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Exposure of building infrastructures to accidental or intentional blasts is an

extreme load condition that may cause irreparable damage leading to the

collapse of buildings. Columns being principal elements are themost important

for the stability and safety of the buildings under accidental explosions and

subversive blast events and therefore attract the attention of structural

engineers and researchers. Some recent examples are the Beirut seaport

explosion (August 2020), the explosion at an ammunition warehouse in

Ryazan City of Russia (October 2020), the gas explosion in China’s Hubei

Province (June 2021), a blast at a chemical factory on the outskirts of

Bangkok (July 2021), and the explosion on a container ship docked at

Dubai’s Jebel Ali Port (July 2021). In the crises like ongoing conflict between

Russia and Ukraine, the enhanced response of the principal components of a

structuremay save the life of the building users by limiting severe damage to the

structure. In this study, three experimentally tested 3000-mm-long normal

strength concrete columns, 300mm x 300mm, provided with (i) conventional

reinforcement, (ii) seismic reinforcements over top and bottom confining

regions (600 mm), and (iii) seismic reinforcement over confining and mid-

height regions, carrying an axial working load of 950 kN available in the

literature, are modeled in the ABAQUS 2020 code and are subjected to

82 kg TNT close-range explosive load at a scaled distance 1.0 m/kg1/3 using

the software’s explicit module. In addition to this, one column with seismic

reinforcement over its entire length has been considered and modeled. The

concrete damage plasticity model is explored for nonlinear elastic and inelastic

behaviors, degradation of stiffness, and loading rate effect on concrete.

Following the validation of the numerical models, the seismic

reinforcements of the columns have been replaced by the cross-diagonal
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reinforcements between the conventional stirrups with the same axial load.

Blast performance of the columns with the seismic reinforcements and with

replaced diagonal reinforcements is critically examined and discussed. The

results show that the application of cross-diagonal reinforcements as a

replacement for the seismic reinforcements enhances the blast resistance of

the reinforced concrete column significantly by reducing the damage and

displacement.
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1 Introduction

Several studies have been conducted in the past 2 decades

addressing the behavior of reinforced concrete (RC) columns

under extreme blast loadings (Elsanadedy et al., 2011; Mutalib

and Hao, 2011; Bogosian and Heidenreich, 2012; Fujikake and

Aemlaor, 2013; Jayasooriya et al., 2014; Li and Hao, 2014; Burrell

et al., 2015; Cui et al., 2015; Jacques et al., 2015; Zhang et al., 2015;

Zhang et al., 2016; Hu et al., 2018; Wang et al., 2018; Rajkumar

et al., 2019; Alsendi and Eamon, 2020; Anas et al., 2022e; Anas

et al., 2022h; Shariq et al., 2022a; Tahzeeb et al., 2022a; Tahzeeb

et al., 2022b; Tahzeeb et al., 2022c; Anas and Alam, 2022d; Anas

et al., 2022I; Shariq et al., 2022c). Moretti and Tassios (2018)

tested eight RC columns with additional transverse

reinforcement in the form of open ties in both directions

under axial compression. It was concluded that a higher

transverse ratio improves the ductility of the columns.

Previous experimental research on beams with diagonal shear

reinforcements showed that the application of diagonal

reinforcement not only reduces the flexure–shear cracks but

also enhances the ductility and shear capacity of the beams

(Demir et al., 2016; Ozturk, 2016). Elsanadedy et al. (2011)

examined the level of damage on the circular RC column by

the variation of charge weight, scaled distance, and boundary

conditions. The dynamic characteristic of a circular RC column

was studied using a numerical approach in LS-DYNA software,

and a comparison was made between blast performance of the

retroftted and non-retrofitted column. Rodriguez-Nikl et al.

