
Influence of
doubly-hydrogenated oxygen
vacancy on the TID effect of MOS
devices

Guangbao Lu1,2, Jun Liu1,2, Qirong Zheng1,2 and Yonggang Li1,2*
1Key Laboratory of Materials Physics, Institute of Solid State Physics, HFIPS, Chinese Academy of
Sciences, Hefei, China, 2University of Science and Technology of China, Hefei, China

The total ionizing dose (TID) effect is one of themain causes of the performance

degradation/failure of semiconductor devices under high-energy γ-ray
irradiation. In special, the concentration of doubly-hydrogenated oxygen

vacancy (a case study of VoγH2) in the oxide layer seriously exacerbates the

TID effect. Therefore, we developed a dynamic model of mobile particles and

fixed defects by solving the rate equations and Poisson’s equation

simultaneously, to reveal the contribution and influence mechanisms of

VoγH2 on the TID effect of MOS devices. We found that VoγH2 can directly

and indirectly promote the formation of V+
oγ and VoγH+, respectively, which can

increase the electric field near the Si/SiO2 interface and reduce the threshold

voltage of silicon MOS devices accordingly. Controlling VoγH2 with a

concentration below 1014 cm−3 can suppress the adverse TID effects. The

results are much helpful for analyzing the microscopic mechanisms of the

TID effect and designing new MOS devices with high radiation-hardening.
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Introduction

More and more new semiconductor materials are widely used as the core electronic

components of sensors, detectors, radar and so on. In extreme service environments,

semiconductor devices are inevitably affected by harsh radiation effects. All kinds of high-

energy particles will cause serious ionization or displacement damage to semiconductors,

then lead to the degradation/failure of the electrical performance of semiconductor

devices, and pose adverse effects on the safety and lifetime of the entire electronic systems

(Benton and Benton, 2001).

As early as 1964, Hughes and Giroux conducted a preliminary study (Hughes and

Giroux, 1964) on the performance degradation of semiconductor devices (MOS) under

the total ionizing dose (TID). They found that TID-induced performance degradation is

due to the additional charge generated in the oxide layer (SiO2) rather than on the surface.

In subsequent decades, a large number of experimental studies of ionizing irradiation

showed that the key mechanism of the performance degradation induced by the TID is the
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formation of oxide charged defects (Not) in the gate oxide region

(Hughes, 1965a; Hughes, 1965b; Kooi, 1965; Zaininger, 1966).

Therefore, identification of neutral defects in SiO2 before

irradiation and exploration of the evolution of charged defects

after irradiation are the basis for studying the TID effect of MOS

devices.

In 1956, Robert used electron paramagnetic resonance (EPR)

for the first time to measure radiation-induced defects in

crystalline or amorphous SiO2 (Weeks, 1963) and found two

basic types of oxygen vacancies in SiO2, including deep (Voγ) and

shallow (Voδ) level defects. In the 1980s, these methods have been

used to study possible chemical reactions and free radical

formation in thermal oxides of MOS devices during

irradiation (Blöchl, 2000). Several kinds of defects that existed

in the oxide layer before and after irradiation were thus determined.

The existing initial defects in the oxide layer (SiO2) of the device

before irradiation include oxygen vacancy (Voγ and Voδ), singly-

hydrogenated oxygen vacancy (VoδH and VoγH) and doubly-

hydrogenated oxygen vacancy (VoδH2 and VoγH2) defects

(Conley and Lenahan, 1993; Walle and Tuttle, 2000). Whereas,

after irradiation, defects generated in the oxide layer of the device are

mainly oxide charged defects (V+
oδ , VoδH+, VoδH+

2 , V
+
oγ, VoγH+

and VoγH+
2 ) (Lenahan and Dressendorfer, 1984).

The pre-existing concentration of defects in SiO2 is still known

little. Density functional theory (DFT) calculations suggest that

relative concentrations of different pre-existing trap species, and

order of magnitude estimates of the actual concentration of defects

have been suggested by etch-back experiments of irradiated oxides

(Devine et al., 1993). It is found that the initial concentration of

doubly-hydrogenated oxygen vacancy before irradiation is relatively

high, while its charged concentration after irradiation is the lowest

among the oxide charged defects (Rowsey et al., 2011a). In the

process of ionizing irradiation, the evolution process of doubly-

hydrogenated oxygen vacancy and its specific contribution to the

TID effect are still unclear. It is thus urgent to establish a dynamic

model of the TID effect that includes the dynamic of doubly-

hydrogenated oxygen vacancy to reveal their influence mechanism.

