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During the thermal recovery of heavy oil thermal recovery wells, improving the mechanical
properties and integrity of the cement ring is of great significance for the safe and efficient
exploitation of heavy oil resources. This paper studies the relative properties of calcium
aluminate cement and three kinds of slags under the conditions of 50°C × 1.01 MPa and
315°C × 20.7 MPa. CAC-slag composite material performance was evaluated using the
cement paste compressive strength and permeability tests to study the physical properties
of CAC with blast furnace slag. X-ray diffraction analysis, scanning electron microscopy
(SEM), and thermal analysis (DSC/TG) were carried out to investigate the mineralogical
composition of CAC with blast furnace slag. Results show that adding blast furnace slag
did not affect the performance of cement slurry. Moreover, C2ASH8 curing occurred at low
temperature, the microstructure of CAC paste was compact, and the permeability
resistance was improved, thus improving the low-temperature properties of neat CAC.
When cured at a high temperature, the CAC paste was mainly hydrated with C3ASH4 and
AlO(OH), which had a well-developed crystal structure. Adding blast furnace slag can
improve the CAC resistance to high temperature.

Keywords: thermal recovery, blast furnace slag, CAC, high temperature, mechanical properties, phase and
microstructure

INTRODUCTION

Steam flooding is a thermal-recovery technique of heavy oil exploitation. During the process of thermal
recovery, a cement sheath is used as a supporting casing and isolates the cementing intervals that can
withstand steam environments of up to 300–350°C. This is a challenge for cementing materials for
heavy oil thermal-recovery wells (Nabih and Chalaturnyk, 2014; Pang et al., 2018; Chai et al., 2022;
Ding et al., 2021). However, silicate cement added to sand is often used at high temperatures in hot and
humid environments for long periods of heavy oil thermal recovery; the compressive strength declines
sharply, causing zonal isolation invalidation and shortening the working life of the oil well (Walker,
1962; Salehpour et al., 2014). Calcium aluminate cement (CAC) is used as refractory material and has
characteristics of high strength, rapid hardening, and resistance to high temperatures over a long period
of time (Kar et al., 2012; Idrees et al., 2021; Roig-Flores et al., 2021; Abolhasani et al., 2021). Thus, CAC
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has potential use in heavy oil thermal recovery well cementing.
CAC has previously been used as a building or refractory material
in simpler environments compared with thermal recovery. The
curing temperature of the CAC hydration products and its
structure are vital roles. Recent research on CAC have reported
(Goberis and Antonovich, 2004; Ukrainczyk and Matusinović,
2010; Kırca et al., 2013; Pacewska et al., 2013) that temperatures
used are mostly in the range of 20–70°C and few experiments have
been performed on CAC paste curing at 300–350°C. In recent
years, research on CAC has mostly focused on hydration
characteristics and fracture toughness, using slag as an auxiliary
cementing material to improve the mechanical performance of
CAC (Amin et al., 2012; Cheng et al., 2019), and often perform
collaborative analysis with concrete (Wang et al., 2021a; Wang
et al., 2021b; Huang et al., 2021). Therefore, research on the
resistance performance of CAC in hot and humid environments
at high temperatures has great significance.

Alternately, CAC is sensitive when cured at low temperatures.
CAH10 is mainly generated when cured below 20°C, C2AH8, AH3

are generated when cured at 30°C, and C3AH6 and AH3 are
mainly generated when cured at more than 45°C. The hydration
reaction is as follows (Sakai et al., 2010; Mostafa et al., 2012):

2CA2 + 26H → 2CAH10 + 2AH3 (1)

2CA + 11H → C2AH8 + AH3 (2)

3CA + 12H → C3AH6 + 2AH3 (3)

The hydration products CAH10 and C2AH8 are in the
metastable phase, which occurs during the conversion reaction
to a product that is more stable. The reaction for cubic C3AH6

compounds at high temperature curing is as follows:

3CAH10 → C3AH6 + 2AH3 + 18H (4)

2CAH10 → C2AH8 + AH3 + 9H (5)

3C2AH8 → 2C3AH6 + AH3 + 9H (6)

Based on these reaction results, the strength of CAC at low
temperature is unstable, especially when cured at 50–60°C. This

unstable strength greatly limits the use of CAC in cementing
engineering applications. According to previous reports (Heikal
et al., 2005), adding blast furnace slag to CAC can improve the
mechanical properties of CAC when cured at low temperature.