(2012) conducted a quasistatic experimental test on the RC

column to determine the blast performance of as-built and

carbon-fiber-jacketed columns. The failure mode of the

jacketed column changed from brittle the shear to ductile

flexure and therefore increased the blast-resistance of the

column. Roller et al. (2012) carried out a series of tests on the

exposed hardened concrete surface to study the residual axial

load-carrying capacity of the circular column under contact as

well as close-in detonations. Abladey and Braimah (2014)

presented a numerical study AUTODYN to investigate the

effect of close-in explosion on the behavior of the square RC

column designed and reinforcement detailed with different levels

of seismicity. Li and Hao (2014) proposed various numerical

models to predict concrete spall damage in the RC columns

under different combinations of explosive charges and standoff

distances. Li et al. (2015) carried out an experimental and

numerical study (LS-DYNA) to determine the axial load-

carrying capacity of the square column. It was noted that the

application of axial load provides smaller mid-span flexural

deflection and residual deflection. Kyei and Braimah (2017)

carried out experimental and numerical investigation on the

square RC column with and without seismic reinforcement

over the confining region, and seismic reinforcement over the

confining region and mid-region was subjected to 82 kg and

123 kg-TNT at a scaled distance varying from 0.25 to

0.85m/kg1/3. Performance of the column with seismic

reinforcement over the confining region as well as mid-height

region was found to be superior. An experimental and

computational analysis was carried out by Chen et al. (2019)

to study the behavior of the RC column considering the variation

in the axial load ratio (ALR). At a scaled distance greater than

0.40 m/kg1/3, increment in ALR was found to be in favor of the

RC column subjected to close-in blast loading, and the increment

in ALR accentuates the shear damage of the RC column.

However, at a scaled distance less than 0.40 m/kg1/3, with an

increase in ALR, the failure mode changes from flexural failure to

compression–shear failure and at a scaled distance of 0.40m/kg1/3

and ALR of more than 0.40, the column suffers

compression–shear failure.

Safety of buildings that are part of critical infrastructures

against extreme loadings such as those generated by the

explosion is of concern to the government and for designers,

and it is a challenge to design the buildings as blast-resistant.

Compression members of the buildings in the ground-storey

particularly are more important because of their exposure to

blast, and their failure may be instrumental to disproportionate

or progressive collapse. In this study, the blast performance of

conventionally reinforced axially loaded square RC columns with

the cross-diagonal reinforcement between the conventional

stirrups over the confining zones (top and bottom 600 mm),

over-confining zones as well as mid-height zone, and over the

entire length of the column has been examined using the

ABAQUS code equipped with the concrete damage plasticity

model and comparisons with their respective seismically
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reinforced RC columns are the novelty of the study. The three

columns, namely, conventionally reinforced (C1), seismically

reinforced over the confining regions (S1), and seismically

reinforced over the confining regions as well as mid-height

regions (S2), experimentally tested by Kyei and Braimah

(2017) under an axial compressive load of 950 kN and blast

load of 82 kg-TNT equivalent, are considered reference

columns. In addition to this, one column with the seismic

reinforcement over its entire length (S3) is also considered a

reference column in the study. The present research

investigates the role of the diagonal reinforcements on the

performance of the columns subjected to the close-in

explosion loading and suggests provisions to reduce

explosion-generated risk.

2 Finite element modeling of the RC
column under explosive loading

A commercial code, ABAQUS with an inbuilt explicit

module (ABAQUS/Explicit FEA program, 2020) is used in

this study to investigate the effect of the seismic

reinforcements and additional reinforcements in the form of

cross-diagonal between the conventional stirrups on the air-blast

response of the axially loaded RC column under a high explosive

load of 100 kg ANFO (≈82 kg-TNT). The height of the burst is
1.50 m from the ground. The ductile detailing of the columns has

been provided following the guidelines of CSA A23.3–04 (R2010)

(CSA A23.3-04, 2010) and IS 13920:2016 (IS 13920, 1968). The

three columns, namely, C1, S1, and S2, tested by Kyei and

FIGURE 1
Dimensions (mm) and details of the reinforcements.
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Braimah (2017), were not designed against seismic loading but

were assumed to be part of the seismic force-resisting system

(SFRS) of the building with sufficient ductility to undergo lateral

deformation (Kyei and Braimah, 2017).