In this paper, a one-dimensional (1-D) dynamics model of

mobile particles and fixed defects in the oxide layer (SiO2) of

typical silicon MOS devices is developed to systematically study

the influence of doubly-hydrogenated oxygen vacancy on the

TID effect. This work provides theoretical guidance by

controlling the concentration of doubly-hydrogenated oxygen

vacancy for the radiation-hardening-by-design (RHBD)

techniques of semiconductor devices.

Simulation methods

Dynamics model

The model framework is shown in Figure 1. First, the

initial distribution of defects can be determined by EPR

measurements (Lenahan and Conley, 1998; Lu et al., 2002).

The reaction events and rate coefficients between mobile

particles and defects are mainly given by the DFT

calculations (Rowsey et al., 2011a; Rowsey et al., 2011b).

Then, with this information, the continuity equations of

mobile particles and fixed defects can be described based on

the rate theory. In addition, the Poisson equation is established

to determine the spatial electric field distribution. Finally, the

finite difference method is employed to solve the ordinary

differential equations (ODEs). The evolution and distribution

of oxide charged defects and electric fields can thus be

obtained by this model.

Continuity equation

Continuity equation
zci
zt

� Gi +Di∇
2Ci + μi( �E · ∇Ci + Ci∇ �E)

+ Ti

(1)
Poisson equation 2φ � −ρϵ (2)

The continuity Eq. 1 in Figure 1, where Ci represents the

concentration of particle i at a certain position at a certain time.

Gi and Ti represent the generation (only for electron/hole) and

reaction (with other defects) rates of the particle i, respectively. μi
represents the mobility of mobile charged particles,Di � μikBT/q

represents the diffusion coefficients of mobile particles, and E

represents the electric field.

The generation rate of e-h pairs induced by ionizing

irradiation is given as follows (Oldham, 2000),

Ge/h � Y · G0 · R, (3)

where G0 represents the density of e-h pairs per unit ionizing

dose, Y is the survival rate of the e-h pairs after initial

recombination, which is set to be 0.01 for SiO2 under γ-
ray irradiation (Shaneyfelt et al., 1991), and R is the dose rate

(rad/s).

The reaction rates of mobile particles with fixed defects are

determined by the rate theory, which is proportional to the

reactant concentrations. Comprehensively considering all

reaction events, the total reaction rate of the particle i is given

by (Xu et al., 2018),

Ti � −∑
j

αCiCj + ∑
m+n→i

βCmCn, (4)

where the j, m and n are termed as the other reactants, and the α

and β represent the forward and reverse reaction rate coefficients,

respectively.

Since the fixed defect is immobile and has no additional

generation, the continuity equation includes only the reaction

term (Ti), given in Eq. 4. For the continuity equation of mobile

particles, the drift-diffusion term should be considered.

Especially for electrons/holes, the generation term (Ge/h)

should also be introduced, given in Eq. 1.
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Reaction events and coefficients

Since deep- and shallow-level defects cannot be

transformed into each other, we only consider the

dynamics of deep-level defects (Voγ, VoγH and VoγH2) in

the model. This simplification will not affect the purpose of

exploring the influence of doubly-hydrogenated oxygen

vacancy on the TID effect.

For oxygen vacancy (Voγ), singly-hydrogenated oxygen

vacancy (VoγH) and doubly-hydrogenated oxygen vacancy

(VoγH2) formed during high-temperature processing steps

(Hughart et al., 2009; Tuttle et al., 2010), first principles

results indicate that the initial concentration of defects are

approximately 1015 cm−3, 1014 cm−3 and 1016 cm−3,

respectively (Rowsey et al., 2011a; Rowsey et al., 2011b).

All three first capture a hole to form positively charged

defects, then V+
oγ split hydrogen molecular (H2) to release

a proton (H+), VoγH+ directly release a H+, VoγH+
2 can

directly release a H+ or directly dissociate into H2

(Hughart et al., 2012). All three of these charged defects

can also capture electrons as the recombination center

(Rowsey et al., 2011a; Xu et al., 2018). The above

chemical reaction and rate coefficients are given in Table 1.

