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Cracks are one of the most common factors that affect the quality of concrete surfaces, so
it is necessary to detect concrete surface cracks. However, the current method of manual
crack detection is labor-intensive and time-consuming. This study implements a novel
lightweight neural network based on the YOLOv4 algorithm to detect cracks on a concrete
surface in fog. Using the computer vision algorithm and the GhostNet Module concept for
reference, the backbone network architecture of YOLOv4 is improved. The feature
redundancy between networks is reduced and the entire network is compressed. The
multi-scale fusion method is adopted to effectively detect cracks on concrete surfaces. In
addition, the detection of concrete surface cracks is seriously affected by the frequent
occurrence of fog. In view of a series of degradation phenomena in image acquisition in fog
and the low accuracy of crack detection, the network model is integrated with the dark
channel prior concept and the Inception module. The image crack features are extracted at
multiple scales, and BReLU bilateral constraints are adopted to maintain local linearity. The
improved model for crack detection in fog achieved an mAP of 96.50% with 132 M and
2.24 GMacs. The experimental results show that the detection performance of the
proposed model has been improved in both subjective vision and objective evaluation
metrics. This performs better in terms of detecting concrete surface cracks in fog.
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INTRODUCTION

Controlling concrete surface quality is one of the main challenges facing the concrete industry. High
quality concrete surfaces leave an aesthetically pleasing impression, so architects and building owners
are getting stricter about concrete surface quality (Chen et al., 2019; Wei et al., 2019). Crack, one of
the most common affecting factors for concrete surface quality, has a significance impact on the
safety and sustainability of concrete buildings. Therefore, crack detection plays an essential role in
maintaining buildings.

Traditionally, human visual inspection was often used to assess defects on concrete surfaces (Peng
et al., 2020). Nevertheless, the judgment conclusions drawn by different people are diverse under the
identical concrete surface conditions (Laofor and Peansupap, 2012). Furthermore, the above method
generally requires more labor force and time, and it does not produce consistent quantitative
objective results. Hence, automatic defect inspection is extremely feasible to assess defects more
efficiently and objectively.

In comparison with the deficiencies of the traditional human visual identification methods, there
has been extensive research on the computer-based methods. Scholars have proposed a mass of
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damage detection methods based on image processing techniques
(IPT) have been proposed. Obviously, IPT is preponderant in
identifying various surface defects. Yeum et al. once applied IPT
to detect cracks (Yeum and Dyke, 2015), while integrating with
sliding window technology. In the present study, the potentials of
IPT are embodied distinctly. In recent years, many studies
(Nishikawa et al., 2012; Choi et al., 2017) based on IPT have
been carried out to replace human visual inspection. However,
the detection performance is severally weakened in case the
intensities of some noisy pixels are lower than those of crack
pixels. Given edges and cracks are morphologically similar to a
large extent, many researchers (Salman et al., 2013; Zalama et al.,
2014) adopt filter-based methods special for edge detection to
detect pavement cracks. The IPT-based method is effective and
fast, but its robustness is still far from enough in the event of
noises (mainly generated by lighting and distortion), which
seriously affects the results (Koziarski and Cyganek, 2017).
Denoising technology can overcome these problems desirably.
Total variation image denoising is a prevailing method to reduce
the noises of image data, thereby enhancing the edge detectability
of images (Beck and Teboulle, 2009). Owing to the significant
changes in the image data captured in real engineering, the
application of transcendental knowledge in IPT is restricted.
These traditional crack detection methods are obviously
defective: each method is designed for a specific database or
setting. The crack detectors often do not work, once the setting or
database is changed. Moreover, it is difficult to extract semantic
information (width and location of cracks, etc.) from images. In
order to help inspectors detect defects, image processing
algorithms are usually used. But the final results are still
obtained relying on manual judgment (Oh et al., 2009).

At present, image acquisition equipment and computing
capabilities are increasing improved, a host of machine
learning algorithms (such as deep learning) have been used to
recognize objects with acceptable results (Ciresan et al., 2012; He
et al., 2015; Krizhevsky et al., 2017; Zhang et al., 2021). Deep
learning techniques are data-driven approaches which do not
require manually-designed rules. When building the model, it is
just necessary to select a proper network structure for model
output evaluation and a reasonable optimization algorithm.Wide
attention has been attracted to the Convolutional Neural Network
(CNN), as an effective recognition method (Lecun et al., 2015). In
addition, it has been highlighted in image classification and object
detection (Ren et al., 2017). A deep-learning-based method was
developed to detect concrete bugholes (Wei et al., 2019; Yao et al.,
2019; Wei et al., 2021), concrete cracks (Chen and Jahanshahi,
2018; Dung and Anh, 2019; Sun et al., 2021; Tang et al., 2021a;
Yao et al., 2021), pavement cracks (Ji et al., 2020; Mei and Gül,
2020; Guan et al., 2021), and other defects (Lin et al., 2017; Cha
et al., 2018; Li et al., 2019; Tang et al., 2021b; Jiang et al., 2021).
The existing crack detection methods based on CNN generally
have problems, such as complex network structures and excessive
training parameters. One crucial technical problem is balancing
the efficiency and accuracy of the detection.