2.1 Description of the models

Nine FE column models have been developed. The first

model (C1) is of 3000 mm long, 300mm x 300mm

conventionally reinforced RC column with 4 bars of 25 mm

diameter and transverse reinforcement in the form of 10 mm

diameter stirrups of a yield strength 500 MPa at a uniform

spacing of 150 mm center-to-center (c/c), as illustrated in

Figure 1A. In the second model (S-1), the seismic

reinforcement has been provided over a length of 600 mm at

each end of the column, as shown in Figure 1B. The third model

(S-2) consists of seismic reinforcement over the confining regions

as well as the mid-height (600 mm), Figure 1C. The fourth

column model (S-3) is having seismic reinforcement

throughout the length, as shown in Figure 1D. The spacing of

stirrups in the seismic regions is 75 mm c/c. Model nos. 5, 6, and

7, i.e., C-2, C-3, and C-4 have been obtained by replacing seismic

reinforcement over the confining regions, over confining regions

as well as mid-height, and over the entire column length with the

cross-diagonal reinforcement (8 mm), as shown in

Figure 1E–Figure 1G. It is worth mentioning that the inner

member of the cross-diagonal is connected to longitudinal re-

bars and conventional stirrups, while the outer one is connected

to the conventional stirrups. It is to be pointed out that the weight

of the replaced cross-diagonal reinforcement is higher than the

seismic reinforcement. Model nos. 8 and 9, i.e., C-5 and C-6 have

the reinforcement layout of model nos. 6 and 7 but with a

difference that the diagonal reinforcement is of 10 mm

diameter, as shown in Figure 1H and Figure 1I. The finite

element models are illustrated in Figure 2. The slenderness

FIGURE 2
Three-dimensional view of the reinforcements of the columns.

TABLE 1 Default parameters for the CDP concrete model, taken from
Ahmadi et al. (2022), Anas et al. (2022J), Anas et al. (2022K), Anas
et al. (2022L), Anas et al. (2022M), Anas et al. (2022N), Anas et al.
(2022O), Shariq et al. (2022b), Shariq et al. (2022c), and Anas and Alam
(2022d).

Parameter Value

Dilation angle (ψ) 31°

Eccentricity (ε) 0.10

fb0/fc0 1.16

Kc 0.67

Viscosity parameter (µ) 0.0

Concrete-steel reinforcement bond.
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ratio of the columns is 10 (<12, short columns). All the columns

are subjected to an axial gravity load of 950 kN and blast pressure

of 8.60 MPa generated from the 100 kg ANFO charge. Single-

diagonal reinforcement is blast face specific; therefore, it is not

considered in the study as blast face, in general, is not predefined.

2.2 FE mesh, idealized support conditions,
and explicit module

The columns are discretized with C3D8R elements of an

explicit type available in ABAQUS/Explicit FEA program,

2020. Generally, the average mesh size of 10 mm has been

adopted following the convergence test conducted at a scaled

distance of 1.00m/kg1/3. The compressive strength, tensile

strength, Young’s modulus, and Poisson’s ratio of the

concrete taken from Kyei and Braimah (2017) are

30 MPa, 3.00 MPa, 26.60 GPa, and 0.20 GPa, respectively.

The mass density, ultimate tensile strength, yield strength,

Young’s modulus, and Poisson’s ratio of the steel are 7800kg/

m3, 545MPa, 500MPa, 210GPa, and 0.30, respectively (Kyei

and Braimah, 2017). The thickness of the concrete cover to

the longitudinal steel bar is 40 mm. The reinforcements are

discretized with B31 elements (ABAQUS/Explicit FEA

program, 2020). The re-bars are embedded in the column

using the EMBEDDED_REGION constraint command

(ABAQUS/Explicit FEA program, 2020). The host region

is chosen as the concrete, while the embedded region is

chosen as the reinforcements. Moreover, the

TIE_CONSTRAINT command has been used to provide

the interaction between the steel bars and the lateral

reinforcements (ABAQUS/Explicit FEA program, 2020).

