
Analytical modeling of cross-ply
cylindrical composite
submersible shell with elastic
buckling using first order shear
deformation theory

Hafiz Muhammad Waqas1*†‡, Dongyan Shi1*‡, Sohaib Z. Khan2‡,
Mahmoud Helal3,4§ and Elsayed Fathallah5,6

1College of Mechanical and Electrical Engineering, Harbin Engineering University, Harbin, China,
2Department of Mechanical Engineering, Faculty of Engineering, Islamic University of Madinah,
Madinah, Saudi Arabia, 3Department of Mechanical Engineering, Faculty of Engineering, Taif University,
Taif, Saudi Arabia, 4Production and Mechanical Design Department, Faculty of Engineering, Mansoura
University, Mansoura, Egypt, 5Civil Engineering Department, Military Technical College, Cairo, Egypt,
6Ships and Submarines Engineering Department, Military Technical College, Cairo, Egypt

Themain objective of this study is to design composite shells i.e. long, short, thin

and thick for the different underwater applications. These shells can be a part of

pressure hulls, underwater vehicles, pressurized tanks, underwater cables and

underwater pipelines etc. This paper presents comprehensive procedures for

themathematical modeling of elastic buckling for submersible composite shells

under hydrostatic pressure. First order shear deformation theory (FOSDT) was

used for modeling. FOSDT theory was mathematically derived under

hydrostatic pressure for composite shells, and it can be used for all types of

submersible shells. After the derivation of the theory, mathematical code was

formed on MATLAB for this modeling. From the given formulation one can

design the shell structure according to his needs on different environment

conditions. Different types of composite shells, including moderately thick,

thick, long, and short, are investigated for the FOSDT formulation to check the

accuracy range. The results were compared with previous studies and finite

element analysis FEA. Three types ofmaterials, Carbon/Epoxy, Glass/Epoxy, and

Boron/Epoxy, were used with different cross-ply symmetric and unsymmetrical

angle configurations. The layups used for the analysis were [0/90/0]s [90/0/90/

0]s [02/902]s [90/02/90]s [0/902/0]s [0/0/0/90]s [90/90/90/0]s and [0/90].
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1 Introduction

The composite shells laminated with plies are the most

important composite structures which are used in the marine

industry as submersible pressure hulls (Shakeri et al., 2005;

Fathallah et al., 2014a; Shen et al., 2018; Shaker et al., 2021)

radomes, fuel tanks, and fuselages in the aerospace industry

(Almeida et al., 2017; Almeida et al., 2019). Buckling is the main

failure that occurs when an external loading is applied on these

shells, which causes geometric deformation or collapse of the

structure. To design these types of shells, buckling instability is

considered a main factor influenced by the different levels of

depths. Many theories and experimental approaches have been

studied earlier to determine the buckling instability of composite

shells. Alexey Semenov (Semenov, 2021) studied the buckling of

the shell panels which were made up of fiberglass and reinforced

with stiffeners. Timoshenko type mathematical model was used

for the analysis. Cho-Chung Liang (Liang et al., 2003) worked on

multi-layer filament wound sandwich submersible shells and

studied the buckling of the shells by using Shell Buckling

Equation SBE. Effects of transverse shear stress and pressure

stiffness were not considered while using SBE. Chul-Jin Moon

(Moon et al., 2010) conducted experiments and FEA on

composite cylindrical shell under hydrostatic pressure. It was

concluded that the cylindrical shell structure did not come back

to its initial position after the initial buckling.

Classical Shell Theory CST, first-order shear deformation

theory FOSDT and Higher order shear deformation theories

HOSDT are extensively used for mathematical modeling to

calculate the buckling factor. The main difference between

these three theories is that in FOSDT, and HOSDT transverse

shear stress is considered, but it is not considered in CST. Some of

the literature work done on the submersible composite shells is

mentioned here. Loptain and Morozov (Lopatin and Morozov,

2012) studied cantilever circular shells and gave a procedure for

applying orthotropic and isometric cylindrical shells under

different loading conditions. They used CST to develop their

mathematical model, and the Garlinin method was used for the

solution. FEA was done to validate the analytical model. Loptain

and Morozov (Lopatin and Morozov, 2017) also changed the

boundary conditions to rigid ends and developed the model of a

cylindrical shell under hydrostatic pressure. Galerkin’s and

Fourier Decomposition methods were used to study the CST-

based mathematical model. The third derivative of the beam

function was used to calculate the axial displacement of the shell.

Its hoop displacement and deflection were also modeled in their

respective studies. Cagdas and Adali (Cagdas and Adali, 2011)

also worked on buckling of the cross-ply laminated cylindrical

shells under hydrostatic pressure. Pressure stiffness was also

accounted in their FOSDT-based model, and they applied

Koiter’s related energy while employing pressure stiffness.

Buckling analysis was done after the validation of a

mathematical model for the GFRP and CFRP composite

cylinders. Golden Section Method was also used in their

studies to find an optimal design for the cylindrical shells

under hydrostatic pressure. They also studied how different

parameters affect the optimal design of the composite

cylindrical shell. Ebrahimi et al. (Ebrahimi et al., 2020)

introduced the Nanocomposites in composite shells. He

studied the graphene oxide powder cylindrical shells and their

buckling analysis on the basis of FOSDT. The principle of virtual

work was used to develop the mathematical model of the shell.

They used Galerkin’s method to derive the stability equations.

Circumferential wave numbers were changed to get the new

values of buckling pressure. The mathematical model was

verified by the previous results found in the literature. Sofiyev

and Kuruoglu (Sofiyev and Kuruoglu, 2014) studied the theory of

shear deformation on the basis of the Donnel shell theory to find

the vibration and buckling of the cylindrical composite shells for

the hydrostatic pressure. To find the buckling pressure and

frequency of the shell, parametric analysis was done, and its

influence on the different parameters was examined. Imran et al.

(Imran et al., 2021b) worked on the analytical modeling of cross-

ply composite laminated submersible shells with closed ends

under hydrostatic pressure with the help of CST and FOSDT.

Two types of composite materials, carbon/epoxy, and glass/

epoxy, were used in the modeling of shells. Umut Topal

(Topal, 2009) used FOSDT to develop a new methodology

based on FEA for the optimum design of a thin cylindrical

shell composed of composite material under external load.

Cadges (Cagdas, 2011) used FOSDT to carry out elastic

buckling analysis of cross-ply laminated shells of revolution

under compressive loads. The linear stability analysis was

done by him. A comparison was made between the analytical

and numerical results found in the literature. Moreover, for the

calculation of buckling load, a linear buckling analysis has been

done to find the optimal solution for submersible shells. FOSDT

was used to develop the shell element in these studies (Fathallah

et al., 2014a; Fathallah et al., 2014b; Fathallah et al., 2015; Imran

et al., 2019; Waqas et al., 2019; Imran et al., 2021a).

Applications of these composite shell structures are present

in almost every field. Submersible pressure hulls are one of the

most significant applications in marine field. Composite shells

are the main structural parts of composite pressure hulls (Craven

et al., 2013; Fathallah et al., 2014a; Fathallah, 2019; Imran et al.,

2019; Imran et al., 2021a). Another application of this composite

shell is in submarine radome (Waqas et al., 2019). One of the

other marine applications of composite shells is in underwater

pipelines (Lam et al., 2003; Davoud and Rahimi, 2019;

Venhrynyuk et al., 2021). Composite shells are also used in

LPG Liquefied Petroleum Gas Carriers and pressurized tanks

(Alarçin and Alarcin, 2015).

Literature review shows that the topic of composite

cylindrical shells is critical, and researchers have great interest

in it, and much work has been done. The significant thought in

the buckling examination of the composite shell is the
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consideration of pressure stiffness. The pressure stiffness

incredibly influences the buckling instability of the

submersible composite shell. In order to effectively predict the

composite shell’s buckling behavior, it is essential to apply the

pressure load in accordance with the real implementation of the

composite shell. Based on the FOSDT and taking pressure

stiffness into account, the mathematical formulation for the

submersible composite cylindrical shell under hydrostatic

pressure is developed. The results were compared with the

previous literature. The main objective of this study is to

design composite shells i.e. long, short, thin and thick for the

different underwater applications. These shells can be a part of

pressure hulls, underwater vehicles, pressurized tanks,

underwater cables and underwater pipelines etc. From the

given formulation one can design the shell structure according

to his needs on different environment conditions. In this work,

the previous work was verified, and results with new

configurations are discussed in detail. Finite element analysis

using shell elements is also carried out in ANSYS to verify the

analytical model.