At present, the mainstream framework of object detection
based on deep learning is mainly divided into two categories: two-
stage, based on the idea of target region proposal, and one-stage,

based on the idea of regression. Target region proposals in the
two-stage category are extracted first, and the detection model is
then trained based on them (such as RCNN (Girshick et al.,
2013), Fast-RCNN (Girshick, 2015) and Faster-RCNN) (Ren
et al., 2017). The one-stage category does not have the
extraction operation of the target region proposal, and the
target category and location information are directly generated
by the detection network (such as SSD (Liu et al., 2016), YOLOv3
(Redmon and Ali, 2018) and YOLOv4 (Bochkovskiy et al., 2020)).
Two-stage has higher task accuracy but slower speed, while one-
stage can achieve real-time performance at the expense of
accuracy. Therefore, in order to balance the detection
efficiency and accuracy of the concrete surface cracks, the
GhostNet Module concept (Han et al., 2020) is used for
reference, and the backbone network architecture of YOLOv4
is improved so as to use fewer parameters to generate more
features. The feature redundancy between networks is reduced,
and the whole network is compressed. The multi-scale fusion
method is adopted to effectively detect cracks on concrete
surfaces, greatly overcoming the difficulty of manual detection.

At present, most relevant studies are carried out under
conditions wherein the image information is clear and
obvious. With the frequent occurrence of adverse weather
(such as haze), the collected images will be degraded by the
loss of detailed information, color distortion and image
resolution. The recognition method of the network model in
the clear image scene appears to be slightly lacking in practicality.
When the target features of the collected images in fog are unclear
and the resolution is problematic, the lightweight YOLOv4
network model is directly used for crack detection, and the
detection performance will be reduced. Consequently, in this
paper, the network model is integrated with the dark channel
prior concept (Kaiming et al., 2011) and the Inception module
(Szegedy et al., 2016). The image crack features are extracted at
multiple scales, and BReLU bilateral constraints are adopted to
maintain local linearity. Based on the atmospheric scattering
model (Nayar and Narasimhan, 1999) and the improved
YOLOv4 model, cracks on concrete surfaces can be detected
effectively in fog. The proposed network model is compared with
the YOLOv3 algorithm in subjective vision and objective
evaluation metrics. The results show that the proposed
method has better detection performance, and the model
parameters and amount of calculations are greatly reduced.

THE LIGHTWEIGHT MODEL FOR
CONCRETE CRACK DETECTION

The Principles of YOLOv4
The backbone network CSPDarknet53 of YOLOv4 is the core of
the algorithm and is used to extract the target features. CSPNet
can maintain accuracy and reduce computing bottlenecks and
memory costs while being simplified. Drawing from the
experience of CSPNet, YOLOv4 adds CSP to each large
residual block of Darknet53. It divides the feature mapping of
the base layer into two parts, then merges them through a cross-
stage hierarchical structure to reduce the amount of calculations
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while ensuring accuracy. The activation function of
CSPDarknet53 uses the Mish activation function, and the
subsequent network uses the Leaky ReLU function. The
experiments demonstrated that this setting had higher
accuracy in object detection. Unlike the YOLOv3 algorithm,
which uses FPN for upsampling, YOLOv4 draws on the idea

of information circulation in the PANet network. Firstly, the
semantic information of the layer features is propagated to the
low-level network by upsampling, and is then fused with the high-
resolution information of the underlying features to improve the
small target detection effect. Next, the information transmission
path from the bottom to the top is increased, and the feature
pyramid is enhanced through downsampling. Finally, the feature
maps of different layers are fused to make predictions. The
specific network framework is shown in Figure 1
(Bochkovskiy et al., 2020). The ResBlock_body is the residual
block of CSPDarknet53, which can extract the target features of
the image and reduce the computational bottleneck and the
memory cost. The specific internal Module architecture is
shown in Figure 2 (Yao et al., 2021).