The axial load-carrying columns are modeled with no

translational degree-of-freedom restraint in the direction

of the applied load (Kyei and Braimah, 2017). However,

the bottom of the columns is assumed fixed (Kyei and

Braimah, 2017).

In the current study, the air-blast pressure is defined as

pressure versus time application and subsequently applied

to the surface of the column facing the explosion (-Z

direction) using the explicit solver available in the

ABAQUS code (ABAQUS/Explicit FEA program, 2020;

Anas et al., 2020a; Anas et al., 2020b; Anas et al., 2020c;

Anas and Ansari, 2021; Anas and Alam, 2022a; Anas et al.,

2021a; Kyei and Braimah, 2017; Pereira et al., 2015). The

explicit solver incrementally solves the equation of motion

and updates the stiffness matrix at the end of each increment

of load and displacement based on changes in geometry and

material (ABAQUS/Explicit FEA program, 2020; Anas et al.,

2021a; Hao et al., 2016).

FIGURE 3
(A) Time evolution of air-blast pressure due to an explosion acting on a target structure (TM 5-1300, 1990; Wu and Hao, 2005) and (B)
experimentally recorded history adapted from Kyei and Braimah (2017).
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2.3 Concrete modeling

The material constitutive model is one of the factors

responsible for the accuracy of numerical results (Tahzeeb

et al., 2022a; Tahzeeb et al., 2022b; Tahzeeb et al., 2022c).

Concrete damage plasticity (CDP) is such a model employed

to model the plastic behavior of the concrete in the present work

from ABAQUS/EXPLICIT software.

The concrete model has been developed to analyze the failure

of the concrete using the damage plasticity constitutive model,

which is a combination of isotropic damage elasticity and

isotropic compressive and tensile plasticity (Lee and Fenves,

1998; Lubliner et al., 2003). It defines an important

characteristic of the failure mechanism of the concrete in an

elastic–plastic manner (ABAQUS/Explicit FEA program, 2020;

Hafezolghorani et al., 2017; Lee and Fenves, 1998). The damage

plasticity model assumes to influence the axial compression and

tension response of the concrete (ABAQUS/Explicit FEA

program, 2020). Experimental data of Hafezolghorani et al.

(2017) are utilized to model the inelastic response of the

concrete under a blast. The strain-rate or loading rate effects

on materials’ strength are considered per UFC3-340–02 (2008)

and fib Model Code 2010, reported in Refs. (Shariq et al., 2022a;

Tahzeeb et al., 2022a; Anas et al., 2022e). General CDP parameter

values used for concrete modeling are listed in Table 1.

In numerical simulations involving the reinforced concrete,

which involves separately meshing the concrete and steel

reinforcement, there are basically two ways of ensuring a

bond between the concrete and the reinforcing bars. The first

method requires meshing the concrete and reinforcing bars in

such a way that they share common nodes on the interface

(Ahmadi et al., 2022; Anas et al., 2022J; Anas et al., 2022K; Anas

et al., 2022L; Anas et al., 2022M; Anas et al., 2022N; Anas et al.,

2022O; Shariq et al., 2022b; Shariq et al., 2022c; Anas and Alam,

2022d). This, however, tends to be a very laborious process. The

second method allows for meshing the concrete and the

reinforcement separately and coupling the concrete and

reinforcing bar nodes using the

CONSTRAINED_EMBBEDED_REGION keycard in ABAQUS

(ABAQUS/Explicit FEA program, 2020). The

CONSTRAINED_EMBBEDED_REGION keycard requires, as

input, the master (in this case concrete) and slave (reinforcing

bars and stirrups) components of the meshed parts (Anas and

Alam, 2022e).

TABLE 2 Comparison of maximum transverse mid-height displacement (mm).