2 Mathematical modeling of thin
composite cylindrical shell using
FOSDT

2.1 Geometry and coordinates of plies of
submersible shell

Here the mechanical characteristics of the shell under

hydrostatic pressure were analyzed by using FOSDT. All the

modeling is presented on the basis of the coordinate system

shown in Figure 1. This is cross-ply shell, and the composite plies

are on 0 and 90° angles as shown in the Figure 1. h is the total

thickness, and l is the total length of the shell. P shows the

external hydrostatic pressure applied. R is the radius, and α is

the angle between the radius and the z-axis of the coordinate

system. z0, z1, z2, zN are the distances from the mid plane to

the starting of the first, second, third and Nth ply respectively.

Schematic diagram of whole the problem is given in Figure 2.

Figure 3 shows the diagram of the sample of plies. According to

the coordinate system shown, the stress-strain relation on the

basis of FOSDT is presented in Eq. 1 for the orthotropic

material.

Following assumptions are made for our model.

• Hydrostatic pressure is acting normal on the surface of the

shell.

• The orientations for the fiber plies are considered [0/90]

degrees.

• The effect of imperfections was not considered, and the

perfect structure was assumed.

• The value of the product of correction factors was

assumed 5/6.

• The value of (1 + z/R) was assumed 1. The force and

moment equations will become equivalent to the force and

moment resultants of the composite plate.

2.2 Kinematic and forces and moments
resultants equations

In this section, buckling formulation under hydrostatic

pressure for the closed composite laminated submersible

cylindrical shell, as shown in Figure 1, is derived using

FOSDT. Hook’s law is used to find the stresses and strains

(Timarci and Soldatos, 2000; Asadi et al., 2012; Wang et al.,

2018; Shi et al., 2020)

FIGURE 1
Geometry and coordinates of plies of submersible shell.

FIGURE 2
Schematic diagram of the problem.
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⎡⎢⎢⎢⎢⎢⎣ σxσα
τxα

⎤⎥⎥⎥⎥⎥⎦ � ⎡⎢⎢⎢⎢⎢⎣ �Q11
�Q12

�Q16
�Q12

�Q22
�Q26

�Q16
�Q26

�Q66

⎤⎥⎥⎥⎥⎥⎦⎡⎢⎢⎢⎢⎢⎣ εx
εα
γxα

⎤⎥⎥⎥⎥⎥⎦ (1)

[ τxz
ταz
] � [ �Q55

�Q45
�Q45

�Q44
][ γxz

γαz
] (2)

In the above relations [ �Qij] symbolizes the elements of the

transformed, reduced stiffness matrix, and the values are

calculated by the relations given below.

�Q11 � 2S2 C2 (Q12 + 2Q66) + Q11C
4 + Q22S

4

�Q12 � Q12(C4 + S4 ) + S2 C2 (Q11 + Q22 − 4Q66)
�Q22 � 2S2 C2 (Q12 + 2Q66) + Q11S

4 + Q22C
4

�Q16 � S3 C(2Q66 − Q22 + Q12) + C3 S(Q11 − Q12 − 2Q66)
�Q26 � C3 S(Q12 − Q22 + 2Q66) + S3 C(Q11 − Q12 − 2Q66)
�Q66 � Q66(S4 + C4 ) + S2 C2 (Q11 + Q22 − 2Q12 − 2Q66)
�Q44 � C2 Q44 + S2 Q55, �Q55 � C2 Q55 + S2 Q44, �Q45 � CS(Q55 − Q44)

(3)

Here, C � Cos β, S � Sin β, and the elements of the reduced

stiffness matrix are denoted by [Qij].

Q11 � E11

1 − ]21]12
, Q12 � ]12E11

1 − ]21]12
, Q22 � E22

1 − ]21]12
Q55 � G13 , Q44 � G23, Q66 � G12

(4)

The displacement field of the composite laminated

cylindrical shell is given in Eq. 5 (Qatu, 1999; Wang et al.,

2018; Ebrahimi et al., 2020; Liu et al., 2020; Qin et al., 2020;

Shi et al., 2020).

u(x, α, z) � (x, α)zΦx + (x, α)u0

v(x, α, z) � (x, α)zΦα + (x, α)v0
w(x, α, z) � (x, α)w0

(5)

Elements with 0 subscripts stand for the displacements in

respective directions at the mid-plane.

The curvature changes and strain-displacement relations for

the laminated cylindrical shell mid-plane are given as follows

(Gheisari et al., 2017; Imran et al., 2021b). Unlike flat plates, in

which the shear strain in the FOSDT is constant through the

thickness, the curvature introduces a shear strain that has a

variation with z.

εox �
zu0

zx
+ 1
2
(zw0

zx
)2

, εoα �
1
R

zv0
zα

+ w0

R
+ 1
2

1

R2 (zw0

zα
)2

γoxα �
1
R

zu0

zα
+ zv0
zx

+ 1
R

zw0

zx

zw0

zα
, γoxz � Φx + zw0

zx
,

γoαz � Φα + 1
R

zw0

zα
, kx � zΦx

zx
, kα � 1

R

zΦα

zα
, kxα � 1

R

zΦx

zα
+ zΦα

zx
(6)

In terms of middle surface strains and curvatures of the

composite laminated shell, the strain–displacement relations are

given as follows.

⎡⎢⎢⎢⎢⎢⎣ εx
εα
γxα

⎤⎥⎥⎥⎥⎥⎦ � ⎡⎢⎢⎢⎢⎢⎣ εox
εoα
γoxα

⎤⎥⎥⎥⎥⎥⎦ + z⎡⎢⎢⎢⎢⎢⎣ kx
kα
kxα

⎤⎥⎥⎥⎥⎥⎦ (7)

For the thin shells laminated by composites, the

composite laminated plate relations could be used

according to Qatu (Qatu, 1999). Using this finding,

the resultant forces and momentums at the middle surface

of the shell are obtained as given below (Thai and Choi,

2013).

⎡⎢⎢⎢⎢⎢⎣ Nx

Nα

Nxα

⎤⎥⎥⎥⎥⎥⎦ � ∫
h/2

−h/2

⎡⎢⎢⎢⎢⎢⎣ σxσα
τxα

⎤⎥⎥⎥⎥⎥⎦dz �∑N
k�1
∫
Zk

Zk−1

⎡⎢⎢⎢⎢⎢⎣ σxσα
τxα

⎤⎥⎥⎥⎥⎥⎦dz (8)

⎡⎢⎢⎢⎢⎢⎣ Mx

Mα

Mxα

⎤⎥⎥⎥⎥⎥⎦ � ∫
h/2

−h/2

⎡⎢⎢⎢⎢⎢⎣ σxσα
τxα

⎤⎥⎥⎥⎥⎥⎦zdz �∑N
k�1
∫
Zk

Zk−1

⎡⎢⎢⎢⎢⎢⎣ σxσα
τxα

⎤⎥⎥⎥⎥⎥⎦ zdz (9)

The entire thickness of the shell is represented by h and

(zk , zk−1, k � 1, 2, 3..N) are the distance of the kth lamina, which

is measured from the middle of the surface.

FIGURE 3
Sample of plies (A) Carbon/Epoxy 0° (B) Sample of [0/902/0] configuration.
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[Qx

Qα
] � ∫

h/2

−h/2
[ τxz
ταz
]dz (10)

Using Equations 1 and 7 in Equations 8 and 9 and

merging the resultant equations, the following Equation is

obtained.

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

Nx

Nα

Nxα
Mx

Mα

Mxα

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
�
⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

A11 A12 A16

A12 A22 A26

A16 A26 A66

B11 B12 B16

B12 B22 B26

B16 B26 B66

B11 B12 B16

B12 B22 B26

B16 B26 B66

D11 D12 D16

D12 D22 D26

D16 D26 D66

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

εox
εoα
γoxα
kx
kα
kxα

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
(11)

Similarly, by inserting Eq. 2 in Eq. 10, we can get the

following Equation for the out-of-plane shear forces.

[Qx

Qα
] � [ A55 A45

A45 A44
][ γoxz

γoαz
] (12)

where Aij, Bij and Dij are called extensional, bending

extensional, and bending stiffnesses, respectively and are

calculated by these formulas.

