
Effect of Aluminum Incorporation on
the Reaction Process and Reaction
Products of Hydrated Magnesium
Silicate
Yuan Jia1,2*, Yuxin Zou2, Xinmei Zou2, Yaoting Jiang2, Fangyuan Li2, Wangkun Ma3,
Hongli Yan4 and Rui Hua4

1Hebei Provincial Laboratory of Inorganic Nonmetallic Materials and Hebei Provincial Industrial Solid Waste Comprehensive
Utilization Technology Innovation Center, Tangshan, China, 2College of Materials Science and Engineering, North China University
of Science and Technology, Tangshan, China, 3Technical Information Research Institute of Building Materials Industry, Beijing,
China, 4China Railway 14th Bureau Group 2nd Engineering Co., Ltd., Taian, China

In this study, we investigated the impact of aluminium ion (Al3+) incorporation on the
microstructure and the phase transformation of the magnesium silicate hydrate system.
The magnesium silicate hydrate system with aluminium was prepared by mixing
magnesium oxide and silica fume with different aluminium ion contents (the Al/Si molar
ratios of 0.01, 0.02, 0.05, 0.1, 0.2) at room temperature. The high degree of polymerization
of the magnesium silicate hydrate phases resulted in the limited incorporation of aluminium
in the structure of magnesium silicate hydrate. The silicon-oxygen tetrahedra sites of
magnesium silicate hydrate layers, however, were unable to substitute for silicon sites
through inverted silicon-oxygen linkages. The increase in aluminium ion content raised the
degree of polymerization of the magnesium silicate hydrate phases from 0.84 to 0.92. A
solid solution was formed from residual aluminum-amorphous phases such as hydroxyl-
aluminum and magnesium silicate hydrate phases. X-ray diffraction (XRD), field emission
scanning electron microscope (F-SEM), and 29Si and 27Al MAS NMR data showed that the
addition of Al3+ promotes the hydration process of MgO and has an obvious effect on the
appearance of M-S-H gel. The gel with low aluminum content is fluffy, while the gel with
high aluminum content has irregular flakes. The amount of Al3+ that enters the M-S-H gel
increased with the increase of Al3+ content, but there was a threshold: the highest Al/Si
molar ratio of M-S-H gel can be maintained at about 0.006.

Keywords: magnesium silicate hydrate system, hydroxyl-aluminum, phase transformation, microstructure,
aluminium ion content

INTRODUCTION

As we all know, the hydration product of CaO-SiO2-H2O system is calcium silicate hydrate (C-S-H)
gel, like C-S-H, at normal temperatures and pressures, and the main hydration product of MgO-
SiO2-H2O system is magnesium silicate hydrate (M-S-H)gel(Li et al., 2014; Jia et al., 2017a). The
molecular structures of magnesium silicate hydrate (M-S-H) and calcium silicate hydrate (C-S-H)
phases are significantly different. The former is an amorphous precursor of talc or sepiolite with
layered silica structure (Lothenbach et al., 2015; Bernard et al., 2019), while the latter is a silica-
deficient solid solution and is a precursor of two crystalline phases, tobernorite and jennite
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(Maruyama et al., 2014; Li et al., 2020a). Various studies show
that the system has many excellent properties, such as excellent
adsorptive properties, especially for heavy metal ions like Cu, Ni
(Jia et al., 2016). The M-S-H has a similar structure with sepiolite:
it has a large specific surface area and there are unique nano-scale
pores in molecular structure, and it has the ability to adsorb heavy
metals (Ji et al., 2014; Jia et al., 2017b; Jia et al., 2019; Liu et al.,
2021). Magnesium silicate hydrate (M-S-H) phases can be
considered as a potential cementitious material for nuclear
waste immobilization (Walling et al., 2015) owing to its
moderate pH value (varying from ∼9.5 to ∼10.5) and the
Radionuclide (Cs, Sr) sorption potential (Li et al., 2014; Zhang
et al., 2020).