Column ID Experimental result (Lubliner
et al., 2003)

ABAQUS result Percentage difference (%)

C-1 37.10 36.11 2.70

S-1 36.00 34.87 3.19

S-2 33.00 31.83 3.61

FIGURE 4
Comparison of the cracking profile of column S-1.
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2.4 Explosive load modeling

An explosion is the combustion of a chemical explosive

that is initiated suddenly through rapid oxidation, and the

generated wave propagates at an expeditious speed (Anas

et al., 2021a; IS 4991, 1968; Goel and Matsagar, 2014; TM 5-

1300, 1990; Anas et al., 2021b; Anas and Alam, 2021; Anas

et al., 2021c; Anas et al., 2021d; Anas et al., 2022a; Anas et al.,

2022b; Anas and Alam, 2022b; Anas et al., 2022c; Anas et al.,

2022d; Ahmadi et al., 2021; Anas et al., 2021e; Anas et al.,

2021f; Anas and Alam, 2022c; Anas et al., 2022e; Anas et al.,

2022f; Anas et al., 2022g; Anas et al., 2022h; Anas et al.,

2022I; Shariq et al., 2022a; Tahzeeb et al., 2022a; Tahzeeb

et al., 2022b; Tahzeeb et al., 2022c; Ul Ain et al., 2021; Ul Ain

et al., 2022). The speed of the explosion wave varies from

6000m/s to 8000m/s (Anas et al., 2021a; TM 5-1300, 1990).

Blast is an explicit dynamic event having a non-linear

response to structure and materials with a very fast

varying transient nature involving the complex stress state

and high magnitude of peak load. The explosion loading

terminates with the blast wave propagation through the

atmosphere which impinges on the target structure surface

conduce with an extremely robust release of energy resulting

in expeditious augmentation in the intensity of light, heat,

sound, and dense gases with high-pressure gas in a very short

duration of time. The peak blast pressure is dependent on

explosive weight (W), standoff distance (S), and the incidence

angle of the blast wave with the striking surface (IS 4991, 1968;

TM 5-1300, 1990). Air-blast loading characteristics and

related blast parameters are discussed by the authors in

detail (Anas et al., 2020a; Anas et al., 2020b; Anas et al.,

2020c; Anas et al., 2021a; Anas and Ansari, 2021; Anas and

Alam, 2022a). Blast pressure–time history variation following

a detonation can be expressed by the empirical-based model

proposed by Wu and Hao (2005), represented in Eq. 1, shown

in Figure 3A.

FIGURE 5
(A) Displacement time histories and (B) DDE profiles.

Frontiers in Materials frontiersin.org07

Anas et al. 10.3389/fmats.2022.1002195

https://www.frontiersin.org/journals/materials
https://www.frontiersin.org
https://doi.org/10.3389/fmats.2022.1002195


P(t) �

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎩

Po, (0≤ t< tA),

Po + POP( t
t1
), (tA ≤ t≤ t1),

Po + POP(1 − t − t1
t2

). exp( − Ψ (t − t1)
t2

), (t1 ≤ t),

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎬⎪⎪⎪⎪⎪⎪⎪⎪⎭
(1)

where pp(t) = blast pressure at time “t”; PO = ambient air-

pressure (0.10 MPa); POP = peak overpressure; tA = arrival

time of the shock wave; t1 = rising time; t2 = decreasing time;

t- = negative blast phase duration; td = positive phase duration,

and Ψ = decay coefficient. Figure 3B shows the air-blast profile

for a scaled distance of 1.00 m/kg1/3 in free air, experimentally

recorded by Kyei and Braimah (2017). Current blast design

provisions have been followed to model the blast history

illustrated in Figure 3B (Anas et al., 2020a; Anas et al., 2020b;

Anas et al., 2020c; Anas et al., 2021a; Anas and Ansari, 2021;

Anas and Alam, 2022a; IS 4991, 1968; TM 5-1300, 1990; Goel and

Matsagar, (2014); Hao et al., 2016).