The Principles of the Ghost Module
The Ghost Module can use fewer parameters to generate more
feature maps. Specifically, in view of the large amount of
redundancy in the intermediate feature maps calculated by
mainstream CNN, the deep neural network divides the
ordinary convolutional layer into two parts. In the first part,
the number of convolutions is strictly controlled, and the inherent
feature maps are extracted by ordinary convolution operations. In
the second part, a series of simple linear operations are used to
generate more feature maps. Compared with the ordinary
convolutional neural network, the total number of parameters
and computational complexity required in the Ghost module are
reduced without changing the size of the output feature map. The
specific implementation is shown in Figure 3 (Han et al., 2020).

FIGURE 1 | YOLOv4 network architecture.

FIGURE 2 | ResBlock module structure.
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The memory and computation benefits achieved using the
Ghost module are analyzed. The input data isX ∈ Rc×h×w, where c
is the number of channels, w is the width and h is the height.
Y ∈ Rn×h×w is the output feature map with n channels, and
f ∈ Rc×k×k×n is the convolutional kernel size. The FLOPs
required by the ordinary convolution process are n × h × w × c ×
k × k.

The Ghost module believes that the output feature maps are
transformed by a few original feature maps through some
cheap operations such as linear transformation. The size of
the ordinary convolution kernel is f′∈ Rc×k×k×m, where m≤ n,
and the output feature map is Y′∈ Rh′×w′×m. In this way, in
order to further obtain the required n feature maps, a series
of cheap linear operations are used to generate s duplicate
feature maps for the original map in Y′, and the average
kernel size of each linear operation is d × d. The theoretical
speedup ratio when using the Ghost module to upgrade
ordinary convolution is computed by Eq. 1 The
magnitude of d × d is similar to k × k and s≪ c. The
compression ratio of the parameter is computed by Eq. 2
The compression ratio of the parameter is approximately
equal to the speedup ratio.

rs � n × h′ × w′ × c × k × k
n
s × h′ × w′ × c × k × k + (s − 1) × n

s × h′ × w′ × d × d

� c × k × k
1
s × c × k × k + s−1

s × d × d
≈

s × c
s + c − 1

≈ s (1)

rc � n × c × k × k
n
s × c × k × k + (s − 1) × n

s × d × d
≈

s × c
s + c − 1

≈ s (2)

The Lightweight YOLOv4 Model Structure
The Improvement of the YOLOv4 Model Framework
The Ghost module is applied to generate the same number of
feature maps as the ordinary convolutional layer. It can easily
replace the convolutional layer and integrate it into the existing
designed neural network structure to reduce the computational
cost. The Ghost module is utilized to build a Ghost bottleneck
structure to replace the Resblock_body bottleneck structure in the
YOLOv4 network model, which can further eliminate feature
redundancy.

The Ghost bottleneck constructed using the Ghost module
concept is shown in Figure 4. Similar to the basic residual block in
ResNet, it integrates multiple convolutional layers and shortcuts.

FIGURE 3 | Ordinary convolution operation and Ghost module operation.

FIGURE 4 | Ghost bottleneck module and Resblock_body structure: (A) Ghost bottleneck structure with stride � 1,2 (B) Resblock_body.
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The Ghost bottleneck structure is mainly constructed by two
stacked Ghost modules. The first Ghost module is used as an
extension layer which increases the number of channels. The
second one reduces the number of channels to match the shortcut
path. The shortcut is then used to connect the input and output of
the two Ghost modules, and the MobileNetv2 module concept is
used for reference. The ReLU structure is not used after the
second Ghost module. For the Ghost module with stride � 2, the
shortcut path is implemented by the separable convolution of the
downsampling layer and stride � 2.

In this section, following the advantages of the basic SPP and
PANet architecture in the YOLOv4 module, the Ghost bottleneck
is used to replace the Resblock_body structure in the YOLOv4
module. The specific replacement network structure is shown in
Figure 5.

The Fast Non-Maximum Suppression Algorithm
The traditional Non-Maximum Suppression (NMS) (Neubeck
and Gool, 2006) algorithm arranges items in descending order
according to the confidence scores of the detected target boxes. It
sets an Intersection over Union (IoU) threshold and removes
bounding boxes larger than the threshold. Until all the prediction
boxes are traversed, the remaining bounding boxes are taken as
the final target detection result. Since it is a sequential traversal,
each category needs to be sorted and filtered, which will result in a
loss of algorithm speed. In this study, considering the image
characteristics of the concrete surface cracks, parallel processing
is adopted to screen and retain each boundary box in parallel.

Firstly, all unfiltered network prediction boxes are input, and are
arranged in descending order according to the confidence scores.
Only the first N detection results are selected. The IoU for the
crack prediction results is then calculated to obtain the IoU
matrix. The diagonal elements and the lower triangle are self-
intersecting and recalculating, and are set to 0. The maximum
value of the IoU matrix is calculated, and the boxes outside the
threshold limit are filtered out. As a result, the final screening
result is the final recognition result.