The interface region between cement-based material and clay can
be observed in the generation ofM-S-H, themain components of clay
are SiO2 and Al2O3 (Bonen and Cohen, 1992; Santhanam et al.,
2020). This study aims to understand the influence of Al3+ content on
the phase transformation and the structural change of M-S-H.
However, the impact of Al3+ on the reaction processes during the
hydration of M-S-H is poorly investigated. On the contrary, in the
presence of Al3+, the molecular structure of C-S-H will change (Song
et al., 2021). According to Richardson et al.(Richardson, 1999) the
incorporation of aluminium ions (Al3+) could change the molecular
structure of the C-S-H phase. For example, tetrahedrally coordinated
Al3+ [Al (Bernard et al., 2019), Al for tetra-coordination] can
substitute for silicon sites in the structure of tobermorite,
occupying the bridging tetrahedra sites of C-S-H chains (Bernard
et al., 2020; Li et al., 2020b). Magnesium silicate hydrate is formed by
reactingMgOwith silica fume (SF) andMgO dissolved in water, with
one part disassociating with Mg2+ and the other part hydrated with
water to formMg(OH)2, and at the same time the SiO2 dissociates in
water to form H2SiO4

2−, and finally the Mg(OH)2, SiO2, and
H2SiO4

2− react to form M-S-H (Li et al., 2014; Tang and Chen,
2020). TheMgO dissolves slowly in water and forms a poorly soluble
weak electrolyte, and the Mg(OH)2 is incomplete, which leads to a
decrease in the hydration rate of M-S-H (Bernard et al., 2017). The
hydration rate ofM-S-H can be increased by addingAl3+ and thereby
can increase the early strength of M-S-H (Li et al., 2019). TheM-S-H
hydration product was prepared by mixing the reactive MgO, silica
fume (SF) and Al(NO3)3, and the synthesized solids were
characterized after 300 days. Advanced testing methods were used
to characterize the M-S-H phases prepared under different Al3+

contents.

MATERIALS AND METHODS

Materials
Light burned technical grade MgO (Martin Marietta Magnesia
Specialties, United States) and SF (Elkem, China) were used to

synthesize M-S-H phase. Aluminium nitrate (Al(NO3)3,
(Chempur, China) was used as the aluminium salt. The
chemical composition data of the raw materials as reported by
the manufacturers are presented in Table 1. The median particle
sizes of theMgO and silica fume were 3.5 and 0.5 μm respectively.

Experiment Method and Analytical
Techniques
The aluminium magnesium silicate hydrate (AMSH) specimens
were prepared by mixing the aqueous solutions of MgO, SF, and
Al(NO3)3 at Mg/Si molar ratio of 1:1 and Al/Si molar ratios of
0.01, 0.02, 0.05, 0.1, and 0.2 were presented in Table 2. Complete
hydration was obtained by adopting a water/solids (W/S) ratio of
10, where S was the total mass of MgO and SF.

In order to speed up the reaction process and make sure the
samples were homogenized, the prepared samples were placed in
a horizontal oscillator to oscillate for 7 days, and then the
solutions were stored at room temperature (25 ± 1 C) in
250 ml sealed polyethylene bottles for up to 300 days. After
300 days the granular residue was separated by filtration and
the collected solids were soaked in absolute ethyl alcohol for 24 h
to inhibit further hydration, and then dried at 40°C for 48 h. The
specimens were characterized using multiple techniques, such as
X-ray diffraction analysis (XRD D/Max 2400 V diffractometer
with Cu Kα radiation at a scan rate of 0.5 2θmin−1), thermo-
gravimetric and derivative thermo-gravimetric analysis (TGA/
DTG, alumina crucibles were used and sample were heated in a
nitrogen atmosphere between 50°C and 1,000°C at 10°C/min),
and field emission scanning electron microscopy (F-SEM: NOVA
Nano-SEM 450) on gold coated samples that had been sputter
coated for 2 min using 15 mA and 30 Pa pressure and 29Si/27Al
nuclear magnetic resonance spectroscopy (NMR).