The accumulation of the charged defects results in the

formation of a built-in electric field in the oxide layer. The

electric field can be solved by Poisson’s equation as below

(Esqueda et al., 2012; Jafari et al., 2015),

∇ · �E � ρ

εoxε0
(5)

ρ � ec(Ch+ + CH+ + CV+
oγ
+ CVoγH+ + CVoγH+

2
− Ce−) (6)

where, ρ is the total charge density in the oxide layer, εox � 3.9 is

the relative permittivity of SiO2, and ε0 is the permittivity in a

vacuum.

An important parameter is the density of Not, with units of

cm−2, which can be integrated from the distribution of each oxide

charged defect as (Esqueda et al., 2011),

CNot � ∫
Lox

0

x

Lox
(CV+

oγ
+ CVoγH+ + CVoγH+

2
)dx (7)

FIGURE 1
Diagram framework of the dynamic model.

TABLE 1 Chemical reaction and rate coefficients (Bunson et al., 2000;
Rowsey et al., 2012; Patrick et al., 2015; Sharov et al., 2022).

Chemical reaction α(cm3/S) β(cm3/S)

Voγ + h+ ↔ V+
oγ 1.03 × 10−13 1.26 × 10−62

V+
oγ +H2 ↔ VoγH +H+ 1.92 × 10−19 1.03 × 10−19

V+
oγ + e− ↔ Voγ 1.97 × 10−14 3.21 × 10−138

VoγH + h+ ↔ VoγH+ 1.03 × 10−13 1.26 × 10−62

VoγH+ ↔ Voγ +H+ 5.04 × 10−22 8.21 × 10−37

VoγH+ + e− ↔ VoγH 2.06 × 10−7 5.07 × 10−113

VoγH+
2 + h+ ↔ Voγ +H+

2 1.03 × 10−13 4.16 × 103

VoγH+
2 ↔ VoγH +H+ 3.81×105 1.03 × 10−19

VoγH+
2 ↔ V+

oγH2 1.90 × 105 4.02 × 10−21

VoγH+
2 + e− ↔ VoγH2 2.06 × 10−7 3.21 × 10−138
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where Lox is the thickness of the oxide layer, and x refers to the

distance from the Gate.

Numerical method

The finite difference method with a uniform spatial grid

is adopted for solving the partial differential equations

(PDEs). Here the lsoda solver of the C version (Whitbeck,

1991) is employed to solve the corresponding ODEs. The key

to using the finite difference method to solve the above time

and space related problems is the setting of appropriate

initial values and boundary conditions. The initial

concentration of charged defects and charged particles is

set to 0. In the 1-D model, there are two boundaries of Gate/

SiO2 and Si/SiO2 in contact with the SiO2 layer. The mobile

particles can flow freely at both boundaries, so the first kind

of boundary conditions are adopted. In addition, we specify

that the electrostatic potential is continuous at all boundaries

(Xu et al., 2018).

Results and discussions

This section presents the evolution and distribution of defects

in the SiO2 layer of an NPN-type MOS capacitor (Lox = 200 nm)

irradiated by γ-rays of G0 � 8.1 × 1012cm−3 · rad−1 uniformly for

the whole SiO2 layer (Esqueda et al., 2011). The mobility of

electrons and holes in SiO2 are 20 and 10−6cm2 · V−1 · s−1
(Hughart et al., 2011), respectively. The diffusion coefficients

of H2 and H+ in SiO2 are 10−9 and 10−10cm2 · s−1, respectively
(Rowsey et al., 2011b).

Validation and verification

The simulated density of oxide charged defects (Not) is

compared with the experimental ones (Tuttle et al., 2010) to

verify our model. Figure 2 shows the time evolution of the density

of Not, under the time of 1.5 × 104 s with the dose rate of 20 rad/s

at 300 K. The Capacitance-Gate voltage curves of the irradiated

devices under three different TIDs were measured to determine

the average densities ofNot. Typically,Not increase gradually with

irradiation time and tend to saturation. The simulation results

are consistent with the experimental ones well. The little

differences may be caused by the model approximations and

measurement errors. Thus, our model should be reasonable

enough for simulating the TID effect.