This paper aims to explore the influence of the three blast
furnace slags on the high temperature resistance of CAC for
heavy oil thermal recovery, the physical and microscopic
properties of CAC change during the simulated processes of
cementing at 50°C × 1.01 MPa and steam drive oil at 315°C ×
20.7 MPa.

EXPERIMENTAL

Materials
CAC was produced by the Zhengzhou Xinxing special cement
plant, China. The XRD pattern of CAC is shown in Figure 1.
Three types of blast furnace slag: FSa, FSb, and FSc are all from
Chengdu Hongsheng Technology Co., Ltd., China (Table 1). A
filtrate reducer G33S (AMPS/AM/AA terpolymer), a retarder SR
(lignin sulfonate and boric acid salt mixture), and tap water
(waterworks Chengdu) were also used.

Preparation of Samples
The preparation procedure of the cement slurry is in accordance
with the API standard. The neat cement slurry consisted of CAC,
1.5% (relative to the cement weight) filtrate reducer G33S, 0.45%
retarder SR, and tap water, mark as Ms. The cement slurry with
furnace blast furnace slag consisted of CAC with 30% FSa, FSb, or
FSc, 2% filtrate reducer G33S, 0.6% retarder SR, and tap water,
marked as Ma, Mb, and Mc respectively. The density of both
cement slurries was 1.85 g/cm3. Four CAC formulas were
designated with the codes Ms, Ma, Mb, and Mc. The
experimental formula is shown in Table 2.

The cement slurry was poured into 50.8 × 50.8 × 50.8 mm3

cubic molds and cured in a bath (HH-8; Jintan City Jerry Electric
Appliance Co., Ltd., China) at 50°C for 7 days to simulate the
thermal recovery process. The cured samples were then moved to
a water-cycling, high-temperature, and high-pressure curing
reactor (OWC-9390Y; Shenyang Institute of Aviation Industry
Application Technology Research Institute, China) and cured at

FIGURE 1 | XRD pattern of CAC.

TABLE 1 | Chemical composition and percentage content of slag and CAC.

Materials CAC FSa FSb FSc

Specific gravity 3.10 2.70 2.95 2.70
Average specific area (m2/g) 0.36 1.36 1.503 1.01
CaO(%) 37.85 32.7 50.8 38.2
SiO2(%) 4.94 33.5 27.3 31.8
Al2O3(%) 55.29 16.6 6.93 14.0
MgO(%) — 6.25 3.81 9.60
Fe2O3(%) 1.68 2.87 3.58 1.24
SO3(%) — 2.77 2.70 1.90
TiO2(%) — 2.60 2.31 1.26
K2O(%) — 1.09 0.755 0.581
MnO2(%) — 0.526 0.320 0.68
Na2O(%) — 0.409 0.359 0.322
Others(%) 0.24 0.685 1.136 0.417
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315°C and 20.7 MPa for 7 days. The cubic molds were maintained
in a constant temperature water bath for low-temperature curing
and completely immersed in high temperature thickened oil for
high-temperature and high-pressure curing.

Testing Methods
The method for the slurry performance test is in accordance with
the API standard. Density, fluidity, free fluid, API fluid loss, and
thickening time at 100 Bc were evaluated.