RESULTS AND DISCUSSION

Figure 1 shows the phases transformation in the MgO-SiO2-H2O
system with different Al3+ content curing for 1 day and 300 days.

TABLE 1 | Chemical composition of the raw materials.

% SiO2 MgO Al2O3 CaO Fe2O3 K2O Na2O P2O5 SO3 Others

SF 94.9 1.1 0.3 0.8 0.2 1.6 0.3 0.4 0.4 0.08
MgO — 98.5 — 0.02 < 0.01 < 0.01 0.05 < 0.01 0.02 1.85

TABLE 2 | Mix proportion.

Sample ID Mg:Si(molar ratio) SiO2(g) Al:Si(molar ratio) w/c

AMSH-1 1:1 6.0 0.01:1 10
AMSH-2 1:1 6.0 0.02:1 10
AMSH-3 1:1 6.0 0.05:1 10
AMSH-4 1:1 6.0 0.10:1 10
AMSH-5 1:1 6.0 0.20:1 10
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Curing for 1 day it is obvious that with the increase of the dosage
of Al (NO3)3, the content of residual MgO in the system decreases
greatly, while the content of Mg (OH)2 increases gradually, which
indicates that the addition of Al3+ promotes the hydration of
MgO and the formation of Mg (OH)2 (Figure 1A). At the same
time, a dispersion peak appears around 2θ about ∼10.6o and it is
gradually obvious with the increase of Al3+ content, it indicates
that there was the formation of a new phase and amorphous type
of micro-crystalline hydroxy aluminium. By the later stage of
hydration (300 days), the crystalline phases were completely
transformed to the amorphous phases due to the reaction of
MgO and Mg (OH)2 with silica fume (SF) (Figure 1B). The
cementitious system is all amorphous phase; and the
characteristic peak of M-S-H gel at the broad diffraction at
22–30° becomes weaker with the increase of the dosage of
Al3+, which may be the result of the change of molecular

structure. The broad diffraction at 20–28°, 33–40° and 58–62°

ranges are attributable to the M-S-H phases (Zhang et al., 2014;
Jia et al., 2016) (Figure 1B) while the diffraction peak between 8°

and 12° represents the Al-amorphous phases (Figures 1A,B).
Three weight loss stages occurred during the curing of M-S-H

for 300 days (Figure 2). The first weight loss occurred in the
temperature range from 50 to 200°C and is attributed to the
removal of free/bound water. The second and third weight losses
in the 200–320°C and 320–700°C ranges are attributed to the
removal of constitutional water in aluminum hydroxide (Al-
amorphous phases) and M-S-H phase respectively (Jia et al.,
2016; Nied et al., 2016) (Figure 2A). As the dosage of Al3+

increases, the weight loss of the phase in the cementitious system
increases gradually in the weight loss range of 200°C–400°C, and
the weight loss phase in this range may be amorphous or
microcrystalline hydroxyl aluminum. According to the weight

FIGURE 1 | The XRD patterns of magnesium silicate hydrate (M-S-H) samples with different Al3+ contents after curing for (A) 1 day and (B) 300 days.

FIGURE 2 | (A) Thermo-gravimetric (TG) and (B) Derivative thermo-gravimetric (DTG) data for MSH samples with different Al3+ contents after curing for 300 days.
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TABLE 3 | Mass percents of various components in AMSH samples after curing for 300 days.

