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Polymer bubbles are ubiquitously used for the fabrication of nanofibers by the bubble
electrospinning. When a bubble is broken, the fragments tend to be wrinkled. The wrinkle
angle plays an important in controlling the fiber morphology during the bubble
electrospinning. This paper shows the maximal angle is about 49°, which is close to
the experimental value of 50°. This maximal angle can be used for the optimal design of the
nozzle in the bubble electrospinning for the fabrication of non-smooth nanofibers.
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INTRODUCTION

Bubble dynamics is an old discipline, and the Young-Laplace equation (Liu and Dou, 2013) is
widely used for static analysis. The bubble’s rupture affects many materials’ fabricating
processes (Zhang et al., 2021), especially for nanofiber fabrication by bubble electrospinning
(Kong, 2015; Liu et al., 2020a; Li and He, 2020; Yin et al., 2020). When a bubble is broken,
many jets are ejected, or many daughter bubbles are formed (Bird et al., 2010). Oratis et al.
(2020) found the wrinkle mechanism of a liquid sheet during a bubble collapse, which has
attracted skyrocketing attention from various fields, including mathematics and material
science. Although this mechanism is new and has great promise, a mathematical model
lacks for the prediction of the wrinkle angle. Here we establish a simple formula to study the
wrinkle angle.

MAXIMAL WRINKLE ANGLE

The bubble collapse and the wrinkle of the liquid sheet (Oratis et al., 2020) play an important role in
the bubble electrospinning (Yin et al., 2020), Gratis et al. obtained an unparalleled achievement in the
bubble collapse dynamics and found the surface tension drives the collapse and initiates its wrinkle
(Oratis et al., 2020).

The surface tension depends upon the liquid sheet’s curvature radius, we assume that the initial
surface tension is F0, and the initial angle between the free sheet section and the solid surface is α0, see
Figure 1. During the collapse process, the liquid sheet tends to zero when it is completely collapsed,
and we assume the surface tension becomes zero at its final collapse. Accordingly, we assume that the
surface tension can be expressed as

F(α) � F0

α0
α (1)
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From Eq. 1, it is obvious that the surface tension vanishes
completely when the bubble is completely collapsed when α � 0°.

The force given in Eq. 1 can be decomposed into the radial and
tangential forces, as shown in Figure 1, the former is the main
force for collapse, and the latter is perpendicular to the section of
the sheet, and it is the main force for liquid sheet’s instability,
which leads finally to the wrinkle. According to Figure 1, the
tangential force, σ, can be expressed as

σ � F(α) cos α � F0

α0
α cos α (2)

The maximal σ happens when

d

dα
σ � F0

α0
(cos α − α sin α) � 0 (3)

That is

cos α − α sin α � 0 (4)

This equation can be solved by the ancient Chinese algorithm
(He, 2016). We choose two angles α1 � π/3 and α2 � π/4, and the
following two residuals are obtained:

R1 � cos α1 − α1 sin α1 � 1
2
− π

3
×

�

3
√
2

� −0.4069 (5)

and

R2 � cos α2 − α2 sin α2 �
�

2
√
2

− π

4
×

�

2
√
2

� 0.1517 (6)

By the ancient Chinese algorithm (He, 2016), we have

α � R1α2 − R2α1

R1 − R2
� −0.4069 × π

4 − 0.1517 × π
3

−0.4069 − 0.1517
� 0.2726π (7)

The exact root of Eq. 4 is α � 0.2737π, the relative error is
0.4%. The ancient Chinese algorithm given in Eq. 7 was further
developed into an iteration method, which was called Chun-Hui
He iteration method (Khan, 2021).

When α � 0.2737π or 49°, σ reaches its maximum; this
maximal surface tension leads to instability of the fragments;
as a result, the wrinkle occurs. The instability can be analyzed in a
similar way as discussed in Refs. (He et al., 2021; Zuo and Liu,
2021).

EXPERIMENT

Bubble electrospinning was originally designed for the fabrication
of smooth fibers (Liu et al., 2020b; Wan, 2020). In order to verify
the theoretical prediction, we carried out an experiment where

FIGURE 1 | Force analysis of a fragment section of the bubble before
rupture.

FIGURE 2 | Schematic illustration of the bubble eletrospinning.

FIGURE 3 | Unsmooth fibers by controlling the bubble shape.
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the angle between the solution surface and the bubble’s wall is
about 49°, see Figure 2.

The spun solution was prepared by adding certain amounts
of Lithium chloride (LiCl) dropwise to a 15 wt%
Polyacrylonitrile/Polyethersulfone (PAN/PES) solution in N,
N-Dimethylacetamide (DMAC) following with ultrasonic
excitation agitating. The weight ratio of PAN and PES was
controlled at 3/2, and the weight percentage of LiCl in the
mixed solution was 1 wt%. Afterward, the PAN/PES/LiCl
blend nanofibers were obtained using a high DC voltage
power supply at a 20 kV potential and the collector with a
distance of 15 cm from the bubble top. The SEM image of
PAN/PES/LiCl nanofibers was presented in Figure 3. It is seen
that we obtain the non-smooth fibers.

DISCUSSION AND CONCLUSION

This short paper gives a simple mathematical analysis, showing
that the maximal wrinkle angle is about 49°, which is much closed
to Oratis, et al.’s experimental value, which was about 50°. This

angle can be used to design the nozzle angle in the bubble
electrospinning; when wrinkled nanofibers are to be fabricated,
the nozzle angle should be 49°. If smooth nanofibers are wanted,
the nozzle angle should deviate from 49°.
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