The loading on the RC columns in the numerical simulations

was accomplished in two phases, as the same reported in Anas

and Alam (2022d). In the first phase, the axial loading was

applied to the top surface nodes as linearly increasing load to

the axial load level. The load is maintained for a few milliseconds

until the internal stress stabilizes at the stress corresponding to

the ALR considered in the simulation. The static pressure is then

maintained throughout the second phase of the loading which

involves lateral blast loading on the column.

3 Results and discussions

Maximum transverse displacements of the axially loaded

square RC columns C-1, S-1, and S-2 under 82 kg TNT blast

loading are in good agreement with the experimentally measured

maximum displacements by Kyei and Braimah (2017) (Lubliner

et al., 2003) with an average percentage difference less than 4%,

shown in Table 2. The crack pattern obtained on the side face of

column S-1 as illustrated in Figure 4 is quite similar to the

available blast test results and therefore approves the application

of employed software to predict the dynamic response of the

column.

FIGURE 6
Principal stress (MPa) contour of the columns’ reinforcements.
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3.1 Effect of seismic reinforcements (S-1,
S-2, and S-3)

The maximum damage dissipation energy (DDE) of the

conventionally reinforced RC column C-1 is found to be

763.17 J, shown in Table 2 and Figure 5B. The application of

the seismic reinforcements reduces the maximum displacement

and DDE, as shown in Figure 5. The decrease in the DDE

represents less damage commensurate to the formation of

fewer cracks and lesser concrete spalling/crushing in the

columns than the reference column C-1. The percentage

reductions in columns S-1, S-2, and S-3 are 4, 10, and 15%,

respectively, with respect to column C-1, as shown in Table 2.

The re-bars facing the explosion experience the maximum

principal compressive stress of 200.03 MPa (< fy = 500 MPa) at

the bottom region of column C-1, while the re-bars on the rear

side experience the maximum tensile stress of 100.68 MPa at the

mid-height level of the column, as shown in Figure 6. The

concrete on the blast face at the bottom and near the top of

column C-1 experiences the maximum compressive stress of

28.02 MPa (< fc = 30 MPa) which implies that the conventional

stirrups with four corner longitudinal bars are not able to confine

to the concrete, as shown in Table 2. The top and bottom

portions of column C-1 are severely damaged with the

concrete crushing on the explosion face, while the tension

face suffers from concrete spalling and flexure–shear cracks

with an average crack depth of 220 mm, as shown in Figure 7

and Figure 8. Provision of seismic reinforcement over the

confining regions (S1), over the confining regions as well as

mid-height (S2), and over the entire column length (S3)

reduces the maximum compressive stress in the re-bars by 6,

5, and 2%, respectively, while the percentage reductions of

maximum tensile stress in the re-bars are 5, 15, and 18% with

respect to column C-1, as shown in Figure 6. The stirrups

near the top and bottom of column C-1 facing the explosion

experience the maximum tensile stress of 251.03 MPa, as

shown in Figure 6. A noticeable reduction in the tensile stress

in the stirrups and average crack depth is observed with the

application of seismic reinforcements; however, the

percentage reduction is found to be maximum with the

FIGURE 7
Profile of concrete crushing in the columns.
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application of seismic reinforcement over the entire column

length in comparison to column C-1. Referring to Table 4,

the maximum crushing stress in the concrete of columns S-1,

S-2, and S-3 is more than the compressive strength of the

concrete (30 MPa).

3.2 Effect of cross-diagonal
reinforcements (8mm and 10mm)

Columns C-2 and C-3 obtained by replacing the seismic

reinforcements with the cross-diagonal reinforcements (8 mm)

FIGURE 8
Profile of cracking and spalling of the concrete of the columns.

TABLE 3 Summary of maximum transverse mid-height displacement (Δmax ) and damage dissipation energy (DDE).