The compressive strength of cubic samples was
determined using a testing machine (TA300; Beijing Ha
Wisdom Technology Co., Ltd., China). Six samples were
used to determine the compressive strengths at each
specified age. The loading rate is 2000N/s. Permeability
was determined on cylindrical samples with a size of Φ
200 mm × 500 mm by using a core permeability measuring
instrument (DSK III; Changzhou Yiyong Technology Co.,
Ltd., China). The rock sample was dried at 60°C for 3 days,
and the absolute permeability of the rock sample was
measured by the gas method. The results were the
arithmetic average of three specimens at the minimum.
The hydration products of cement paste were determined
by X-ray diffraction (XRD; DX-1000; Dandong Fangyuan
Instrument Co., Ltd., China). Samples were prepared by
grinding compressive specimens with the test step length
at 0.08°, scan rate at 2° per minute, and 2-theta angle range of
5°–70°, The voltage and current of the test equipment are
30 kV and 20 mA respectively. The microstructure
morphology of the cement paste was determined using an
environmental scanning electron microscope (FEI
Quanta450; USA) with a vacuum ion sputtering apparatus
(LDM150D type; USA) that coats a layer of Au to all of the
samples. The morphology of the cement was then observed
through SEM. Resolution: high vacuum mode, 3.0 nm
(30 kV); Magnification: 5X-300000X; Accelerating voltage:
0.3–30 kV; Sample stage stroke X � 100 mm and above,

Y � 100 mm and above, Z � 100 mm and above; T �
10°–90°; R � 360°.The cement was tested for heat
absorption at 25–900°C, with a heating rate of 10°C/min,
sensitivity of 0.04 µw, and calorimeter precision of 0.1% in
a thermal analyzer (TGA/SDTA85/; Mettler-Toledo,
Switzerland). The reaction gas is air with a flow rate of
10 ml/min; the shielding gas is nitrogen with a flow rate of
20 ml/min.

RESULTS AND DISCUSSION

Properties of the CAC Slurry
Table 3 shows the fundamental properties of the CAC slurry.
The CAC slurry had a density of 1.85 g/cm3, good liquidity, and

TABLE 2 | Cement slurry formula.

Id CAC/% Slag G33S/% SR/% Water/% Density/g/cm3

Type Amount/%

Ms 100 — — 1.5 0.45 44 1.85
Ma 100 FSa 30 2 0.6 44 1.85
Mb 100 FSb 30 2 0.6 44 1.85
Mc 100 FSc 30 2 0.6 44 1.85

TABLE 3 | Properties of the CAC slurry.

Formula Density (g/cm3) Fluidit (cm) Free fluid
(%)

API fluid
loss (ml)

100Bc thickening
time (min)

Stability(△ρsc/%)

Top Middle Bottom

Ms 1.85 26.5 0.5 50 143 99.9 100.0 100.1
Ma 1.85 25 0.3 39 151 99.9 99.9 100.1
Mb 1.85 24 0.2 44 156 99.8 100.0 100.2
Mc 1.85 25 0.2 35 152 100.0 100.0 100.0

Note: The thickening time is tested under the conditions of a pressure of 45 MPa, a temperature of 50°C, and a heating time of 30 min.

FIGURE 2 | Influence of admixture on early strength of aluminate cement
stone (50°C).
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less free fluid. API fluid loss was within 50 ml and was reduced
when mixed with 30% furnace blast furnace slag. The thickening
time of the 100 Bc control was within 2–3 h, which satisfies the
Liaohe oilfield blocks Q cementing operation requirements in
China.

Mechanical Behavior
Early Compressive Strength
This experiment demonstrated the early compressive
strength of a CAC paste under low-temperature (50°C)
curing in a water bath, as shown in Figure 2. Under this
curing condition, the pure aluminate cement compressive
strength changed. Moreover, the intensity fluctuation was
larger after only 1 day (24 h), and the strength was higher
than that of the CAC paste mixed with blast furnace slag.
Fentiman et al. (Fentiman et al., 2020) also found that, in the
early days, the compressive strength of CAC paste with blast
furnace slag is lower than that of pure CAC paste. Compared
with pure CAC paste, the compressive strength of CAC paste
mixed with blast furnace slag exhibited a larger increase and
was relatively stable after 3 days (72 h), and the compressive
strength gradually increased with curing time. The
compressive strength increased because the hydration

reaction produced C2ASH8 (also called stratlingite) instead
of C3AH6 (Antonovič et al., 2013).

