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The emerging demand for advanced structural and biologicalmaterials calls for novel modeling
tools that can rapidly yield high-fidelity estimation on materials properties in design cycles.
Lattice spring model , a coarse-grained particle spring network, has gained attention in recent
years for predicting the mechanical properties and giving insights into the fracture mechanism
with high reproducibility and generalizability. However, to simulate the materials in sufficient
detail for guaranteed numerical stability and convergence, most of the time a large number of
particles are needed, greatly diminishing the potential for high-throughput computation and
therewith data generation for machine learning frameworks. Here, we implement CuLSM, a
GPU-accelerated compute unified device architecture C++ code realizing parallelism over the
spring list instead of the commonly used spatial decomposition, which requires intermittent
updates on the particle neighbor list. Along with the image-to-particle conversion tool
Img2Particle, our toolkit offers a fast and flexible platform to characterize the elastic and
fracture behaviors ofmaterials, expediting the design process between additivemanufacturing
and computer-aided design. With the growing demand for new lightweight, adaptable, and
multi-functional materials and structures, such tailored and optimized modeling platform has
profound impacts, enabling faster exploration in design spaces, better quality control for 3D
printing by digital twin techniques, and larger data generation pipelines for image-based
generative machine learning models.

Keywords: CUDA (compute unified device architecture), parallel computing, modeling and simulation, lattice spring
model (LSM), mechanical characterisation

1 INTRODUCTION

Materials with complex geometry and multiple constituents can be difficult to predict the mechanical
properties, such as elasticity, plasticity, hysteresis, and fracture. The properties are usually coupled with
the structure and topology ofmaterials, and inmany cases change under different boundary conditions.
Classical solid mechanics are highly accurate if the assumptions of homogeneity and small deformation
are practical. Problems arise whenmaterials become nonhomogeneous and undergo large deformation.
Multiple assumptions and parameter fittings are often required, engendering intensive computational
cost and prolonged calibration. In particular, many biomimetic and bioinspiredmotifs involve complex
structures and composite materials by design (Wegst et al., 2015). For example, birds have hollow and
pneumatized bones for avian purpose. Inside the dense and thin exterior, there are hollows with internal
reinforcing structures, including ridges, struts, and foams (Sullivan et al., 2017) (Figure 1). These complex
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structures pose nearly insurmountable challenges to continuum
approaches (such as finite element methods, FEMs) since the
number of elements required by sufficiently detailed
characteristics increases dramatically. To resolve the
computational intractability of ultra-high mesh models,
homogenization techniques are often adopted to replace the
materials at smaller scales by the equivalent larger ones (Roters
et al., 2010). The degrees of freedom therefore decrease

correspondingly in favor of the computing capability and desired
scalability. However, the process of homogenization inevitably losses
information content and geometry details, leading to inaccurate
evaluation on the mechanical properties. In this regard, a different
perspective is necessary for describing the materials in an efficient
approach but without much loss of details.

Lattice spring model (LSM) has been proved to be an effective
tool to predict the elasticity, plasticity, and fracture behaviors of

FIGURE 1 | ImageMech platform from image to mechanical properties. Taiwan blue magpie (Urocissa caerulea) (photo credit: John & Fish on Flickr, CC BY-NC-ND
2.0). Cross section of bird bone (photo credit: Josef Reischig, CC BY-SA 3.0).
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metals (Buxton et al., 2001; Chen et al., 2014), osteon-inspired
cellular composites (Libonati et al., 2017), and geometrically
toughened structural composites (Chiang et al., 2020; Tsai
et al., 2021). The underlying physics of LSM is simply the
truncated potential of springs between particles (or beads),
which are the representative volume element (RVE) of the
discrete material bodies. The fracture occurs when the length
of elongated spring exceeds the critical length, leading to the
spring breakage and the release of stored elastic strain energy.
This straightforward criteria has provided predictive insights in
the fracture behaviors of many brittle materials.