Aij � ∑N
k�1

�Q
(k)
ij (zk − zk−1), Bij � 1

2
∑N
k�1

�Q
(k)
ij (z2k − z2k−1)

Dij � 1
3
∑N
k�1

�Q
(k)
ij (z3k − z3k−1)

⎫⎬⎭(i, j � 1, 2, 3, 6) (13)

Aij � ∑N
k�1

ki kj �Q
(k)
ij (zk − zk−1), Bij � 1

2
∑N
k�1

ki kj �Q
(k)
ij (z2k − z2k−1),

Dij � 1
3
∑N
k�1

ki kj �Q
(k)
ij (z3k − z3k−1)

⎫⎬⎭(i, j � 4, 5)

(14)

ki and kj are called the correction factors for shear, and the value

of their product is 5/6 (Asadi et al., 2012).

2.3 Derivation of stability formulation of
composite shell using FOSDT

In this section, the principle of minimum virtual work is

used to find the equations of motion for the composite

laminated cylindrical shell. According to this principle, the

difference of (δU) and (δWe) is equivalent to zero, and it is

denoted in Eq. 15

δU − δWe � 0 (15)

Eq. 16 is used to find the strain energy variation in the

presence of shear stresses.

δU � ∫
l

0

∫
2π

0

(Nxδεx +Nαδεα +Nxαδγxα +Mxδkx +Mαδkα

+Mxαδkxα + Qxδγxz + Qαδγαz)Rdαdx (16)

The work done on the composite cylindrical shell by the

outside hydrostatic pressure is given by Eq. 18.

We � PV

Here, V is the volume change per unit length bounded by the

mid-surface of the cylindrical shell and is given in Equation

(Salahshour and Fallah, 2018).

V � −∫
l

0

∫
2π

0

[w0 + η

2
{w2

0

R
+ f (w0

zu0

zx
− u0

zw0

zx
+ w0

zv0
zy

− v0
zw0

zy
+ v20
R
)}]Rdαdx

(17)

Because we are considering the live load, that’s why

putting the value of ɳ as 1. By implementing the

Sanders theory, the value of ʄ will be 1. By

inserting the values, the Equation of work done will

become as follows.

We � −P∫
l

0

∫
2π

0

(w0 + 1
2
{w2

0

R
+ (w0

zu0

zx
− u0

zw0

zx
+ w0

1
R

zv0
zα

− v0
1
R

zw0

zα
+ v20
R
)}]Rdαdx (18)

By inserting Equations 16 and 18 in Eq. 15 and by

implementing the strain-displacement relations, the following

Equation is obtained.

∫
l

0

∫
2π

0

[Nxδ{zu0

zx
+ 1
2
(zw0

zx
)2} +Nαδ {1

R

zv0
zα

+ w0

R
+ 1
2

1

R2 (zw0

zα
)2} +Nxαδ

(1
R

zu0

zα
+ zv0
zx

+ 1
R

zw0

zx

zw0

zα
) +Mxδ (zΦx

zx
) +Mαδ (1

R

zΦα

zα
) +Mxαδ

(1
R

zΦx

zα
+ zΦα

zx
) + Qxδ(Φx + zw0

zx
) + Qαδ (Φα + 1

R

zw0

zα
) }] Rdαdx

+P∫
l

0

∫
2π

0

[δw0 + 1
2
{2w0

R
δw0 + 2

v0
R
δv0 + (zu0

zx
+ 1
R

zv0
zα
)δw0 + w0δ

zu0

zx
+

w0δ
1
R

zv0
zα

− u0δ
zw0

zx
− zw0

zx
δu0 − v0δ

1
R

zw0

zα
− 1
R

zw0

zα
δv0)}]Rdαdx � 0

(19)

Integrating the above Equation by parts, we will get the

following Equation.
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∫
l

0

∫
2π

0

−R zNx

zx
− zNxα

zα
− PR

zw0

zx
( )δu0 + ( − zNα

zα
− R

zNxα

zx
{
+ v0P − P

zw0

zα
)δv0 + ( − R

zw0

zx

zNx

zx
−NxR

z2w0

zx2 +Nα

− 1
R

zw0

zα

zNα

zα
−Nα

1
R

z2w0

zα2
− zw0

zx

zNxα

zα
− zw0

zα

zNxα

zx

− 2Nxα
z2w0

zxzα
− zQα

zα
δw0 + PR + w0P + PR

zu0

zx
+ P

zv0
zα

−R
zQx

zx
)δw0 −R zMx

zx
− zMxα

zα
+ RQx( )δΦx + ( − R

zMxα

zx

− zMα

zα
+ RQα)δΦα}dαdx+∫

l

0

∫
2π

0

z

zα
Nxαδu0( ){

+R z

zx
Nxδu0( ) + 1

2
PR

z

zx
w0δu0( ) + z

zα
Nαδv0( )

+R
z

zx
Nxαδv0( ) +1

2
P

z

zα
w0δv0( ) + R

z

zx
Nx

zw0

zx
δw0( )

+ 1
R

z

zα
Nα

zw0

zα
δw0( ) + z

zα
Nxα

zw0

zx
δw0( )

+ z

zx
Nxα

zw0

zα
δw0( ) + z

zα
Qxδw0( ) − 1

2
PR

z

zx
u0δw0( )

− 1
2
P

z

zα
v0δw0( ) + R

z

zx
MxδΦx( ) + z

zα
MαδΦα( )

+ z

zα
MxαδΦx( ) + R

z

zx
MxαδΦα( ) + R

z

zx
Qαδw0( )}dαdx

� 0
(20)

By applying the Gauss-Ostrogradsky theorem, Eq. 20 will

become as follows (Konečný, 2013).

∫
l

0

∫
2π

0

{( − R
zNx

zx
− zNxα

zα
− PR

zw0

zx
)δu0 + ( − zNα

zα
− R

zNxα

zx
+ v0P − P

zw0

zα
)δv0+

( − R
zw0

zx

zNx

zx
−NxR

z2w0

zx2 +Nα − 1
R

zw0

zα

zNα

zα
−Nα

1
R

z2w0

zα2
− zw0

zx

zNxα

zα
− zw0

zα

zNxα

zx
− 2Nxα

z2w0

zxzα
− zQα

zα
δw0 + PR + w0P + PR

zu0

zx
+ P

zv0
zα

− R
zQx

zx
δw0

+( − R
zMx

zx
− zMxα

zα
+ RQx)δΦx + ( − R

zMxα

zx
− zMα

zα
+ RQα)δΦα} dαdx+

∫
Γ

∫
Γ

{(Nxαηxα + RNxηx +
1
2
PRw0ηw0

)δu0 + (Nαηα + RNxαηxα +
1
2
Pw0ηw0

)δv0
+R zw0

zx
Nxηx +

1
R

zw0

zα
Nαηα +

zw0

zx
Nxαηxα + Qxηx −

1
2
PRu0ηu0 −

1
2
Pv0ηv0

+RQαηαδw0 + ( RMxηx +Mxαηxα)δΦx + (Mαηα + RMxαηxα)δΦα} ds � 0

(21)

By putting the coefficients of displacements in (∫l
0
∫2π
0
) equals to

zero. And then, by equating the coefficients of displacement

equals zero. Subsequent equations will be obtained after

rearranging all terms.

zNx

zx
+ 1
R

zNxα

zα
+ P

zw0

zx
� 0 (22)

1
R

zNα

zα
+ zNxα

zx
− 1
R
Pv0 + 1

R
P
zw0

zα
� 0 (23)

zw0

zx

zNx

zx
+Nx

z2w0

zx2 − 1
R
Nα + 1

R2

zw0

zα

zNα

zα
+ 1

R2Nα
z2w0

zα2

+ 1
R

zw0

zx

zNxα

zα
+ zw0

zα

zNxα

zx
+ 1
R
Nxα

z2w0

zxα
+ 1
R

zQα

zα
+ zQx

zx
− P

− 1
R
Pw0 − P

zu0

zx
− 1
R
P
zv0
zα

� 0

(24)
zMx

zx
+ 1
R

zMxa

za
− Qx � 0 (25)

zMxα

zx
+ 1
R

zMα

zα
− Qα � 0 (26)

From a state of buckling to a post-buckling state, Equations

22–26 denote the stability of the laminated composite closed

cylindrical shell. The pre-buckling state solution of Equations

22–26 is denoted by the following relations (Geier and Singh,

1997).

Nx � �Nx � −PR
2
, Nα � �Nα � −PRNxα � �Nxα � Mx � �Mx

� Mα � �Mα � Mxα � �Mxα � Qx � �Qx � Qα � �Qα � 0u0

� �uo, v0 � �vo � 0, w0 � �wo,Φx � �Φx � 0,Φα � �Φα � 0, kx

� kα � kxα � 0

Here the terms with the bar show equilibrium or state of pre-

buckling. To determine this in the buckling state, we are

adding minor increments to every quantity in the pre-

buckling state.

u0 � �uo + u0
′, v0 � �vo + v0

′,Φx � �Φx + Φ′
x,Φα � �Φα +Φ′

αNx

� �Nx +N′
x,Nα � �Nα +N′

αNxα � �Nxα +Nxα
′,Mx

� �Mx +M′
x,Mα � �Mα +M′

α,Mxα � �Mxα +Mxα
′, Qx

� �Qx + Q′
xQα � �Qα + Q′

α

Where the elements with subscript (′) represent disturbed state

quantities.