(wt.%) Free and bound water Mg (OH)2 (Mg-OH) gel (Al-OH/Si-OH/Mg-OH)

ΔM1 ΔM2 ΔM3

300 days AMSH-1 12.85 — 7.49
AMSH-2 13.08 — 7.22
AMSH-3 13.90 — 8.32
AMSH-4 12.37 — 10.22
AMSH-5 11.81 — 13.95

FIGURE 3 | 29Si NMR chemical shifts of MSH samples with different Al3+ contents after curing for 300 days (A) silica (B) aluminum (C) changes of the average
condensation degree.
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loss data, the contents of free water and bound water in different
samples are basically consistent, indicating that the addition of
Al3+ did not affect the generation of M-S-H gel when the curing
age is long enough and the initial ratio of Al/Si is less than 0.20. As
the mass of free and bonding water depends on the porous
channel in the MgO-SiO2-H2O system but not on the
aluminium incorporated, the original structure of the M-S-H
phase was unaffected by the incorporated aluminium
(Figure 2B). The mass percents of various components in
AMSH samples after curing for 300 days were shown in Table 3.

The molecular structure of the solid solution which included
aluminum-amorphous phases (hydroxyl-aluminum) and M-S-H
phases was characterized using the NMR. The coordination of the
spectrum of 29Si NMR is usually expressed by Qn, where n
represents the bridge oxygen number between each silicon-
oxygen tetrahedral unit and other Si atoms. The chemical
migration of 29Si in silicate minerals ranges from -60 to
-120 ppm and according to different coordination, it can be
divided into the following four intervals: -60 to -70 ppm
represents a single free island silicate (Q0); -70 to -83 ppm
represents the endpoint of p-silicate or chain silicate (Q1); -83
to -90 ppm represents the silicon-oxygen tetrahedron in the chain
silicate (Q2); -90 to -100 ppm represents the silicon-oxygen
tetrahedron in the chain silicate (Q3); -100 to -120 ppm
represents the silicon-oxygen tetrahedron in the three-
dimensional reticular silicate (Q4) (Wei et al., 2006; Wei et al.,

2011). The transformation of the microstructure of theM-S-H phase
is indicated by the peaks at -85.5 ppm (Q3-a) and -92.9 to -95.1 ppm
(Q3-b) (Figure 3A). In Figure 3A, Q3-a indicates the Si unit via
inverted Si-O-Si linkages, while Q3-b reflects the Si unit in the Si-O
tetrahedral layer (Tonelli et al., 2016). Figure 3B shows that the
coordination of a few Al3+ that entered the structure of the M-S-H
phase and changed to the tetrahedral coordination [Al (Bernard et al.,
2019)]. The chemical shift from -92.9 to -95.1 ppm suggests that Al3+

only occupied the Q3-b tetrahedra sites of the M-S-H layers and did
not substitute for the Si4+ via inverted Si-O-Si linkages (Q3-a).
Although the initial structure of the M-S-H phases was remained
unchanged the average condensation degree was increased from 0.84
to 0.92 after the incorporation of Al3+ (Figure 3C).

Using the deconvolution technique to fit the data of the NMR
Test curve, we can figure out the percentage of Si and Al with
different coordinations, and the specific data are shown in
Table 4. After curing for 300 days, the polymerization average
degree of M-S-H and Al/Si molar ratio (M(Al: Si)) in M-S-H can
be computed by formula 1 and formula 2.

CD � (3I(Q3 − b) + 3I(Q3 − a) + 2I(Q2) + I(Q1))
× /3(I(Q3 − b) + I(Q3 − a) + I(Q2) + I(Q1)) (1)

M(Al: Si) � n × I(AlIV) (2)

Where n is the initial Al/Si molar ratio in M-S-H, I(AlIV) is the
percentage of moles of tetrahedral-Al.

TABLE 4 | 29Si NMR chemical shifts (ppm) and relative intensities (%) from de-convolution of the29Si/27Al NMR spectra for the AMSH-2 ∼ 5 samples after curing for 300 days.