One of the most popular codes for large-scale particle dynamics
simulations is LAMMPS (http://lammps.sandia.gov). The current
acceleration of LSM calculation in LAMMPS package relies on
spatial decomposition rather than spring list (bond list)
parallelization. Parallelization on large spring list is crucial for
LSM acceleration since the spring force calculation is the major
bottleneck of time integration. Each particle in the middle of
triangular packing lattice, for example, has six springs connected
with its first nearest neighbors. To enhance the performance of LSM
simulation, we develop a CUDA-enhanced lattice springmodel code
(CuLSM), which implements GPU parallelization on particle and
spring lists. CuLSMprovides a great speedup for large particle-spring
networks with tens of thousands of particles and springs. This work
as well as associated codes is important for future large-scale LSM
simulations where a large number of particles are necessary to
provide enough resolution for biological/biomimetic geometries
and complex physical phenomena such as stress concentration,
shielding, and plastic zone.

Here we present a handy platform to evaluate the mechanical
properties of biological or biomimetic materials design based on
2D image geometry and prescribed materials constants. The
images can be obtained from microscopy, computed
tomography scan (Liang et al., 2009; Bibb et al., 2011), or
other imaging methods and artificial design (such as
generative adversarial networks) and can be converted into
different types of particles based on the gray-scale pixel values.
We report an image-particle conversion tool—Img2Particle,
which takes the image and number of particle types as input,
and outputs the triangular packing particle model with boundary
and notch for mechanical characterization. CuLSM subsequently
performs displacement-control mechanical test to determine the
mechanical properties. System energies, particle trajectories and
other derived attributes are computed using various parallelism
scheme. The platform provides reliable pipeline from image to
mechanical properties and meanwhile achieves high-
performance speedup compared with CPU-centered programs.

2 MATERIALS AND METHODS

2.1 Force Calculation
Consider two particles i, j connected by a harmonic spring of
stiffness k. The potential energy (elastic strain energy) stored in
the spring can be expressed in a function of two particle
coordinates ri and rj. For a system with N particles and M
springs, the total potential energy is

U(r) � ∑
(i,j)∈M

1
2
k rij − r0ij( )2 1 − Ξ(rij − rc)( ) (1)

where rij � ‖ri − rj‖ and r0ij are the instantaneous length and
equilibrium length of the spring between particles i, j. (i, j) is the
unique pair of particles in the spring setM (spring list) of sizeM.
Ξ(rij − rc) is the Heaviside step function switching on at cutoff rc,
where the spring breakage happens.

The force exerted on the individual particle i can be obtained
through the gradient of potential energy

Fi � −zU
zri

� − ∑
j∈N (i)

k rij − r0ij( ) zrij
zri

1 − Ξ(rij − rc)( )
� − ∑

j∈N (i)
k rij − r0ij( ) ri − rj

‖ri − rj‖ 1 − Ξ(rij − rc)( ) � ∑
j∈N (i)

Fji

(2)

where Fji is the force applied by the spring (i, j) on the particle i.

2.2 Velocity Verlet Integration
Velocity Verlet integration is used to solve the second-order ODE
of Newton’s equation of motion F � m€x. One Verlet integration
iteration contains three subroutines. First, given positions x,
velocities v as well as accelerations a of all particles at time t,
the positions at the next timestep t + Δt are calculated as

x(t + Δt) � x(t) + v(t)Δt + 1
2
a(t)Δt2 (3)

Second, the accelerations at the next timestep are obtained from
the forces using the configuration at the next timestep x(t + Δt).

a(t + Δt) � 1
m
F x(t + Δt)( ) � − 1

m
U x(t + Δt)( ) (4)

Third, the velocities at the next timestep are then updated as

v(t + Δt) � v(t) + 1
2

a(t) + a(t + Δt)( )Δt (5)

In code implementation, we use the half-step velocity scheme to
further reduce the memory usage of acceleration vectors. Velocity
verlet integration has been proved to be numerically stable and
possess important properties for physics such as time reversibility.

2.3 GPU Parallelization
Instead of using spatial decomposition which requires prior
knowledge of particle coordinates and multiple CPU threads to
divide entire domain into several computing subdomains, this
work applies GPU parallelization to the force calculations of
spring list. By doing so, the algorithm focuses on the pair
relations between particles connected by springs regardless of their
separating distance. The method has a merit that the examination of
particle coordinates is unnecessary and therefore accelerates the
computing speed.

