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The novel air-flow impacting (AFI) synthesis technology for mechanochemical synthesis of
MOFs (ZIF-67) was first reported. AFI was an improvement of the traditional
mechanochemical synthesis method. The results indicated that ZIF-67 was
successfully synthesized after 30min at a rate of 60 kg h−1. The as-prepared ZIF-67
was characterized by Fourier transform infrared spectroscopy (FT-IR), powder x-ray
diffraction (P-XRD), thermogravimetric analysis (DTA/TG), scanning electron
microscope (SEM), transmission electron microscope (TEM), and single-crystal x-ray
diffraction. The kinetic analysis of the reaction mechanism was carried out by detecting
the P-XRD patterns of the products with different reaction times. The synthesis belonged
to the one-dimensional diffusion-controlled model.
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INTRODUCTION

ZIF-67 is a typical kind of metal–organic frame (MOF). Because of its porous and large specific
surface area, it is widely used in gas storage, energy, catalysis, and chemical sensor, etc. (Wang et al.,
2018; Zheng et al., 2018; Zhou et al., 2018).

MOFs are composed of metal ions and organic chains through coordination bonds, exhibiting
high specific surface area, vacant coordination sites, and strong surface dipole moments, which have
been widely used in the field of energy storage and conversion. Therefore, developing advanced
electrocatalysts with low cost and high performance is an urgent task. Numerous efforts have been
made to develop efficient non-precious metal electrocatalysts, such as metal–organic frameworks
(MOFs), transition metal oxides/sulfides/selenides/phosphides, and carbon-doping semiconductor
materials. Before mechanochemical synthesis (James et al., 2012; Stock and Biswas, 2012; Baláž et al.,
2013; Takacs, 2013; Wang, 2013; Crawford et al., 2015), ZIF-67 was prepared through the
conventional hydrothermal/solvothermal method (Panda et al., 2017). However, this traditional
method required the extensive use of hostile organic solvents, thereby increasing the environmental
burden. Nowadays, mechanical ball milling and twin-screw extrusion have also achieved ZIFs
(Bennett et al., 2013; Crawford and Casaban, 2016). However, these synthesis techniques had many
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FIGURE 1 | AFI reaction equipment with key parts highlighted.

FIGURE 2 | FT-IR spectra of ZIF-67.

FIGURE 3 | P-XRD patterns of ZIF-67.

FIGURE 4 | SEM images of ZIF-67.

FIGURE 5 | TEM images of ZIF-67.

TABLE 1 | Crystal data and structure refinement for ZIF-67.

CCDC 1945392
Formula C8H10CoN4

M/g·mol−1 221.13
T/K 293 (2)
Crystal system Cubic
Space group I-43 m
a/Å 17.1238(4)
b/Å 17.1238(4)
c/Å 17.1238(4)
α/° 90
β/° 90
γ/° 90
Volume/Å3 5021.1(4)
Z 12
ρcalcg/cm3 0.878
Crystal size/mm3 0.13 × 0.12 × 0.11
Reflections collected 3,465
Final R indexes [I>�2σ (I)] R1 � 0.0312, wR2 � 0.0980
Final R indexes [all data] R1 � 0.0337, wR2 � 0.0994
Refinement SHELXL-97
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disadvantages. For example, mechanical ball milling could not
achieve continuous production and also might pollute the
products by abrasion of grinding balls as contaminants.
Therefore, it was necessary to develop new mechanochemical
synthesis technology.

In AFI, high-velocity airflow was introduced, and particle
impact was target driven by high-speed airflow. The speed of
the particle might reach up to 300 m s−1 or even faster (Sun et al.,

2016). In addition, it is an environmentally friendly solvent-free
chemical process and could achieve products in the submicron
size powder form (Qian et al., 2012).

EXPERIMENTAL

Chemicals and Materials
The air-flow impacting equipment is shown in Figure 1. First,
the particles were transferred into the impacting chamber
through the feed port. Then, the particles were accelerated to
high velocities (300 m/s) by compressed air (1.5 MPa). In this
process, there was a violent collision between reactant
particles, which led to the pulverization of reactant
particles and the formation of chemical reaction products.
Finally, the products were collected by the circulation

FIGURE 6 | (A) Unit lattice of ZIF-67; (B) crystal structure of ZIF-67.

TABLE 2 | Bond lengths for ZIF-67.

Atom Atom Length/Å Atom Atom Length/Å

Co1 N1a 1.984(4) C1 N1 1.384(7)
Co1 N1b 1.984(4) C2 C3 1.465(11)
Co1 N1 1.984(4) C2 N1 1.354(6)
Co1 N1c 1.984(4) C2 N1d 1.354(6)

Symmetry transformation for generating equivalent atoms.
a−1/2 + Z, 1/2−Y, 1/2−X.
b1/2-Z, 1/2−Y, 1/2 + X.
c−X, +Y, 1−Z.
d+X, +Z, +Y.

TABLE 3 | Bond angles for ZIF-67.