The influence of VoγH2 on V+
oγ and VoγH+

In the following, we studied the key factors of the oxide

charged defects for the TID effect, such as their composition,

distribution and evolution. Figure 3A shows the distributions of

different oxide charged defects under the TID of 10 krad with the

dose rate of 10 rad/s at 300 K. V+
oγ is the main component of the

oxide charged defects, while the initial density of VoγH2 is the

highest in the oxide layer. We also simulated the evolutions of

VoγH+
2 and VoγH2 under the dose rate of 10 rad/s at 300 K. As

shown in Figure 3B, the densities of VoγH+
2 and VoγH2 decrease

with increasing TID. This means that VoγH+
2 formed by the hole

capture of VoγH2 will not exist stably but continue to be

dissociated. Thus, VoγH+
2 has the lowest density, while VoγH2

can promote the formation of V+
oγ and VoγH+.

Also as shown in Figure 3A, with increasing the distance

from the Gate, the densities of V+
oγ and VoγH+ slowly increase in

the oxide layer but decrease at the boundaries, because the

reaction particles (holes) of VoγH2 flow out at the boundaries,

the density of holes decrease near the Si/SiO2 interface. With

increasing the distance from the Gate, the density of VoγH+
2 first

increase and then decrease, and rise again near (about 30 nm) the

Si/SiO2 boundary. In the first rise range, the reaction of VoγH2

capturing holes is dominant, but they are unstable and dissociate

easily. So in the latter range, the reaction releasing H+/H2 forms

VoγH+ or VoγH+
2 is dominant.

As given above, VoγH2 promote the formation of V+
oγ and

VoγH+. However, through what transformation mechanism does

VoγH2 promote the generation of V+
oγ and VoγH+, we further

explored the transformation mechanism that VoγH2 promotes

the generation of V+
oγ and VoγH+. We simulated the densities of

Voγ, V+
oγ and Voγ + V+

oγ as a function of TID with and without

VoγH2, under the TID of 10 krad with the dose rate of 10 rad/s at

room temperature. As shown in Figure 4A, with VoγH2, the

density of Voγ + V+
oγ increases with increasing TID, and

approaches to saturation. Thus, there are other channels that

can produce Voγ or V+
oγ. As shown in Figure 4B, without VoγH2,

FIGURE 2
Comparison of the evolution of Not with the experiment for
the MOS capacitor with a 200 nm SiO2 layer under 5 V bias.
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the density of Voγ + V+
oγ is constant, which means there’s no

other reaction to form Voγ or V+
oγ. Compare Figures 4A,B, the

density of Voγ + V+
oγ with VoγH2 is always higher than that

without VoγH2, and the increase up to 30% when the TID is

10 krad. Therefore, the increase of Voγ + V+
oγ only comes from

VoγH2 through VoγH+
2 ↔ V+

oγ +H2, and the reason why the

increase of Voγ + V+
oγ becomes slow is that the density of VoγH2

decreases with increasing TID. In addition, the density of Voγ

with VoγH2 is almost no different from that without VoγH2

during the ionizing process, while the density of V+
oγ with VoγH2

is obviously higher than that without VoγH2. Therefore, the

VoγH2 directly promotes the formation of V+
oγ through

releasing H2.

We also simulated the densities of VoγH+ + VoγH, VoγH+

and VoγH as a function of TID with and without VoγH2, under

the TID of 10 krad with the dose rate of 10 rad/s at room

temperature. As shown in Figure 5A, with VoγH2, the density

of VoγH+ + VoγH increases with increasing TID, and the

growth rate is gradually slow, which is similar to the

evolution of Voγ + V+
oγ. It also means that there are other

channels that can produce VoγH+ + VoγH. As shown in

Figure 5B, without VoγH2, the density of VoγH+ + VoγH is

constant that means there’s no other reaction to form VoγH+

or VoγH. Compare Figures 5A,B, the density of VoγH+ + VoγH

with VoγH2 is always higher than that without VoγH2, and the

increment is up to 6 times when the TID is 10 krad. Thus, the

increase only comes from VoγH2 though

VoγH+
2 ↔ VoγH +H+, with the density increases slowly due

to the decreases of VoγH2 with increasing TID. In addition,

the density of VoγH decreases with increasing TID without

VoγH2, for the VoγH is constantly transformed into VoγH+

during the ionizing process. The density of VoγH increases

FIGURE 3
Distributions of (A) different oxide charged defects under the TID of 10 krad, and (B) evolution of VoγH+

2 and VoγH2 with the dose rate of 10 rad/s
at 300 K.