Inserting the values of these disturbed relationships in

Equations 22–26, the equations of stability for the laminated

closed cylindrical shell are attained as follows in the buckling

state.

zN′
x

zx
+ 1
R

zNxα
′

zα
+ P

zw0
′

zx
+ P

z �wo

zx
� 0 (27)

1
R

zN′
α

zα
+ zNxα

′

zx
− 1
R
Pv0

′ + 1
R
P
zw0

′

zα
+ 1
R
P
z �wo

zx
� 0 (28)
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zw0
′

zx

zN′
x

zx
+ z �wo

zx

zN′
x

zx
− 1
2
PR

z2w0
′

zx2 − 1
2
PR

z2 �wo

zx2 − 1
R
N′

α

− 1
R
(−PR) + zw0

′

zα

1

R2

zN′
α

zα
+ z �wo

zα
.
1

R2

zN′
α

zα
− 1

R2 (PR)
z2 �wo

zα2

− 1

R2 (PR)
z2w0

′

zα2
+ 1
R
(zw0

′

zx
+ z �wo

zx
)zNxα

′

zα
+ zw0

′

zα

zNxα
′

zx
+ z �wo

zα
.
zNxα

′

zx

+ 1
R
Nxα

′ z2

zxzα
(w0

′ + �wo) + 1
R

zQ′
α

zα
+ zQ′

x

zx
− P − 1

R
Pw0

′ − 1
R
P �wo

− P
zu0

′

zx
− P

z�uo

zx
− 1
R
P
zv0

′

zα

� 0

(29)
zM′

x

zx
+ 1
R

zMxα
′

zα
− Q′

x � 0 (30)
zMxα

′

zx
+ 1
R

zM′
α

zα
− Q′

α � 0 (31)

The values of the strains in the equilibrium states z �wo
zx ,

z�uo
zx and

�wo
R are neglected because these are small. Similarly, the non-linear

terms

(zw0
′

zx + z �wo
zx ) zN

′
x

zx , (zw0
′

zα + z �wo
zα ) 1

R2
zN′

α

zα ,
1
R (zw0

′

zx + z �wo
zx ) zNxα

′

zα , (zw0
′

zα +
z �wo
zα ) zNxα

′

zx , and 1
RNxα

′ z2

zxzα (w0
′ + �wo) are also neglected because

these terms also contain z �wo
zx . After more simplification, the

stability equations will become as follows.

zN′
x

zx
+ 1
R

zNxα
′

zα
+ P

zw0
′

zx
� 0 (32)

1
R

zN′
α

zα
+ zNxα

′

zx
− 1
R
Pv0

′ + 1
R
P
zw0

′

zα
� 0 (33)

1
R

zQ′
α

zα
+ zQ′

x

zx
− 1
2
PR

z2w0
′

zx2
− 1
R
P
z2w0

′

zα2
− 1
R
N′

α −
1
R
Pw0

′ − P
zu0

′

zx
− 1
R
P
zv0′

zα
� 0

(34)
zM′

x

zx
+ 1
R

zMxα
′

zα
− Q′

x � 0 (35)
zMxα

′

zx
+ 1
R

zM′
α

zα
− Q′

α � 0 (36)

For the buckling state, relationships of stresses and moments

resultants are amended as shown in Eq. 37.

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

N′
x

N′
α

Nxα
′

M′
x

M′
α

Mxα
′

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
�
⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

A11 A12 A16

A12 A22 A26

A16 A26 A66

B11 B12 B16

B12 B22 B26

B16 B26 B66

B11 B12 B16

B12 B22 B26

B16 B26 B66

D11 D12 D16

D12 D22 D26

D16 D26 D66

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

ε′x
ε′α
γxα
′

k′x
k′α
kxα
′

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
(37)

[Q′
x

Q′
α

] � [ A55 A45

A45 A44
][ γxz′

γαz
′ ] (38)

For the buckling state, the curvatures and strains alterations with

subscript (′) are linearized as follows.

ε′x �
zu0

′

zx
, ε′α �

1
R

zv0
′

zα
+ w0

′

R
, γxα

′ � 1
R

zu0
′

zα
+ zv0

′

zx
, γxz

′ � Φ′
x +

zw0
′

zx
, γαz

′

� Φ′
α +

1
R

zw0
′

zα
, k′x �

zΦ′
x

zx
, k′α �

1
R

zΦ′
α

zα
, kxα

′ � 1
R

zΦ′
x

zα
+ zΦ′

α

zx
(39)

Putting the values of Equations 37 and 38 in stability

Equations 32–36 and by using the disturb state kinematic

relationships of Eq. 39 in the consequent equations, we will

attain the subsequent equations of stability for composite

laminated closed cylindrical shell exposed to the external

hydrostatic pressure.

A11
z2u0

′

zx2 + A12
1
R

z2v0
′

zxzα
+ A12

1
R

zw0
′

zx
+ A16

1
R

z2u0
′

zxzα
+ A16

z2v0
′

zx2

+ B11
z2Φ′

x

zx2 + B12
1
R

z2Φ′
α

zxzy
+ B16

1
R

z2Φ′
x

zxzα
+ B16

z2Φ′
α

zx2

+ A16
1

R2

z2u0
′

zxzα
+ A26

1

R2

z2v0
′

zα2
+ A26

1

R2

zw0
′

zα
+ A66

1

R2

z2u0
′

zα2

+ A66
1
R

z2v0
′

zxzα
+ B16

1
R

z2Φ′
x

zxzα
+ B26

1

R2

z2Φ′
α

zα2
+ B66

1

R2

z2Φ′
x

zα2

+ B66
1
R

z2Φ′
α

zxzα
+ P

zw0
′

zx

� 0

(40)
A12

1
R

z2u0
′

zxzα
+ A22

1

R2

z2v0
′

zα2 + A22
1

R2

zw0
′

zα
+ A26

1

R2

z2u0
′

zα2
+ A26

1
R

z2v0
′

zxzα
+

B12
1
R

z2Φ′
x

zxzα
+ B22

1

R2

z2Φ′
α

zα2
+ B26

1

R2

z2Φ′
x

zα2
+ B26

1
R

z2Φ′
α

zxzα
+ A16

z2u0
′

zx2

+A26
1
R

z2v0
′

zxzα
+ A26

1
R

zw0
′

zx
+ A66

1
R

z2u0
′

zxzα
+ A66

z2v0
′

zx2 + B16
z2Φ′

x

zx2 +

B26
1
R

z2Φ′
α

zxzy
+ B66

1
R

z2Φ′
x

zxzα
+ B66

z2Φ′
α

zx2 − 1
R
Pv0

′ + 1
R
P
zw0

′

zα
� 0

(41)

A45
1
R

zΦ′
x

zα
+ A45

1
R

z2w0
′

zxzα
+ A44

1
R

zΦ′
α

zα
+ A44

1

R2

z2w0
′

zα2
+ A55

zΦ′
x

zx
+

A55
z2w0

′

zx2 + A45
zΦ′

α

zx
+ A45

1
R

z2w0
′

zxzα
− A12

1
R

zu0
′

zx
− A22

1

R2

zv0
′

zα
− A22

1

R2w0
′

−A26
1

R2

zu0
′

zα
− A26

zv0
′

zx
− B12

1
R

zΦ′
x

zx
− B22

1

R2

zΦ′
α

zα
− B26

1

R2

zΦ′
x

zα
−

B26
1
R

zΦ′
α

zx
− 1
2
PR

z2w0
′

zx2 − 1
R
P
z2w0

′

zα2
− 1
R
Pw0

′ − P
zu0

′

zx
− 1
R
P
zv0

′

zα
� 0

(42)