Simulations are implemented by the in-house CUDA C++ code
CuLSM on a desktop with Intel i5-8400 and Nvidia GeForce GTX
1060. First, vectors of positions, velocities, and accelerations of all
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particles are copied from host to device memory. All of the
subsequent boundary displacement and velocity Verlet integration
are executed on the device, with periodic callback copying from
device to host when the output of particle states are needed. Five
GPUkernel functions for boundary displacement, updating position,
calculating force, updating acceleration, and updating velocity are
implemented at each timestep controlled sequentially by CPU.

Positions, velocities, and accelerations vectors of all particles
are flattened into 1D array and assigned continuously in both
host and device memory. 1D block in 1D grid is used, and the
block size is fixed as 256 for both particle and spring list. The grid
size is dynamically allocated according to the model size of LSM.

Figure 2 shows the computing flowchart in CuLSM. In the
preprocessing stage, the initial particle-spring network is constructed
from the desirable geometry. Particle masses and spring parameters
are then assigned according to their specific types. After the model is
constructed, the boundary conditions and simulation configurations
are set. At this stage, CuLSM has read model input, boundary
conditions, and simulation configurations and has stored the data in
host memory. Before simulation starts, particle and bond vectors are
copied from host memory to device memory. At each timestep,
boundary displacements are first applied using a GPU kernel
function. Another three GPU kernel functions for updating
positions, velocities, and accelerations are then initialized for
velocity Verlet integration. The position, velocity, and acceleration
vectors are flattened into 1D arrays and are allocated continuously in
the global memory space. Due to the independence of vector spaces,

each thread takes care of single component at a time.However, in the
force calculation, the race condition emerges when multiple spring
forces try to access and add particle forces at the same time, leading
to memory conflicts and unexpected results. Thus, the atomic
operation is used to serializing the requests (access and addition)
from threads across the entire grid. The particle forces are first set as
zeros and then summed over spring forces using atomicAdd
function, as shown in the following code.

At each iteration, timestep is checked if satisfying the conditions
for callback or termination. Once the condition for simulation
output is satisfied, particle position and velocity vectors are copied
back fromdevice to hostmemory. The spring stiffness vector is also
copied for calculating potential energy. The system potential
energy and kinetic energy are calculated on CPU.

3 RESULTS

3.1 CuLSM Demonstrates Strong Validity
Against Analytical and Numerical Results
We first compare the trajectory of a simple harmonic oscillator
solved numerically by CuLSM with the analytical solution. For a
system consisting of two particles with mass m � 1 kg connected
by a harmonic spring with spring constant k � 1 × 10−4 N/m and

FIGURE 2 | Computing flowchart in CuLSM. The green blocks are
implemented byGPU kernels, which parallelize particle and spring vectors. At each
iteration, timestep is checked if satisfying the conditions for callback or termination.
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equilibrium distance r0 � 10 m, the equation of motion is a
second-order ordinary differential equation:

m€x + kx � kr0 (6)

We fix one particle at the origin x � 0 m and place another one
still at x � 3r0/2 m when time t � 0 s, as shown in Figure 3A. The
time integral interval δt for CuLSM is set as 1 s. The simulation was
run for 1,000 s and the output interval is 10 s. As depicted by

FIGURE 3 | Validation of CuLSM against the analytical solution of a simple harmonic oscillator. (A) Boundary and initial conditions of the oscillator. (B) Trajectory
computed by CuLSM compared to analytical solution.

FIGURE 4 | Mode-I fracture simulation of Poisson composites by LSM. (A) Model size, notch size, and boundary conditions. Stiff-stiff, stiff-soft, and soft-soft
springs are used to model stiff, soft, and interfacial materials. (B) Potential and kinetic energies of LSMs with different area ratios ρA ranging from 1.0 to 4.0. The solid lines
are computed by CuLSM, and the dashed lines are computed by LAMMPS.
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Figure 3B, ourmodel provides an accurate numerical solution for a
simple harmonic oscillator without error accumulation over time.

