column are I = 1.26 × 10−5 m4 and A = 2.98 ×

10−3 m2. And those of the beam are I = 2.36 × 10−5 m4 and A =

3.20 × 10−3 m2. The numbers in the box represent finite element

numbers, while others denote node numbers.

The frame structure is modeled by 18 two-dimension beam

elements with an equal length of 0.47 m. Four assumed cases are

shown as, case 1: 20%@8; case 2: 20%@15; case 3: 20%@8, 20%

@17; case 4: 40%@8, 20%@15, 20%@17; The mode shape is

measured along the vertical direction of components;

accordingly, the vertical direction of the beam and the

horizontal direction of the column are available. The multi-

objective functions LWS1(α) and LWS2(α) are both applied to

solve the SDD problems. The first five modes are considered in

this numerical simulation.

The DVC100 values of SDD results based on LWS1(α) and

LWS2(α) with w = 0.1 are shown in Table 5. It can be seen that

the two objectives can both accurately identify the damage in

single damage cases because their DVC100 values are relatively

high. However, the increase of damage element leads to a

decrease in DVC100 values. Furthermore, the LWS2(α)

shows a better performance in dealing with multiple damage

cases as its DVC100 value is higher than that of LWS1(α) in

cases 3 and 4.

Moreover, the mean values of all 100 times of calculations

for different damage cases are determined, and they are

plotted in Figure 9. It shows that the SDD results of all

four damage cases are closely equaled to their assumed

damage factor vectors. Although there are some

misidentifications in undamaged elements such as elements

13 and 14 in case 2, their values are insignificant compared

with the identified value in element 15 which is the actual

damaged element. Also, it can be found that SDD results based

on LWS2(α) are more accurate than those based on LWS1(α),

which means LWS2(α) exhibits superiority over LWS1(α) in

complex structures.

A 31-bar plane steel truss

A31-bar planar truss is used to illustrate the proposedmethods’

effectiveness further and is shown in Figure 10. The parameters of

the truss are as follows: elastic modulus E = 210GPa, density ρ =

7850 kg/m3, the area and the moment of the cross-section are A =

1e-4m2 and I = 8.3333e-10 m4, respectively. The geometrical

parameters of the truss are also shown in Figure 10 in detail.

There are 31 elements in the truss, each of which has four DOFs.

Damage cases are also assumed, including single and

multiple damages. Four assumed cases are shown as, case

1: 20%@15; case 2: 20%@15, 20%@30; case 3: 40%@2, 20%

@15, 20%@30; case 4: 20%@2, 20%@15, 40%@31; Only

LWS2(α) is applied to solve the SDD problems of the truss

as the comparison of LWS1(α) and LWS2(α) presented in the

above numerical simulation shows that the LWS2(α) has

better performance than LWS1(α) in deal with complex

structure.

The effect of NM = 7, NM = 15 and NM = 20 on SDD

accuracy is investigated, and the DVC100 values of SDD

results are listed in Table 6. From the table, it can be

found that only the DVC100 of case 1 keeps high values

compared with the other three cases. It means that the

FIGURE 8
Finite element model of two-storey rigid frame structure.
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TABLE 5 DVC100 values of SDD results based on LWS1 (α) and LWS2 (α) with w = 0.1.

Multi-objective optimization NM Case

1 2 3 4

LWS1(α) 5 85% 62% 52% 31%

LWS2(α) 5 84% 74% 58% 43%

FIGURE 9
SDD results of the two-storey plane steel frame.

FIGURE 10
Finite element model of 31-bar planar steel truss.

TABLE 6 DVC100 values of SDD results based on LWS2 (α) with w = 0.1.

Multi-objective optimization NM Case

1 2 3 4

LWS2(α) 7 59% 20% 7% 5%

15 75% 31% 21% 20%

20 49% 19% 5% 4%
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increase of elements would lead to more difficulty in accurate

SDD. However, the SDD results considering the first fifteen

modes are the most accurate, and some identification results

are plotted in Figure 11. Although errors in the damaged

elements and misjudgments in the undamaged elements can

still be observed in the figures, their values are small.

Therefore, the SDD results can satisfy the application

requirement and provide effective information for

structural repair.

Conclusion

In this paper, a multi-objective optimization method

based on modal feature extraction and linear weight sum

is proposed, and the effectiveness of the method is verified by

three different kinds of structures, including a simply-

supported beam, a two-story steel frame, and a 31-bar

plane truss. The hybrid particle swarm optimization

(HPSO) is selected as a solver to update the damage vector

factor. In order to find out the best single objectives based on

modal feature extraction, six single objective functions are

selected, and an index named damage vector consistency

(DVC) is also defined for a quantificational comparison.

Moreover, the proposed multi-objective identification

method based on a linear sum method also shows excellent

capability in SDD. Some conclusions can be summarized as

follows.

1) The SObj4 based on MTMAC is verified to be the best single

objective function in SDD compared with the other five

selected objectives. The SDD results based on SObj4 keep

the highest possibility of capturing an accurate solution. It

means that the SObj4 can be effectively applied to SDD

problems and provide accurate SDD results.

2) The defined DVC is an effective index that quantifies the

method’s accuracy in a single calculation. DVC100 is the

percentage of DVC values equaling 100%. It is useful to

quantificationally assess the accuracy of the SDD method

once more than one calculation is conducted for a

damage case.

3) The proposed multi-objective identification method based on

the linear sum method has good performance in SDD. The

investigation shows that LWS1(α) = w*SObj4(α) + (1-w)

*SObj3(α) and LWS2(α) = w*SObj1(α)+(1-w)*SObj5(α) can

both improve the SDD accuracy in different structures with

various damage cases. The numerical simulations further

show that the best solution can be gained from candidate

solutions when w = 0.1. Moreover, LWS2(α) performs better

than LWS1(α) in complex structures.
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FIGURE 11
SDD results of the plane steel truss.
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