High-Temperature Performance of CAC Paste With
Blast Furnace Slag
The permeability and compressive strength of CAC paste cured
at 50°C × 1.01 MPa and 315°C × 20.7 MPa are shown in Table 4.
The permeability of Ms is larger. However, the relative
permeability of Ma, Mb, and Mc was improved substantially
compared with Ms. This result indicates that the structure of
CAC paste with blast furnace slag was denser and had increased
compressive strength. In particular, the resistance of the
permeability of Mc was higher than that of Ms by 77.5%,
and its compressive strength increased by 74.2% at 50°C
curing. This is because the CAC with blast furnace slag
hydration reaction produces stratlingite crystal and the pure
CAC hydration reaction produces C3AH6. The volume of the
C3AH6 crystal phase is smaller. Thus, the apparent porosity
increases, thereby weakening permeability resistance and
compressive strength (Tseng and Nian, 2004). The anti-
permeability property of the CAC paste was reduced by
curing at high temperature. However, the anti-permeability
of Ma, Mb, and Mc was still higher than that of Ms by at
least 22.8%, and the compressive strength of Ma, Mb, and Mc
was higher than that of Ms by at least 9.7%. This result indicates
that the three types of blast furnace slag can improve the anti-
permeability and compressive strength properties of CAC paste
at 50 and 315°C.

Hydration Products and Microstructure
Testing
XRD Analysis
The hydrated phases formed by Ms, Ma, Mb, and Mc were
investigated using XRD. Figure 3A shows the XRD pattern of

TABLE 4 | Influence of slag on the high temperature resistance of aluminate
cement stone.

Formula Permeability (mD) Compressive
strength (MPa)

50°C 315°C 50°C 315°C

Ms 0.0498 0.0446 11.05 15.10
Ma 0.0280 0.0344 17.82 16.56
Mb 0.0200 0.0341 23.10 19.70
Mc 0.0112 0.0338 26.96 25.49

FIGURE 3 | XRD patterns of Ms, Ma, Mb, and Mc. (A) curing at low temperature. (B) curing at high temperature.
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CAC paste cured at 50°C × 1.01 MPa for 14 days. Figure 3B
shows the XRD pattern of CAC paste cured at 50°C × 1.01 MPa
for 7 days, followed by curing at 315°C × 20.7 MPa for 7 days.
Combining previous research results (Guo et al., 2020), under
low curing temperature, the main hydrated phases of Ms were

C3AH6, C2AS, Al(OH)3, C3A, and C12A7, and the main
hydrated phases of Ma, Mb, and Mc were C2ASH8, C3ASH4,
Al(OH)3, and C2AS. Under high curing temperature, the main
hydrated phases of Ms were C3ASH4, AlO(OH)and C3A.
Meanwhile, the main hydrated phases of Ma, Mb, and Mc
were C3ASH4, AlO(OH), hydrated andradite
[Ca3(Fe0.87Al0.13)2(SiO4)1.65(OH)5.4], and a small amount of
C2S. As shown in Figure 3A, the CAC paste mixed with FSa,
FSb, or FSc converted C3AH6 into C2ASH8. This conversion is
the reason for the compressive strength of the CAC paste that
was stably cured at low temperature. Mostafa et al. showed that
the main function of Na2SO4 in CAC with blast furnace slag as
an activator is to promote C2ASH8 generation. Comparing
Figures 3A,B, the new products of Ms were C3ASH4 and
AlO(OH) after curing at high temperature, and the new

FIGURE 4 | SEM pictures of CAC stone(5,000×). (A) Ms at low
temperature. (B)Ma at low temperature. (C)Mb at low temperature. (D)Mc at
low temperature. (E) Ms at high temperature. (F) Ma at high temperature. (G)
Mb at high temperature. (H) Mc at high temperature.

FIGURE 5 | DSC thermograms of CAC pastes.

