AUTHOR=Yao Gang , Sun Yujia , Yang Yang , Liao Gang TITLE=Lightweight Neural Network for Real-Time Crack Detection on Concrete Surface in Fog JOURNAL=Frontiers in Materials VOLUME=8 YEAR=2021 URL=https://www.frontiersin.org/journals/materials/articles/10.3389/fmats.2021.798726 DOI=10.3389/fmats.2021.798726 ISSN=2296-8016 ABSTRACT=

Cracks are one of the most common factors that affect the quality of concrete surfaces, so it is necessary to detect concrete surface cracks. However, the current method of manual crack detection is labor-intensive and time-consuming. This study implements a novel lightweight neural network based on the YOLOv4 algorithm to detect cracks on a concrete surface in fog. Using the computer vision algorithm and the GhostNet Module concept for reference, the backbone network architecture of YOLOv4 is improved. The feature redundancy between networks is reduced and the entire network is compressed. The multi-scale fusion method is adopted to effectively detect cracks on concrete surfaces. In addition, the detection of concrete surface cracks is seriously affected by the frequent occurrence of fog. In view of a series of degradation phenomena in image acquisition in fog and the low accuracy of crack detection, the network model is integrated with the dark channel prior concept and the Inception module. The image crack features are extracted at multiple scales, and BReLU bilateral constraints are adopted to maintain local linearity. The improved model for crack detection in fog achieved an mAP of 96.50% with 132 M and 2.24 GMacs. The experimental results show that the detection performance of the proposed model has been improved in both subjective vision and objective evaluation metrics. This performs better in terms of detecting concrete surface cracks in fog.