S. No. Description Column no. Δmax (mm) DDE (J)

1 Conventional r/f C-1 36.11 763.17

2 Seismic r/f over top and bottom regions (600 mm) S-1 34.87 (a3) 731.15 (a4)

3 Seismic r/f over top, bottom, and mid-height regions S-2 31.83 (a12) 683.61 (a10)

4 Seismic r/f throughout the entire column length S-3 29.82 (a17) 651.04 (a15)

5 Cross-diagonal r/f (8 mm) over confining regions C-2 31.91 (a12/ b9) 698.08 (a9/ b5)

6 Cross-diagonal r/f (8 mm) over confining and mid-height regions C-3 28.46 (a21/ c11) 622.29 (a18/ c9)

7 Cross-diagonal r/f (8 mm) throughout the entire column length C-4 26.92 (a25/ d10) 585.78 (a23/ d10)

8 Cross-diagonal r/f (10 mm) over confining and mid-height zones C-5 27.33 (a24/ e4) 569.66 (a25/ e8)

9 Cross-diagonal r/f (10 mm) throughout the entire column length C-6 25.75 (a29/ f4) 538.55 (a29/ f8)

*r/f: reinforcement.
a*percentage decrease (%) with respect to C-1.
b*percentage decrease (%) w.r.t S-1.
c*percentage decrease (%) w.r.t S-2.
d*percentage decrease (%) w.r.t S-3.
e*percentage decrease (%) w.r.t C-3.
f*percentage decrease (%) w.r.t C-4.
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between the conventional stirrups display significant

improvement in their blast performance by reducing the

maximum transverse displacement, DDE, stresses, and

average flexure crack depth with reference to their

respective seismically reinforced RC columns, as shown in

Table 3, Table 4, and Figure 5. Column C-4 with cross-

diagonal reinforcement (8 mm) further improves the

deflection response and cracking resistance. An increase

in the cross-diagonal reinforcement from 8 to 10 mm

marginally reduces the maximum displacement in

columns C5 and C6, but the cross-diagonal reinforcement

in column C6 throughout its length more effectively

contributes to reducing the concrete crushing as well as

cracking than all other columns considered in the study,

as shown in Table 3, Figure 7, and Figure 8.

4 Conclusion

Different techniques have been adopted by the researchers to

enhance the blast performance of the RC columns of the

square cross section. In the present research work, the

seismic reinforcement over the confining regions, over the

confining regions as well as mid-height, and over the entire

length of the column and the replacement for the seismic

reinforcements by the cross-diagonal reinforcements

between the conventional stirrups are considered to

improve the response of the axially loaded square RC

columns subjected to 82 kg-TNT equivalent close-in

explosion loading.

The major conclusions drawn from the analyses’ results are

as follows:

a) Provision of the seismic confining lateral reinforcements

improves the deflection response of the column;

however, it does not contribute to controlling the

damage (concrete crushing/cracking) under the high

explosion loading.

b) The technique of using the cross-diagonal reinforcements

as a replacement for the seismic reinforcements

enhances the blast performance of the column

significantly.

c) Higher diameter (10 mm) of the cross-diagonal reinforcement

throughout the length of the column is found most effective to

control the concrete crushing and cracking among the seismic

reinforcements in the square column.

The technique followed in this study can be used for

strengthening the square columns in the existing buildings

and also for the design of the blast-resistant square RC

columns of the buildings vulnerable to blasts.
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TABLE 4 Summary of maximum principal compressive stress in the
concrete and average crack depth of flexure–shear cracks.

S. No. Column no. Stress (MPa) Crack depth (mm)

1 C-1 28.02 (<fc) 220

2 S-1 31.90 210 (a5)

3 S-2 33.08 195 (a11)

4 S-3 35.84 180 (a18)

5 C-2 30.79 200 (a9/ b5)

6 C-3 31.19 172 (a22/ c12)

7 C-4 32.55 164 (a25/ d9)

8 C-5 32.88 145 (a34/ e16)

9 C-6 34.51 141 (a36/ f14)

fc: concrete compressive strength (30 MPa).
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