B11
z2u0

′

zx2 + B12
1
R

z2v0
′

zxzα
+ B12

1
R

zw0
′

zx
+ B16

1
R

z2u0
′

zxzα
+ B16

z2v0
′

zx2 +D11
z2Φ′

x

zx2

+D12
1
R

z2Φ′
α

zxzy
+D16

1
R

z2Φ′
x

zxzα
+D16

z2Φ′
α

zx2 + 1
R
B16

z2u0
′

zxzα
+ B26

1

R2

z2v0
′

zα2
+

B26
1

R2

zw0
′

zα
+ B66

1

R2

z2u0
′

zα2
+ B66

1
R

z2v0
′

zxzα
+D16

1
R

z2Φ′
x

zxzα
+D26

1

R2

z2Φ′
α

zα2
+

D66
1

R2

z2Φ′
x

zα2
+D66

1
R

z2Φ′
α

zxzα
− A55 Φ′

x − A55
zw0

′

zx
− A45 Φ′

α − A45
1
R

zw0
′

zα
� 0

(43)
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B16
z2u0

′

zx2 + B26
1
R

z2v0
′

zxzα
+ B26

1
R

zw0
′

zx
+ B66

1
R

z2u0
′

zxzα
+ B66

z2v0
′

zx2

+D16
z2Φ′

x

zx2 + D26
1
R

z2Φ′
α

zxzy
+D66

1
R

z2Φ′
x

zxzα
+D66

z2Φ′
α

zx2

+ B12
1
R

z2u0
′

zxzα
+ B22

1

R2

z2v0
′

zα2
+ B22

1

R2

zw0
′

zα
+ B26

1

R2

z2u0
′

zα2

+ B26
1
R

z2v0
′

zxzα
+D12

1
R

z2Φ′
x

zxzα
+D22

1

R2

z2Φ′
α

zα2
+ D26

1

R2

z2Φ′
x

zα2

+D26
1
R

z2Φ′
α

zxzα
− A45 Φ′

x − A45
zw0

′

zx
− A44 Φ′

α − A44
1
R

zw0
′

zα

� 0

(44)
The general form of stability equations is achieved

in Equations 40–44 for the composite

submersible cylindrical shell with closed ends under

hydrostatic pressure. The stability equations will be

further simplified for cross-ply laminated

cylindrical shells by putting the following relations

to zero.

A16 � A26 � A45 � B16 � B26 � D16 � D26 � 0,

A11
z2u0

′

zx2 + A12
1
R

z2v0
′

zxzα
+ A12

1
R

zw0
′

zx
+ B11

z2Φ′
x

zx2 + B12
1
R

z2Φα

zxzy

+ A66
1

R2

z2u0
′

zα2
+ A66

1
R

z2v0
′

zxzα
+ B66

1

R2

z2Φ′
x

zα2
+ B66

1
R

z2Φα

zxzα

+ P
zw0

′

zx

� 0

(45)

A12
1
R

z2u0
′

zxzα
+ A22

1

R2

z2v0
′

zα2
+ A22

1

R2

zw0
′

zα
+ B12

1
R

z2Φ′
x

zxzα

+ B22
1

R2

z2Φα

zα2
+ A66

1
R

z2u0
′

zxzα
+ A66

z2v0
′

zx2 + B66
1
R

z2Φ′
x

zxzα

+ B66
z2Φα

zx2 − 1
R
Pv0

′ + 1
R
P
zw0

′

zα

� 0 (46)

A44
1
R

zΦα

zα
+ A44

1

R2

z2w0
′

zα2
+ A55

zΦ′
x

zx
+ A55

z2w0
′

zx2 − A12
1
R

zu0
′

zx

− A22
1

R2

zv0
′

zα
− A22

1

R2w0
′ − B12

1
R

zΦ′
x

zx
− B22

1

R2

zΦα

zα

− 1
2
PR

z2w0
′

zx2 − 1
R
P
z2w0

′

zα2
− 1
R
Pw0

′ − P
zu0

′

zx
− 1
R
P
zv0

′

zα

� 0

(47)

B11
z2u0

′

zx2 + B12
1
R

z2v0
′

zxzα
+ B12

1
R

zw0
′

zx
+D11

z2Φ′
x

zx2 +D12
1
R

z2Φα

zxzy

+ B66
1

R2

z2u0
′

zα2
+ B66

1
R

z2v0
′

zxzα
+D66

1

R2

z2Φ′
x

zα2
+D66

1
R

z2Φα

zxzα

− A55 Φx − A55
zw0

′

zx

� 0

(48)

B66
1
R

z2u0
′

zxzα
+ B66

z2v0
′

zx2 +D66
1
R

z2Φ′
x

zxzα
+D66

z2Φα

zx2 + B12
1
R

z2u0
′

zxzα

+ B22
1

R2

z2v0
′

zα2
+ B22

1

R2

zw0
′

zα
+D12

1
R

z2Φ′
x

zxzα
+D22

1

R2

z2Φα

zα2

− A44 Φα − A44
1
R

zw0
′

zα

� 0

(49)
For a simply supported composite closed cylindrical

shell, the following relations are chosen for the solution of

stability equations (Geier and Singh, 1997; Messager et al.,

2002).

u0
′ � A Cos( �mx)Cos(nα), v0′ � B Sin( �mx) Sin(nα),

w0
′ � C Sin( �mx)Cos(nα),Φ′

x � D Cos( �mx)Cos(nα),
Φ′

α � E Sin( �mx) Sin(nα)
(50)

Here A, B, C, D, and E are the buckling amplitude coefficients

and �m � mπ
l , where m is the number of half-waves in the

longitudinal direction and n is the number of full waves in

the circumferential direction (Wei et al., 2019). By inserting

the relations of solutions mentioned above in the stability

Equations 45–49, the final Equation is obtained in the matrix

form as follows.

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣
K11 K12

K12 K22

K13 K23

K14 K24

K15 K25

K13 K14

K23 K24

K33 K34

K34 K44

K35 K45

K15

K25

K35

K45

K55

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦ − λ

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣
L11 L12

L12 L22

L13 L23

L14 L24

L15 L25

L13 L14

L23 L24

L33 L34

L34 L44

L35 L45

L15

L25

L35

L45

L55

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

A
B
C
D
E

⎫⎪⎪⎪⎪⎪⎬⎪⎪⎪⎪⎪⎭

�
⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

0
0
0
0
0

⎫⎪⎪⎪⎪⎪⎬⎪⎪⎪⎪⎪⎭
(51)

[K] and [L] are symmetric square matrices, where (λ) is
the buckling load factor. An Eigenvalue problem is shown in

the form of Eq. 51, and it is solved in MATLAB. The lowest
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positive value of (λ) is selected on the basis of the values of m

and n. The nonzero elements of the matrices are listed as

follows.

K11 � ( − �m2A11 − n2
1

R2 A66 ), K12 � K21 � (A12 + A66 ) �mn
1
R

K13 � K31 � (A12
1
R
�m), K14 � K41 � ( − �m2B11 − n2B66

1

R2)
K15 � K51 � (B66 + B12 ) 1R �mn,K23 � K32 � ( − A22

1

R2 n + A44
1
R
)

K24 � K42 � (B12 + B66 ) 1
R
�mn,K25 � K52 � ( − �m2B66 − n2B22

1

R2 + A44
1
R
)

K33 � ( − n2A44
1

R2 − �m2A55 − A22
1

R2 ), K34 � K43 � (B12
1
R
− A55 ) �m

K35 � K53 � (A44 − B22
1
R
) 1

R
n,K44 � ( − �m2D11 − n2 D66

1

R2 − A55 )
K45 � K54 � (D66 +D12 ) 1

R
�mn,K55 � ( − �m2D66 − n2 D22

1

R2 − A44 )
L13 � L31 � −P �m, L22 � 1

R
P, L23 � L32 � 1

R
Pn, L33 � ( − 1

2
R �m2 − 1

R
n2 + 1

R
)P

3 Results and discussion

In the above section, mathematical modeling for the

laminated composite cylindrical shell under external

hydrostatic pressure is derived by using FOSDT. The program

for this modeling was made on MATLAB by using different

composite materials and different layup configurations. For

further verification, the results were compared with the

previous studies in this field, and also FEA model was

examined and verified by ANSYS WORKBENCH. The

description of the MATLAB and FEA model is given below.

In Matlab firstly, the lengths of the plies were defined and

then angles of the plies were defined by using ones command.

These ply angles were then written in the form of matrix. This

matrix is then multiplied by the length which results in the total

number of Nplies. Elastic Modulus, Shear Modulus, and Poisson

ratios were then defined for each direction of orthotropic

composite material of the composite plies. The elements of

the reduced stiffness matrix denoted by [Qij] were defined as

shown in Eq. 4 and then matrix [Qij] was formed. After that the

thickness of each ply was written which was then multiplied by

Nplies to calculate the total thickness of the shell. The thicknesses

of all plies were then written in the form of one row matrix with

zeros command. For loop is then implemented to calculate the

thickness of each ply. Transformed reduced stiffness matrix [ �Qij]
is also calculated with the help of Eq. 3. Aij, Bij and Dij called

extensional, bending extensional, and bending stiffnesses,

respectively were calculated by Equations 13 and 14. External

hydrostatic pressure was then given with the radius and total

length of the shell. At the end For loop was applied to calculate

the [K] and [L] symmetric square matrices present in Eq. 51 and

then finally (λ) was calculated.
For the FEA analysis the geometric model was created firstly

with the help of revolved command in the Ansys composite

prepost ACP pre-post design modeler. Meshing was done by

using shell 181 element type. This element type is based on

TABLE 1 Mechanical properties of the composite materials (ANSYS, 2017).