FIGURE 6 | TG of CAC pastes.
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phases of Ma, Mb, and Mc were C3ASH4, AlO(OH), and
andradite (hydrated). C3AH6 or C2ASH8 converted into
C3ASH4, and Al(OH)3 converted into AlO(OH) at 315°C ×
20.7 MPa. The strength of Ma, Mb, and Mc was reduced after
high-temperature curing, but the reduction rate of the
compressive strength was within 15%, meeting the
cementing requirements (Adolfsson et al., 2011; Li et al., 2014).

Scanning Electron Microscopy
The fracture surfaces of CAC paste were studied using SEM. The
microstructures of hydrated Ms, Ma, Mb, and Mc cured at 50°C ×
1.01 MPa for 14 days, 50°C × 1.01 MPa for 7 days, and 315°C ×
20.7 MPa for another 7 days are shown in Figures 4A–H.
Figure 4A shows that Ms generated cubic C3AH6, fine
particles of C3A, and an amorphous Al(OH)3 gel when cured
at low temperature (Ewais et al., 2009). This finding explains the
increased quantity of holes and low compression strength of Ms.
The micrographs of Ma, Mb, and Mc cured at 50°C (Figures
4B–D) indicate the presence of the thin flaky plate-like
morphology of stratlingite (C2ASH8) and small amounts of
amorphous Al(OH)3 gel. This observation reveals that the
microstructures of CAC mixed with blast furnace slag were
more closed and compact. The micrographs of Ms, Ma, Mb,
and Mc curing at 315°C are shown in Figures 4E–H. Neat CAC
paste and CAC with blast furnace slag mainly generated C3ASH4

and dehydrated Al(OH)3 AlO(OH). With fewer fine particles,
C3A filled in the crystal gaps in the high-temperature
environment where crystal structures are dense and well
developed as well as have high crystallinity and good
mechanical properties. Those are the root cause of the high-
temperature resistance of CAC paste.

Thermal Analysis
The types of hydration products in CAC paste composites were
investigated using differential scanning calorimetry (DSC) and
thermos gravimetric (TG). DSC and TG thermographs of
hydrated CAC paste (Ms, Ma, Mb, and Mc) cured at low and
high temperatures are shown in Figures 5, 6, respectively. The
analysis of Figures 5, 6 revealed that Ms cured at low
temperatures; 70–100°C and 278°C, displayed an endothermic
peak because of Al(OH)3. Given that Al(OH)3 is a polycrystalline
(Mac et al., 2014), a mass loss of approximately 5.4% occurred. At
270–350°C, the endothermic peak was due to C3AH6, and the
mass loss was approximately 19.8%. For Ma, Mb, and Mc at 163
and 210°C, the peak was mainly due to C2ASH8(Sitnikov et al.,
2009), leading to a mass loss of approximately 16.4, 16.4, and
16.1%, respectively. Heikal et al. found that CAC mixed with 25%
air-cooled or water-cooled blast furnace slag can reduce C3AH6

formation by 54.6% when cured at 40°C to ensure the strength of
the generated CAC paste. When cured at high temperature and
high pressure, the positions of the endothermic peak of Ms, Ma,

Mb, and Mc were 300 and 500°C, respectively. This result shows
the location of the endothermic peak at higher temperatures. The
endothermic peak of Ms was prominent and absorbed more heat,
whereas the endothermic peaks of Ma, Mb, and Mc were
relatively small. Compared with the TG curve for curing at
low and high temperatures, the mass loss rates decreased with
an increase in curing temperature. Thus, blast furnace slag added
to CAC can lead to more stable hydration products at high
temperature and can increase high-temperature resistance
performance. XRD results showed that the endothermic peak
at 325°C may be attributed to AlO(OH), which causes a loss of
crystallized water (Ptáček et al., 2010).

CONCLUSION

1) The reaction of blast furnace slag and CAC can generate
C2ASH8, which can effectively improve its low temperature
sensitivity;

2) The compressive strength and permeability resistance of Mc
increased by 74.2 and 77.5%, respectively, compared with Ms.

3) The main reason for the high temperature resistance of CAC
is C3ASH4 and AlO(OH) produced by hydration under high
temperature curing; The addition of blast furnace slag can
make the high temperature performance of CAC more stable.
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