We also test our code against LAMMPS (Mar 3, 2020, stable
release) and compare the performance in the next subsection. As
illustrated by Figure 4A, we construct a series of 2D composite
materials with the soft inclusions arranged in a Poisson distribution
(Chiang et al., 2020). Three kinds of linear fracture springs, including
stiff-stiff, soft-soft, and stiff-soft springs, are used to model stiff, soft
and interfacial materials (Table 1). The stiff, soft, and boundary
particles are marked as dark blue, light blue, and red, respectively. To
model the mode-I fracture behaviors, boundary particles were
displaced apart along x axis at the strain rate of 10–6. The size of
composites increases from 1,000 × 1,000 to 2,000 × 2,000 squared
unit length, with area ratio ρA linearly increasing from 1.0 to 4.0
(Table 2). The uniaxial tensile tests are performed to validate the
results by CuLSM against those by LAMMPS. As shown in
Figure 4B, the potential and kinetic energies computed by
CuLSM perfectly coincide with those computed by LAMMPS
before the peaks of potential energies. We also note that the
potential and kinetic energies increase as the size of Poisson
composite become large. Small energy discrepancies at large strain
are observed, but the tendencies are similar. We further compare the
fracture patterns obtained fromCuLSM and LAMMMPS (Figure 5).
Regardless of the size of the composites, CuLSM and LAMMPS yield
akin fracture patterns. The cracks nucleate, propagate, and bifurcate
at strikingly similar locations in CuLSM and LAMMPS series,
proving strong fidelity of CuLSM. CuLSM reads input of particle
geometry from LAMMPS Data file formatted in bond atom style.
During simulation output, CuLSM outputs particle coordinates in
LAMMPS Dump file. The outputted files are readily readable and
operable by visualization tools such as OVITO (Stukowski, 2009).

In Figure 6, we present virial stress σV (Subramaniyan and
Sun, 2008; Thompson et al., 2009) and Lagrangian strain L

(Shimizu et al., 2007) fields of Poisson composite at bulk
engineering strain ϵ � 0.02:

σVij �
1
Ω ∑

k∈Ω

1
2
∑
l∈Ω

xl
i − xk

i( )fkl
j −mkvki v

k
j

⎛⎝ ⎞⎠ (7)

ϵLij �
1
2

JijJji − δij( ) (8)

where Ω is the finite domain volume considered, x, v are
particle position and velocity, f is the force between particle pairs;
J is the locally affine transformation matrix considering the
relative displacement of particle with its first nearest
neighbors, and δ is the Kronecker delta. The result indicates
that the discrepancies of stress and strain fields calculated by
CuLSM and LAMMPS are negligible.

3.2 CuLSM Achieves Superior Computing
Speed
To benchmark the performance of CuLSM, we record the
computing time of mode-I fracture simulations on Poisson
composites of different sizes, as listed in Table 2. In Figure
7, we compare the total wall time of simulations by CuLSM (1
CPU + 1 GPU) and LAMMPS with 1 CPU, 2 CPUs, 4 CPUs, and
1 CPU + 1 GPU. With inter-processor communication cutoff

TABLE 1 | Constants of linear fracture spring.

Springs ke r0 rc

[MT−2] [L] [L]
stiff-stiff 2.00 × 10–3 10 10.1
soft-soft 2.00 × 10–5 10 11.0
stiff-soft 1.25 × 10–4 10 10.4

TABLE 2 | Model summary of Poisson composites.

Area ratio Size Particle number Spring number

1.0 1,000 × 1,000 12,046 34,753
1.5 1,225 × 1,225 17,862 52,104
2.0 1,414 × 1,414 23,729 69,476
2.5 1,581 × 1,581 29,418 86,080
3.0 1,732 × 1,732 35,330 103,904
3.5 1,871 × 1,871 41,179 120,960
4.0 2,000 × 2,000 46,836 137,759