Sample
ID

Q1 Q2 Q3 AlVI AlIV

Center
(ppm)

Area
(%)

Center
(ppm)

Area
(%)

Center
(ppm)

Area
(%)

Center
(ppm)

Area
(%)

Center
(ppm)

Area
(%)

AMSH-2 −79.6 (p) 10.8 −85.3 (p) 24.7 −92.9 (p/Q3-a) 64.6 9.3 (p) 89.3 64.4 (p) 10.7
AMSH-3 −79.2 (p) 5.8 −85.3 (p) 27.9 −93.1 (p/Q3-a) 66.3 9.7 (p) 91.4 67.0 (p) 8.6
AMSH-4 −80.2 (p) 4.6 −85.5 (p) 17.1 −94.0 (p/Q3-a) 78.3 9.9 (p) 94.1 66.0 (p) 5.9
AMSH-5 −78.3 (p) 2.3 −85.5 (p) 18.1 −95.1 (p/Q3-a) 79.6 9.9 (p) 97.0 65.0 (p) 3.0

Key: p—peak, sh—shoulder, Q1
—Q1(3OH), Q2

—Q2(2OH), Q3-a—Q3(OH) as continuous layer silicates, Q3-b—Q3(OH) as inverted silicates, Q3-SF—Q3(OH) in SF.

FIGURE 4 | Field emission scanning electron microscope (F-SEM) images of samples with different Al/Si molar ratios after curing for 300 days: (A) 0 and (B) 0.2.
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According to Figure 3C, with the increase of Al3+

incorporation, the polymerization average degree of M-S-H
increase from 0.85 to 0.93, but obviously the adding amount
of Al3+ is still low. When the initial Al/Si molar ratio exceeds 0.1,
both the adding amount of Al3+ and the polymerization average
degree of M-S-H remain at a constant value. The adding of Al3+

plays a filling role, as it connects the silicon oxygen tetrahedron
chains together and increases the degree of polymerization of the
stratified structure. The molecular structure of M-S-H was
already highly aggregated, which limits the adding amount of
Al3+. It also shows that the number of Si sites in the silicon oxygen
tetrahedral chain replaced by Al3+ is not large, and that the main
function is to connect.

The F-SEM data show that the M-S-H phase has honeycomb
morphology and grown on the surface of the SF particles extending to
the gaps (Figure 4A). The Mg/Si molar ratio of pure M-S-H phases
was 0.95. After the incorporation of Al3+, the Mg/Si molar ratio
remained unchanged in theM-S-Hphases grown on the surface of SF
particles, however, increased to 1.24 in M-S-H phases grown in the
gaps (Figures 4A,B). After curing for 300 days, samples AMSH-1
and AMSH-5 both A and B had only amorphous specimens. The
amorphous substance in sample AMSH-1 was still M-S-H gel with
villous shape, the villi size was about 10–20 nm and there were a lot of
nano-scale pores between the villi. Aluminium incorporation
changed the morphology of M-S-H phases from honeycomb to
petaline shape (Figure 4B).

CONCLUSION

The hydration process of MgO in the magnesium silicate hydrate
system was accelerated by the addition of Al3+, and the rate of
conversion from MgO to Mg(OH)2 increases with the increase of
Al3+ content. However, it does not influence the formation of
hydration products (M-S-H phases) and it slows down theM-S-H
generation. According to TGA/DTG we know that Mg(OH)2
crystals with amorphous hydroxy aluminum are mixed together,
which led to the position of weight loss peak being offset, and the

increase of the weight loss range from 200°C to 300°C proved that
there is a new phase formation in the M-S-H.

Irrespective of the amount of Al3+ doped, a limited amount of
Al3+ entered the structure of the M-S-H phase, consequently, the
initial molecular structure of the M-S-H remained unchanged.
Aluminium ions occupied the Q3-b tetrahedra sites of the M-S-H
layers and did not substitute for Si4+ via inverted Si-O-Si linkages
(Q3-a). The average condensation degree and the Mg:Si molar
ratio of the M-S-H phase raised with the increase of Al3+ content.
Hydroxyl-aluminum, a residual aluminium amorphous phase,
and the M-S-H phases formed a solid solution. The addition of
Al3+ morphology of the M-S-H phase from honeycomb-like to
petal-like.
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