Properties Carbon/Epoxy Glass/Epoxy Boron/Epoxy

Elastic modulus (GPa) E11 121 45 204

E22 8.6 10 18.5

E33 8.6 10 18.5

G12 4.7 5 5.59

Shear modulus (GPa) G13 4.7 5 5.59

G23 3.1 3.8462

Poisson’s ratio ν12 0.27 0.3 0.23

ν13 0.27 0.3 0.23

ν23 0.4 0.4

Density (Kg/m3) Ρ 1,490 2000 2000

Failure stress (MPa) Xt 2,231 1,100 1,260

Xc −1,082 −675 −2,500

Yt 29 35 61

Yc −100 −120 −202

Zt 29 35

Zc −100 −120

S12 60 80 67

S13 60 80 67

S23 32 46.154
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FOSDT, which also accounts for pressure stiffness. Then by using

the setup in ACP, plies on different angles were created.

Orientation and direction of fibers were set in ACP by

generating the fabric. Modeling groups were used to generate

composite plies for every layer of the laminate.

To avoid the rigid body motion, boundary conditions were

then applied. Simply supported boundary conditions were

used, similar to those used in the analytical modeling. The

displacement in the x, y, and z directions was restrained at the

aft end of the shell. At the aft end, the rotation in the x-axis

was also restrained. And at the forward end, the displacement

in the y and z direction was restrained. Normal to Surface

feature was used to apply the loading conditions, and an

external load of one psi was applied on the surface of the

shell. After the creation of the composite layup in the ACP

module, the geometric model was then transferred to the static

structural analysis. After static analysis, the model was then

transferred to Eigenvalue Buckling analysis. Then buckling

load factor was calculated at this phase. Table 1 shows the

values of the composite materials used in the face sheets of the

shells.

3.1 Verification of example 1

For the verification of the mathematical model derived above.

Results obtained from FOSDT were compared with ANSYS

WORKBENCH, and results from the previous literature for

simple submersible shells. The mean radius and length of

each composite cylindrical shell were 7.5 inches, and the

thickness of each shell was 0.0212 inches. The material

considered had the properties as follows: E11 � 21.17 × 106

psi, E22 � 1.44 × 106 psi, G12 � G13 � G23 � 0.65 × 106 psi and

]12 � ]13 � ]23 � 0.28. All the results are shown in Table 2.

In Table 2, the results were compared with the work done by

Shen, Han, Cadges, and Imran. Column 1 shows the

configuration of the laminate, column 2 shows the results

from Shen, column 3 shows the results obtained by Han,

Column 4 shows the results obtained by Cages and column

5 shows the results obtained by Imran. In the next columns,

results obtained by FOSDT and FEA, respectively, are written.

The results were compared with the previous studies and FEA.

Different angle configurations were changed, and the results were

examined. In all calculations, the value ofmwas fixed to 1, and nwas

changed. For the configuration [0/90/0]s, and in the case of FOSDT,

the percentage difference was recorded 2.4%, 13.99%, 4.04%, 1.87%

with respect to Shen, Han, Cadges and Imran. For the configuration

of [0/90/90]s, the difference was examined 2.78%, 20.3%, 6.72% and

2.79% respectively. When the configuration was changed to [90/90/

0]s, the percentage difference was recorded 3.075%, 17.52%, 4.40%

and 2.11% respectively. For the last configuration of [90/0/90]s, the

values were 2.32%, 16.74%, 4.44% and 2.22% respectively. The

percentage difference between the present FOSDT and FEA was

recorded 8.27% for the configuration of [0/90/0]s and it was

increased to 10.61% for the configuration of [0/90/90]s. [90/90/0]

s configuration shows the percentage difference of 9.51% whereas

the last configuration of [90/0/90]s shows the percentage difference

of 11.65%.

TABLE 2 Results of buckling pressure (psi) from the verification example 1.

Laminate Ref. (Shen
and Li,
2002)

Ref. (Han and Simitses,
1991)

Ref. (Cagdas,
2011)

Ref. (Imran
et al., 2021b)

FOSDT FEA

[0/90/0]s 2.328 (11) 2.590 2.364 (11) 2.3145 (11) 2.272 (11) 2.46 (11)

[0/90/90]s 2.323 (11) 2.719 2.412 (11) 2.3070 (11) 2.260 (11) 2.50 (11)

[90/90/0]s 4.659 (9) 5.312 4.719 (9) 4.6156 (9) 4.520 (9) 4.95 (9)

[90/0/90]s 3.959 (10) 4.517 4.041 (10) 3.9571 (10) 3.869 (10) 4.32 (10)

TABLE 3 Results of buckling pressure (psi) from verification example 2.

Laminate Ref. (Shen
and Li,
2002)

Ref. (Han and Simitses,
1991)

Ref. (Imran
et al., 2021b)

FOSDT FEA

[0/0/90]s 1.112 (13) 1.267 1.1190 1.0994 (13) 1.1638 (13)

[90/0/0]s 4.097 (10) 4.475 4.0603 3.9763 (10) 4.3298 (10)

[02/902]s 1.596 (12) 1.834 1.5862 1.5637 (12) 1.6920 (12)

[0/902/0]s 2.891 (11) 3.248 2.8889 2.8353 (11) 3.1217 (11)

[90/02/90]s 3.608 (10) 4.050 3.5723 3.5071 (10) 3.8515 (10)
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TABLE 4 Critical pressure values with [0/90/0]s configuration and
Carbon/Epoxy composite (MPa).

R/h l/R N Pc R/h l/R n Pc

5 2 3 199.80 20 2 4 7.6460

4 2 101.48 4 3 4.1217

6 2 82.8957 6 2 3.2004

8 2 77.4138 8 2 2.1154

10 2 75.2894 10 2 1.7055

10 2 3 38.1826 50 2 5 0.8426

4 2 21.8757 4 4 0.4696

6 2 14.2611 6 3 0.3094

8 2 11.9625 8 3 0.2453

10 2 11.0878 10 3 0.2239

TABLE 5 Critical pressure values with [0/90/0]s configuration and
Boron/Epoxy composite (MPa).

R/h l/R N Pc R/h l/R n Pc

5 2 3 314.930 20 2 3 12.4741

4 2 162.386 4 3 6.8432

6 2 138.933 6 2 4.8915

8 2 131.926 8 2 3.4638

10 2 124.630 10 2 2.8961

10 2 3 59.9180 50 2 5 1.3740

4 2 32.9020 4 4 0.7961

6 2 23.3658 6 3 0.5146

8 2 20.3643 8 3 0.4232

10 2 19.1702 10 3 0.3747

TABLE 6 Critical pressure values with [0/90/0]s configuration and
Glass/Epoxy composite (MPa).

R/h l/R n Pc R/h l/R n Pc

5 2 3 136.46 20 2 4 4.5830

4 2 64.456 4 3 2.2852

6 2 48.239 6 3 1.8074

8 2 43.828 8 2 1.1221

10 2 42.190 10 2 0.8776

10 2 3 25.156 50 2 5 0.4848

4 2 14.413 4 4 0.2470

6 2 8.0351 6 3 0.1603

8 2 6.3972 8 3 0.1246

10 2 5.8373 10 3 0.1136

TABLE 7 Critical pressure values with [90/0/90/0]s configuration and
Carbon/Epoxy composite (MPa).

R/h l/R n Pc R/h l/R n Pc

5 2 2 247.2767 20 2 3 11.6149

4 2 164.4171 4 3 7.7688

6 2 150.4104 6 2 4.6119

8 2 146.3151 8 2 3.6395

10 1 111.2572 10 2 3.2856

10 2 3 58.4786 50 2 4 1.3919

4 2 32.4035 4 3 0.7761

6 2 25.6584 6 3 0.5524

8 2 23.6896 8 2 0.4584

10 2 22.9626 10 2 0.3181

TABLE 8 Critical pressure values with [02/902]s configuration and
Carbon/Epoxy composite (MPa).