Atom Atom Atom Angle/˚ Atom Atom Atom Angle/˚

N1a Co1 N1b 108.87(13) N1d C2 C3 123.2(3)
N1b Co1 N1 110.7(3) N1 C2 C3 123.2(3)
N1a Co1 N1 108.87(13) N1d C2 N1 113.4(7)
N1a Co1 N1c 110.7(3) C1 N1 Co1 126.1(4)
N1d Co1 N1 108.87(13) C2 N1 Co1 129.5(4)
N1b Co1 N1c 108.87(13) C2 N1 C1 104.4(5)

Symmetry transformation for generating equivalent atoms.
a
–1/2 + Z, 1/2-Y, 1/2-X.

b1/2-Z, 1/2-Y, 1/2 + X.
c−X, +Y, 1-Z.
d+ X, +Z, +Y.

FIGURE 7 | DTA curve of ZIF-67.
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collecting system. Cobaltous oxide (CoO, 99%), 2-
methylimidazole (99.99%), and potassium bisulfate (99%)
were obtained from Aladdin (Shanghai, China). All
reagents are of analytical grade and used without further
purification.

Preparation of ZIF-67
ZIF-67 was prepared as follows: CoO (74.93 g, 1 mol), 2-
methylimidazole (82.1 g, 1 mol), and potassium bisulfate
(136.17 g, 1 mol) were mixed in a 1:1:1 molar ratio, and the
material was placed in a 1,000-ml beaker and mixed well. Then, it
was aged for 72 h in a closed environment at 30°C, and the
mixture was transferred into the impacting chamber, at the rate of
1.5 kg min−1. Then, compressed air (1.5 MPa) was used to
accelerate the material to a supersonic speed. The purple

powders were collected every 2 min until the reaction lasted
for 30 min. After washing with ethanol three times, it was
dried in an oven at 50°C. Yields: 87% based on 2-
methylimidazole.

RESULTS AND DISCUSSION

Characterization
As shown in Figure 2, the FT-IR spectra of ZIF-67 synthesized by
AFI was identical to previously reported studies (Qin et al., 2017).
The absorption at 427 cm−1 was Co-N stretching vibration peak,
and two peaks which were at 2,923 cm−1 and 1,579 cm−1

attributed to the stretching vibration of the C-H bond in
methyl and C�N stretching vibration in the imidazole ring,
respectively. The peaks were at 3,430 cm−1 originated from a
hydroxyl group in the form of physically adsorbed water. The
stretching vibration in the imidazole ring was at 1,423 cm−1. The
non-planar vibration band was at 1,171–1,140 cm−1, and the
plane-bending vibration band was at 992 cm−1. The results

FIGURE 8 | TG curve of ZIF-67.

FIGURE 9 | P-XRD curves of ZIF-67 at different reaction time.

TABLE 4 | Solid-state rate and integral expressions for different models.

Model Differential
form f(α) = 1/k.dα/dt

Integral
form g(α) = kt

Nucleation model
Power law (P2) 2α1/2 α1/2
Power law (P3) 3α2/3 α1/3
Power law (P4) 4α3/4 α1/4

Avrami–Erofeyev (A2) 2 (1 - α)[- ln (1 - α)]1/2 [- ln (1 - α)]1/2
Avrami–Erofeyev (A3) 3 (1 - α)[- ln (1 - α)]2/3 [- ln (1 - α)]1/3
Avrami–Erofeyev (A4) 4 (1 - α)[- ln (1 - α)]3/4 [- ln (1 - α)]1/4

Prout–Tompkins (B1) α(1 - α) ln [α/(1 - α)] + ca

Geometric control model
Contracting area (R2) 2 (1 - α)1/2 1 - (1 - α)1/2
Contracting volume (R3) 3 (1 - α)2/3 1 - (1 - α)1/3
Diffusion model
1D diffusion (D1) 1/(2α) α2
2D diffusion (D2) -[1/ln (1 - α)] ((1 - α) ln (1 - α)) + α

3D diffusion–Jander (D3) [3 (1 - α)2/3]/[2 (1 - (1 - α)1/3)] (1 - (1 - α)1/3)2

Ginstling–Brounshtein (D4) 3/[2 ((1 - α)−1/3–1)] 1 - (2/3)α - (1 - α)2/3
Reaction series model
Zero-order (F0/R) 1 α
First-order (F1) (1 - α) [- ln (1 - α)]
Second-order (F2) (1 - α)2 [1/(1 - α)] - 1
Third-order (F3) (1 - α)3 (1/2)[(1 - α)−2 -1]
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showed that ZIF-67 has been synthesized successfully (Qi et al.,
2011).

From the P-XRD of ZIF-67, it could be found that the
attribution of the diffraction peaks was in good agreement
with the previous studies, as shown in Figure 3, and could be
easily indexed as 7.31 (001), 10.36 (002), 12.66 (112), 14.62 (022),
16.38 (013), 17.92 (222), 22.15 (114), 24.53 (233), 25.62 (224),
26.70 (134), 29.67 (044), 30.62 (334), and 32.43 (235). This
confirmed that ZIF-67 nanocrystals were well constructed
(Chaudhary et al., 2013).