FIGURE 4
Evolution of V+

oγ, Voγ and V+
oγ + Voγ (A) with and (B) without VoγH2 as a function of TID at the dose rate of 10 rad/s at 300K.
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from 0 to 3.0 krad and then decreases with increasing TID

with VoγH2. The VoγH increases because the rate at which

VoγH2 is converted to VoγH is higher than the rate at which

VoγH is converted to VoγH+during the ionizing process. The

decrease of VoγH from 3.0 to 10.0 krad is due to that

VoγHconvert to VoγH+ faster than VoγH2 convert to VoγH.

The density of VoγH with VoγH2 is always higher than that

without VoγH2, and the density of VoγH decreases with

increasing TID without VoγH2. Therefore, the VoγH2

directly promotes the formation of VoγH through releasing

H+, then promotes the formation of VoγH+ through capturing

holes.

It has been known that the TID effect of devices is closely

related to the electric field near the Si/SiO2 interface (ESi/SiO2) of

the oxide layer, which ESi/SiO2 can be simply described as follows,

ESi/SiO2 � Eapplied + Ebuilt−in � Vg/Lox + ρtot/ε0εox. (8)

According to Eq. 8, when the gate voltage (Vg), the thickness

(Lox) and the permittivity (εox) of oxide layer are fixed, the

relationship of ESi/SiO2 with the total charge density (ρtot)

follows ESi/SiO2 ∝ ρtot. Changing the concentration of VoγH2

corresponds to changing the ρtot after irradiation. As shown

in Figure 6, we simulated the ESi/SiO2 with increasing the

concentration of VoγH2 (CVoγH2) under the TID of 10 krad

with the dose rate of 10 rad/s at 300 K. We found that, ESi/SiO2

does not change with CVoγH2 before irradiation. After irradiation,

when CVoγH2 is lower than about 1014 cm−3, ESi/SiO2 almost does

not change with the increase of CVoγH2, but when CVoγH2 is higher

than about 1015 cm−3, ESi/SiO2 increases rapidly with increasing

CVoγH2, following ESi/SiO2 ∝CVoγH2. This means that ESi/SiO2 is

mainly contributed by Eapplied when CVoγH2 less than about

1014 cm−3 and ESi/SiO2 is affected by VoγH2 over about 1015

cm−3. ESi/SiO2 at 10
16 cm−3 of CVoγH2 is about 1.7 times as high

as ESi/SiO2at 1014 cm−3 of CVoγH2. This means that when the

concentration of VoγH2 is lower than that of about 1014 cm−3,

VoγH2 has almost no influence on the TID effect, while when the

concentration of VoγH2 is higher than 1015 cm−3, VoγH2 has a

more obvious influence on the TID effect. The results show that

the irradiation resistance of the device can be improved by

controlling the concentration of VoγH2 below 1014 cm−3 when

fabricating the oxide layer of the MOS device. Although the

quantitative relationship between the density of VoγH2 and

ESi/SiO2 cannot be given in current experiments, it has

important guiding significance for future experimental

development and device anti-radiation design.

FIGURE 5
Evolution of VoγH+, VoγH and VoγH+ + VoγH (A) with and (B) without VoγH2 as a function of TID at the dose rate of 10 rad/s at 300K.

FIGURE 6
Electric fields at the Si/SiO2 interface with increasing the
density of VoγH2 under the TID of 10 krad with the dose rate of
10 rad/s at 300 K.
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Conclusion

In summary, V+
oγ is the main component of the oxide

charged defects, and the contribution of VoγH2 is crucial,

high concentration of VoγH2 can intensify the TID effect of

MOS devices. The VoγH2 can directly promote the formation of

V+
oγ, and VoγH2 first promotes the formation of VoγH, then

indirectly promotes the formation of VoγH+. VoγH2with

concentration higher than 1014 cm−3 can enhance the

negative TID effect. This finding provides a new idea that

controlling VoγH2 in the oxide layer with concentration

below 1014 cm−3 are more conducive to the design of anti-

irradiation to the TID effect.
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