R/h l/R n Pc R/h l/R n Pc

5 2 3 161.2584 20 2 4 5.5256

4 2 76.2637 4 3 2.8201

6 2 56.7668 6 2 2.1797

8 2 51.2309 8 2 1.4870

10 2 49.1366 10 2 1.1246

10 2 3 30.5556 50 2 5 0.5966

4 3 17.2835 4 4 0.3090

6 2 9.9828 6 3 0.2124

8 2 7.8182 8 2 0.1569

10 2 7.0227 10 2 0.1389

TABLE 9 Critical pressure values with [90/02/90]s configuration and
Carbon/Epoxy composite (MPa).

R/h l/R n Pc R/h l/R n Pc

5 2 3 242.297 20 2 3 10.9352

4 2 152.264 4 3 6.9684

6 2 137.422 6 2 4.2621

8 2 133.113 8 2 3.2856

10 1 105.171 10 2 2.9303

10 2 3 54.3685 50 2 4 1.2969

4 2 30.0515 4 3 0.7207

6 2 23.1792 6 3 0.4960

8 2 21.1788 8 2 0.4350

10 2 20.4408 10 2 0.2945
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3.2 Verification of example 2

Table 3 shows the outcomes of the authentication study for

buckling pressure attained by using the FOSDT-based

mathematical model and ANSYS with those of the previous

studies. The dimensions and materials are the same and are

taken from example 1.

In Table 3, the results were compared with the work done by

Shen, Han, and Muhammad Imran. For the configuration of [0/

0/90]s, the difference was recorded 1.1%, 15.24% and 1.78%

respectively. In all cases, the value of m was fixed to 1. When

configuration was changed to [90/0/0]s the percentage difference

was recorded 3.03%, 12.54% and 2.11% respectively. Double

angle configuration [02/902]s shows the percentage difference

of 2.06%, 17.28% and 1.43% respectively. Single double angle

configuration of [0/902/0]s shows the percentage difference of

1.96%, 14.55%, and 1.89%. And the last configuration of [90/02/

90]s shows the percentage difference of 2.87%, 15.65% and 1.85%

respectively.

3.3 Analysis of different configurations

MATLAB code was developed for the theory developed

above for the composite shells. To check the accuracy range,

different types of composite shells, including moderately thick,

thick, long, and short composite shells were investigated. Three

types of materials, Carbon/Epoxy, Glass/Epoxy, and Boron/

Epoxy, were used with different cross-ply symmetric and

unsymmetrical angle configurations. The layups used for the

analysis are [0/90/0]s, [90/0/90/0]s, [02/902]s, [90/02/90]s, [0/902/

0]s, [0/0/0/90]s [90/90/90/0]s and [0/90]. The external pressure

was set at 1 MPa for all the calculations. The radius to thickness

ratio R/h was varied from 5 to 50, and there was a total of four

ranges 5, 10, 20, and 50. The ratio of five means a very thick shell,

and when the ratio goes on increasing, the shell becomes thinner,

and 50 ratio shows the thinnest shell. For the length to radius

ratio l/R, the range was varied from 2 to 10. For each value of R/h

ratio, there were five values i-e 2,4,6,8 and 10. The value of two

TABLE 10 Critical pressure values with [0/902/0]s configuration and
Carbon/Epoxy composite (MPa).

R/h l/R n Pc R/h l/R N Pc

5 2 2 229.387 20 2 3 9.5487

4 2 125.235 4 3 5.3389

6 2 108.639 6 2 3.5568

8 2 103.876 8 2 2.5720

10 1 92.6091 10 2 2.2139

10 2 3 45.5370 50 2 5 1.0706

4 2 25.1965 4 3 0.6096

6 2 18.0657 6 3 0.3829

8 2 16.0009 8 3 0.3282

10 2 15.2404 10 2 0.2473

TABLE 11 Critical pressure values with [0/0/0/90]s configuration and
Carbon/Epoxy composite (MPa).

R/h l/R n Pc R/h l/R n Pc

5 2 3 121.356 20 2 5 3.8247

4 2 55.5726 4 3 1.9541

6 2 34.0594 6 3 1.2128

8 2 27.6786 8 3 1.0173

10 2 25.1871 10 2 0.7858

10 2 4 21.5870 50 2 6 0.3808

4 3 9.9612 4 5 0.2042

6 2 7.2710 6 4 0.1324

8 2 4.8066 8 3 0.1000

10 2 3.8569 10 3 0.0767

TABLE 12 Critical pressure values with [90/90/90/0]s configuration
and Carbon/Epoxy composite (MPa).

R/h l/R n Pc R/h l/R n Pc

5 2 2 259.30 20 2 3 13.216

4 2 201.12 4 2 8.1073

6 2 191.13 6 2 5.2795

8 1 161.52 8 2 4.5476

10 1 120.40 10 2 4.3012

10 2 2 69.666 50 2 4 1.5904

4 2 38.199 4 3 0.8656

6 2 32.699 6 3 0.7015

8 2 31.244 8 2 0.4455

10 2 30.739 10 2 0.3478

TABLE 13 Critical pressure values with [0/90] configuration and
Carbon/Epoxy composite (MPa).

R/h l/R n Pc R/h l/R n Pc

5 2 3 150.82 20 2 4 5.7890

4 2 77.330 4 3 3.1015

6 2 62.018 6 3 2.5374

8 2 57.648 8 2 1.5995

10 2 56.045 10 2 1.2595

10 2 4 28.889 50 2 5 0.6460

4 3 17.588 4 4 0.3502

6 2 10.760 6 3 0.2325

8 2 8.8174 8 3 0.1807

10 2 8.1253 10 3 0.1645
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shows the short shell and the final value of 10 shows the long

shell. All results from different configurations and material types

are listed in Tables 4–13. In every table, the first column shows

the values of R/h ratios. The second column shows the values of

l/R ratios. The third column shows the number of waves in a

circumferential direction and in the longitudinal direction; the

value of half-wave was considered one for every case. Then the

next column shows the values of critical pressures.

Table 4 shows the results from Carbon/Epoxy [0/90/0]s

configuration. For R/h value of 5, the maximum value of

critical pressure was 199.80 MPa on the l/R value of 2. The

value of n was recorded 3. The value of critical pressure drops

down when the l/R ratio was increased. For the l/R ratio of 10,

the value of critical pressure drops down to 75.2894 MPa.

When R/h ratio was increased to 10 which means the shell

becomes more thinner, the value of critical pressure also

drops down to 38.1826 MPa. This pressure was attained when

the l/R ratio was 2. For more longer shells the value of critical

pressure continues to decrease until the minimum value of

11.0878 MPa for the l/R ratio of 10. For the R/h value of 20,

the value of critical pressure further drops to 7.6460 MPa.

One important thing was noticed here that the value of n was

increased by decreasing the thickness of the shell. For this

case the value of n was increased to 4. On this thickness ratio

when the length ratio was increased to 10 the value of critical

pressure drops down to 1.7055 MPa. It was also concluded

that by increasing the length of the submersible shell, the

value of n was decreased. For radius to the thickness ratio of

50 and length to the radius ratio of 2, the value of critical

pressure was recorded 0.8426 MPa. On this point maximum

value of n was recorded 5. For thick shells, its maximum value

was three and with the decrease in the thickness of the shells,

the value of n tends to increase. The lowest value of

0.2239 MPa was recorded on the l/R ratio of 10 and R/h

ratio of 50.

Now for the same symmetric configuration and changing

the composite material to Boron/Epoxy, Table 5 shows the

values of critical pressures on different R/h and l/R ratios. The

results shows that the values of critical pressure were increased

as compare to Carbon/Epoxy. The value of critical pressure was

recorded 314.930 MPa, which was previously 199.80 MPa, in

case of Carbon/Epoxy for R/h value of 5 and l/R value of 2. For

the l/R ratio of 10 the value of critical pressure was attained

75.2894 MPa in case of Carbon/Epoxy and this value was

increased to 124.630 MPa for Boron/Epoxy. For moderately

thick shells R/h≥ 10, the value of critical pressure was recorded

59.9180 MPa which was 38.1826 MPa in the case of Carbon/

Epoxy. When l/R ratio was increased to 10, the value of critical

pressure was recorded 19.1702 MPa, this was 11.0878 MPa for

Carbon/Epoxy configuration. For thin shells when R/h≥ 20, It

was clear from the results that in this range, the shorter shells

have higher values and the longer shells have lower values of

critical pressure. When the ratio l/R was equal to 2, the value of

critical pressure was recorded 12.4741 MPa which was

recorded 7.6460 MPa in case of Carbon/Epoxy face sheets.