In order to observe the micro-surface morphology, the
prepared ZIF-67 was analyzed by scanning electron microscopy
(SEM). The surface of ZIF-67 is shown in Figure 4. It could be
seen that the morphological characteristics of ZIF-67 was basically
the same as reported in the literature (29–30). SEM revealed that
the particles were nanocrystals with a polyhedral shape. The mean
particle size was calculated as 50 nm. The obtained nanoparticles

could be well dispersed in methanol and could be kept without
settlement (Chaudhary et al., 2018; Mondal et al., 2019; Potbhare
et al., 2019).

At the same time, we analyzed the prepared ZIF-67 using a
transmission electron microscope (TEM) to observe its internal
structure, as shown in Figure 5. We can see that the internal
texture of ZIF-67 was solid and uniformly stacked, with good
crystallinity. The morphology of ZIF-67 was consistent with
that of SEM images, and it also showed the shape of near-
dodecahedron. TEM analysis results showed that no
agglomeration occurred between the ZIF-67 particles, and
most of the particle sizes were also about 100 nm (Du et al.,
2017).

ZIF-67 was dissolved in methanol, and the methanol solution
was vaporized slowly at room temperature to yield the light
purple crystals. The tested single crystal size was 0.13 × 0.12 ×
0.11 mm. The data of ZIF-67 are summarized in Table 1. The

FIGURE 10 | Fitting of the It/Imax reaction of CoOwith 2-methylimidazole after linearization to ten different models of solid-state reactivity of the A2model; A3model;
D1 model; D2 model; D3 model; D4 model; R2 model; R3 model; and B1 model.
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collected 3,465 diffraction points included independent 854
diffraction points (Rint � 0.0247). The structure was solved by
direct methods with the SHELXS-97 program. The results
showed that the formulas were C8H10CoN4, the relative
molecular weight was 221.13, and the density was
0.878 g cm−3. C8H10CoN4 crystallized in the cubic system I-
43m space group. The unit lattice and crystal structure of ZIF-
67 is shown in Figure 6.

Unlike ZIF-67 prepared by the solvent thermal method,
comparing the cell-stacking patterns of two kinds of ZIF-67
single crystals, it was easy to find that there was no crystal
water or coordination water in unit lattice of ZIF-67 prepared
by AFI, which was because we did not introduce solvents in the
synthesis process. Selected bond lengths and angles of ZIF-67 are
presented in Tables 2, 3.

Thermal Stability
In order to further verify the thermal performance of ZIF-67, we
used DTA and TG to analyze the thermal properties.

The DTA was heated from room temperature to 600°C with a
heating rate of 10°Cmin−1 under air. As shown in Figure 7, the
decomposition peak temperature of ZIF-67 was 371°C, with a sharp
peak shape and high-heat release, and showed good thermal stability.

In Figure 8, TG also proved the thermal stability; ZIF-67 had
no weight loss before 300°C. In the first stage, the material lost
about 47%, which was due to the decomposition of organic
ligands, and the weight loss process ended at 520°C. It showed
that the ZIF-67 material can be stabilized at 350°C (Kim et al.,
2010; Friščić et al., 2013; Mottillo et al., 2013).

Kinetic Analysis
Therefore, an ex situ P-XRD technique was used for studying the
mechanisms and kinetics of the AFI preparation process.
Compared with other monitoring techniques, P-XRD had the
advantages of simple operation, low-testing cost, and good
reproducibility.

For another, owing to the different phase composition of CoO,
2-methylimidazole, and ZIF-67, these compounds had different
characteristic diffraction peaks. We found a new diffraction peak
appeared at 7.3°, contributing to the characteristic diffraction
peak of ZIF-67; the characteristic diffraction peak became
stronger with the increase of reaction time. P-XRD tests at
different times are shown in Figure 9. The integral
expressions are in Table 4, and the fitting results are shown in
Figure 10 (Banerjee et al., 2008; Wang et al., 2008; Chen et al.,
2019).

For ZIF-67, the experimental data were most consistent with
the 1D kinetic model, indicating that the mechanism of ZIF-67
belonged to the one-dimensional diffusion-controlled model. The
R2 of the fitting result reached 0.98119.

The mixed materials of cobalt oxide and 2-methylimidazole
obtained high kinetic energy through the accelerating nozzle,
and friction and collision continued to occur between the raw
materials. 2-Methylimidazole first attaches to the surface of
cobalt oxide and then collides with the target. The kinetic
energy overcame the reaction activation energy, resulting in
lattice defects of molecules, and then the covalent bonds
between molecules break and produce new
coordination bonds.

CONCLUSION

In summary, the ZIF-67 was successfully prepared by AFI, and
its single crystal was obtained by methanol evaporation. Also,
the ZIF-67 was characterized by FT-IR, P-XRD, DTA/TG, and
single-crystal x-ray diffraction. All of the results indicated
that the ZIF-67 was successfully synthesized at a rate of
60 kg h−1. The mechanisms of ZIF-67 reactions have been
investigated, and the kinetic data suggested that the
mechanisms were consistent with 1D models. We
demonstrated that AFI can be a novel and effective
technique for the mechanochemical synthesis of MOFs
under solvent-free conditions.
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