FIGURE 5 |Mode-I fracture patterns predicted by CuLSM and LAMMPS
at engineering strain ϵ � 0.075.
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rcomm � 100r0 and default step interval for neighbor list update
Tn � 10, LAMMPS with 1 CPU can be one to two orders slower
than CuLSM.With these settings, LAMMPS is unfavorably slow
and the spatial decomposition scheme is incapable of
accelerating the LSM simulation efficiently. Note that
LAMMPS does not currently support GPU acceleration on
bond potentials. Therefore, LAMMPS 1 CPU + 1 GPU shows
no speedup compared to LAMMPS 1 CPU. With
communication cutoff (rcomm � 4r0) and turning off the
neighbor list update (Tn � ∞), the total wall time of
LAMMPS scales in the same order as CuLSM with respect to
the particle number. CuLSM can be up to 4.4 times faster than
LAMMPS with 1 CPU and have around 1.5 speedup compared
to LAMMPS with 4 CPUs. CuLSM-CPU with 1 CPU has
comparable speed with LAMMPS with 2 CPUs. Note that the
optimal neighbor setting depends on the simulation cases for
the spatial decomposition scheme. The GPU speedup of
CuLSM, i.e., the speedup of CuLSM 1 CPU + 1 GPU against
CuLSM-CPU 1 CPU, is also presented in the bottom panel of
Figure 7. On the machine with Intel i5-8400 and Nvidia
GeForce GTX 1060, the GPU speedup of CuLSM is about
2.5. CuLSM reduces the total wall time (including input,
output, and copying) by a considerable margin, with only 1
CPU and 1 GPU. The enhanced performance results from the
parallelization on particle and spring lists. The input files for all
the benchmarks and more information can be found online at
the link in Data Availability Statement.

4 DISCUSSION AND CONCLUSION

In this work, we present a CUDA C++ code CuLSM for large-scale
LSM simulations. By realizing the parallelism on particle and spring
lists, CuLSM has been optimized for LSM simulations and secures a
remarkable boost in computing speed in comparison with general-
purpose LAMMPS package. Since all of the interactions in LSM are
harmonic pair potentials, the speedup of spatial decomposition used
in LAMMPS is limited. Without updating neighbor list during
simulations, CuLSM remarkably accelerates the time integration
on GPU and only copy data from device to host when needed.

Currently, the broken springs are not deleted from the spring list
but are irreversibly assigned zero stiffness to emulate the free
deformation. We deliberately retain these broken springs since in
future studies the stiffness may need to recover when the materials is
subject to compression, bending, and cyclic loading. Indeed, different
spring properties andmechanical elements, e.g., non-linear elasticity,
viscocity, and plasticity, are worth being added into the particle-
spring networks. Multi-body potentials such as angle potential and
volume-compensated particle method (Chen et al., 2014) are also of
interest in future studies. More in-depth theoretical formulations are
required for investigating high-level phenomena such as dislocation,
Bauschinger effect, and yield surface evolution.

CuLSM is readily extensible to multi-GPUs and can be further
incorporated with multithread environment for the larger and
three-dimensional models. To further reduce the memory
copying time between host and device, the unified memory

FIGURE 6 | Stress and strain fields in Poisson composites calculated by CuLSM and LAMMPS at engineering strain ϵ � 0.02.
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can be used to allocate memory address space accessible from any
CPUs and GPUs in the system. Moreover, the parallel reduction
scheme can be adopted to speed up the calculation of the global
attributes, such as potential and kinetic energies.

The future opportunities this work brings include:

• The toolkit we developed provides a faster and more flexible
structure-properties platform, which expedites the particle-
based simulation and materials design procedures.

• CuLSM opens the venue for high-throughput and high-
fidelity data generation to meet the increasing need for
machine learning aided materials design protocols (Kim
et al., 2021; Sui et al., 2021).

• The work largely reduces the computational cost for
predicting elasticity and fracture behaviors of complex
materials systems, further accelerating the design phase
through offering predictive insights for additive
manufacturing and mechanical experimentation.

• The LSM simulations provide rich and detailed geometric
and topological data where the relationship with high-level
mechanical properties underlies. One future research

direction would be finding out the physics rules from
local to global hierarchy that govern the macroscopic
behavior of structural materials.

In conclusion, we provide a powerful and efficient framework to
characterize and predict the elasticity and fracture mechanism of
materials. The remarkable speedup CuLSM enables entails more
extensive application in sophisticated materials design. The
robustness and adroitness it promises drive new design
perspective other than continuity in practical circumstances. With
the emerging new intersection between physics-based simulation
and deep learning, the toolkit holds exciting key to advanced
materials design.
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FIGURE 7 | Comparison of the total computing wall time by CuLSM and LAMMPS. The insets enlarge the regions around LAMMPS: 1 CPU, LAMMPS: 2 CPUs,
and LAMMPS: 1 CPU + 1 GPU. Note that LAMMPS: 1 CPU + 1 GPU does not support parallelism on spring list. The maximum and minimum speedup of CuLSM
compared with other four models are illustrated in the bottom panel.
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