When the value of this ratio was increased to 10, the value

of critical pressure drops down to 2.8961 MPa which was

1.7055 MPa in case of Carbon/Epoxy face sheets. For thin

shells when R/h≥ 50, The value of critical was recorded

1.3740 MPa which was 0.8426 MPa in case of Carbon epoxy

face sheets, for l/R ratio of 2. The value of n was same for both

materials and was attained 5. For long shells on this

configuration, the value of critical pressure was recorded

0.3747 MPa.

Table 6 shows the results with the same symmetric

configuration and different composite materials. Boron/Epoxy

was replaced by Glass/Epoxy, and it was examined from the

results that the value of critical pressure was 136.46 MPa for R/h

value of 5 and l/R value of 2. The value for this configuration was

the lowest among the previous two material configurations. In

the case of thick and long shells, the value of critical pressure

drops down to 42.190 MPa. For the moderately thick and short

shells, the value of critical pressure was recorded 25.156 MPa. For

moderately thick and long shell, the value of critical pressure

decreases to 5.8373 MPa. For moderately thin shells of 20 R/h

ratio, the value of critical pressure was 4.5830 MPa for short

shells and 0.8776 MPa for long shells. The value of n was also

increased for thin and short shells and was equal to four whereas

for long shells it was 2. For the R/h ratio of 50 the value of critical

pressure was 0.4848 MPa with 5 number of full waves in the

circumferential direction. The value for long shells on this ratio

was recorded 0.1136 MPa.

It is clear from the study that how results change by changing

the material of the shells. But when the composite fiber ply angles

are changed, it also affects and results are changed even when the

same material is used. Different angles were changed in a

symmetric and nonsymmetrical manner to examine the

changes. Table 7 shows the results from the Carbon/Epoxy

[90/0/90/0]s configuration. For R/h ratio of 5, the value of

critical pressure was recorded 247.2767 MPa which was

199.80 MPa for [0/90/0]s configuration. For moderately thick

and short shells, the value of critical pressure was recorded

58.4786 MPa and for long shells the value was 22.9626 MPa.

For thin and short shells when the values of R/h and l/R were

20 and 2 respectively, the value of critical pressure obtained was

11.61 MPa with 3 number of full waves in the circumferential

direction. And for the same ratios, the value for long shells was

recorded 3.28 MPa. For R/h ratio of 50 and l/R ratio of 2, the

value of critical pressure was recorded 1.3919 MPa and for the

same R/h ratio and l/R ratio of 10, the value was lowest of all and

recorded as 0.3181 MPa.

Table 8 shows the results from [02/902]s configuration. The

values were decreased as compared with the previous

configuration. For thick and short shells, the value of critical
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pressure was decreased to 161.2584 MPa and for long shells the

value was dropped to 49.1366 MPa. For moderately thick and

short shells, the value of critical pressure was recorded

30.5556 MPa and the value of n on this point was 3. For

moderately thick and long shells, the value of critical pressure

was recorded 7.0227 MPa. For thin shells when the R/h value was

20 and l/R value was 2, then the value of critical pressure drops

down to 5.5256 MPa and for same thickness ratio and l/R value

of 10 the value of critical pressure was further decreased to

1.1246 MPa. For thin shells when the R/h value was 50 and l/R

value was 2, the value of critical pressure was recorded

0.5966 MPa and this value further dropped down to

0.1389 MPa in case of long shells with l/R ratio of 10.

Table 9 shows the results from the Carbon/Epoxy [90/02/90]s

configuration. For R/h ratio of 5 and l/R ratio of 2, which

belongs to the thick shells, the value of critical pressure was

recorded 242.297 MPa which was 161.2584 MPa for [02/902]s

configuration. This showed that both double angle

configuration was not much stable then alternate single

angle configuration. For moderately thick and short shells

with R/h ratio of 5 and l/R ratio of 2, the value of critical

pressure was recorded 54.3685 MPa and for long shells the

value was 20.4408 MPa. For thin and short shells with the

values of R/h and l/R were 20 and 2 respectively, the value of

critical pressure obtained was 10.9352 MPa with 3 full waves in

the circumferential direction. And for the same configuration,

the value for long shells was recorded 2.9303 MPa. For R/h ratio

of 50 and l/R ratio of 2, the value of critical pressure was

recorded 1.2969 MPa and for the same R/h ratio and l/R ratio of

10, the value was lowest of all and recorded 0.2945 MPa.

Table 10 shows the results from [0/902/0]s configuration. The

values were decreased as compared with the previous

configuration. For thick and short shells, the value of critical

pressure was decreased to 229.387 MPa and for long shells the

value was dropped to 92.6091 MPa. For moderately thick and

short shells, the value of critical pressure was recorded

45.5370 MPa and the value of n on this point was 3. For

moderately thick and long shells, the value of critical pressure

was recorded 15.2404 MPa. For thin shells when the R/h value

was 20 and l/R value was 2, then the value of critical pressure

drops down to 9.5487 MPa and for same thickness ratio and long

shells, the value of critical pressure was further decreased to

2.2139 MPa. For thin shells when the R/h value was 50 and l/R

value was 2, the value of critical pressure was recorded

1.0706 MPa and this value further dropped down to

0.2473 MPa in case of long shells with l/R ratio of 10.

Table 11 shows the results from [0/0/0/90]s configuration.

The value of critical pressure was reduced to 121.356 MPa for

thick and short shells. This configuration shows the lowest value

of the critical pressure. For R/h ratio of 5 and l/R ratio of 10, the

value of critical pressure was further reduced to 25.1871 MPa.

For moderately thick and long shells, the value of critical pressure

was recorded 3.8569 MPa. For thin and short shells with R/h

ratio greater than 20, the value of critical pressure was recorded

3.8247 MPa. Here the value of n was increased to 5 and for long

shells the value of critical pressure was recorded 0.7858 MPa. For

the last category of thin and short shells, the value was recorded

0.3808 MPa. The value of n was also increased to 6 for thin and

short shells and this was the maximum value attained. For long

shells, the value was recorded 0.0767 MPa.

Table 12 contains the results acquired from [90/90/90/0]s

configuration. Changing the angles of the plies as compared

with the previous configuration shows a huge difference in the

results. The value of critical pressure for thick and short shells

was more than double of the previous configuration and was

equal to 259.30 MPa. The number of full waves in the

circumferential direction were also decreased as compared

with the previous configuration. For long shells on this

thickness ratio, the value of critical pressure was recorded

120.40 MPa. For moderate thick shells, the values in case of

short and long shells were recorded 69.666 MPa and

30.739 MPa respectively. For moderate thin shells, the values

in case of short and long shells were recorded 13.216 MPa and

4.3012 MPa respectively. For thin shells with the thickness ratio

of 50, the values in case of short and long shells were recorded

1.5904 MPa and 0.3478 MPa respectively. Table 13 gives the

results attained from [0/90] configuration. The value of critical

pressure for thick and short shells was equal to 150.82 MPa. For

long shells on this thickness ratio, the value of critical pressure

was recorded 56.045 MPa. For moderate thick shells, the values

in case of short and long shells of ratio 2 and 10 were recorded

28.889 MPa and 8.1253 MPa respectively. For moderate thin

shells, the values in case of short and long shells of ratio 2 and

10 were recorded 5.7890 MPa and 1.2595 MPa respectively. For

thin shells with the thickness ratio of 50, the values in case of

short and long shells of ratio 2 and 10 were recorded

0.6460 MPa and 0.1645 MPa respectively.

4 Conclusion

In this research work the analytical modeling of cross-ply

submersible composite shell structure was presented. Four

different types of shells i-e Thick, thin, long and short shells

were investigated under hydrostatic pressure. The results of

the modeling were compared with the previous studies. With

the formulation given in the study, one can design the shells

according to the user’s applications. It was clear from the

results that the direction of the composite plies also has a large

impact on the stability of the submersible composite shell. For

thick and short shells with R/h and l/R values of 5 and

10 respectively, the maximum value of critical pressure was

obtained 314.930 MPa for [0/90/0]s configuration and Boron/

Epoxy composite material. In the case of carbon epoxy
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composite material the maximum value of critical pressure

was recorded 259.30 MPa for [90/90/90/0]s configuration. For

long shells the value of critical pressure was decreased as l/R
ratio was increased, critical pressure was decreased to

120.40 MPa for the l/R ratio of 10. For moderately thick

and short shells, the value of critical pressure was recorded

69.666 MPa. For thin and short shells, the value of the number

of full waves in the circumferential direction was also

increased to 5 which was 2 for thick and short shells.
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