THE CONCRETE CRACK DETECTION
MODEL IN FOG

With the frequent occurrence of adverse weather such as haze, the
collected images will be degraded by low image resolution and the
loss of detailed information. The YOLOv4 network model lacks
some practicability when applied to crack detection in clear image
scenes, and its detection performance will decrease. This section
focuses on a series of degradation phenomena in image acquisition
and the low detection rate of cracks in adverse weather. Dark
channel prior and the Inception module are used for reference to
integrate into the network model. The image crack features are
extracted at multiple scales, and BReLU bilateral constraints are
adopted to maintain local linearity. The clear crack scene is
restored based on the atmospheric scattering model, and the
crack structure is effectively detected by combining with the
improved YOLOv4 network model.

FIGURE 5 | The lightweight YOLOv4 model framework.
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Atmospheric Scattering Model
There are two main factors leading to image degradation in hazy
weather. One is that the atmospheric light is scattered by the
atmospheric haze particles to produce stray light, which affects
the image resolution. The other is that the light reflected from the
atmosphere to the target will cause light attenuation through the
absorption and scattering of suspended particles, which usually
results in blurred image details and decreased contrast. Based on
these two factors, Nayar and Narasimhan proposed an
atmospheric scattering model (Nayar and Narasimhan, 2002).
The imaging link is shown in Figure 6. The mathematical
expression is shown in Eq. 3.

I � Lobject · t + A � Lobject · e−βd + A∞(1 − e−βd) (3)

where I and Lobject represent the light intensity of foggy images
and sunny images, respectively; t represents the atmospheric
transmittance; A represents the atmospheric light intensity;
A∞ represents the atmospheric light intensity at infinity; β
represents the extinction coefficient of scattering and
absorption; d represents the distance between the target and
the imaging system. Eq. 3 reveals that two parameters must be
reconstructed if a clear image is to be restored: the atmospheric
transmittance t and the atmospheric light intensity at infinityA∞.

Dark Channel Prior
Dark channel prior (Kaiming et al., 2011) is a prior theory
obtained from the statistics of a large number of fog-free

images. In most local areas of fog-free images, there are always
one or more pixels whose gray value is close to 0. The
mathematical expression is shown in Eq. 4.

Jobjectdark � min
y∈Ω(x)

{ min
c∈{r,g ,b} [Lobject

c ]} → 0 (4)

t(i, j) → 1 −min
c
( min

y∈Ω(x)
(I(i, j)

A∞
)) (5)

where Ω(x) is the local area of the fog-free image; Lobjectc and
Jobjectdark represent the original image and the image processed by
dark channel, respectively. Figure 7 presents a dark channel
image of a fog-free image. The atmospheric transmittance t can be
obtained quickly by substituting the dark channel concept of Eq.
4 into the atmospheric scattering model, after which the clear
image can be restored. The mathematical expression is presented
as Eq. 5 Drawing lessons from the characteristics of the dark
channel concept and integrating them into the neural network
model is helpful for restoring clear images, and provides a higher
detection rate for detecting cracks on concrete surfaces.

Framework of Crack Detection Model
The Improvement of the Model Framework
In this section, the YOLOv4 model architecture is improved to
complete the crack detection on concrete surfaces in fog. The
input data structure is the RGB concrete fog image, and the
transmittance map of the corresponding fog image is expected to

FIGURE 6 | Atmospheric scattering imaging link.

FIGURE 7 | Clear image and dark channel image.
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be output in the middle. The position information of the image
pixels remains unchanged, and the atmospheric light intensity at
infinity is then estimated. The atmospheric scattering model is
used to restore the image, and the cracks on the concrete surface
are detected in combination with the lightweight YOLOv4 model

structure. The specific improved network model is shown in
Figure 8.

The first layer of the network is the feature extraction layer,
which can effectively extract the features of foggy images.
Combined with the dark channel prior method, the activation

FIGURE 8 | Framework of crack detection model in fog.
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function of convolution and Maxout is used as the first layer of
the network. Firstly, the input foggy image is composed of 16
filters with a convolution kernel size of 3 × 3. Subsequently, based
on the idea of image dark channel, the Maxout nonlinear
activation function is selected to realize the local minimum
filtering function, and the extracted feature map is output.

Maxout divides the feature map z extracted by convolution
into groups with k values, after which theMaxout unit outputs the
largest element among them. It is defined as h � zj. It can be seen
that the Maxout activation function achieves the fitting.of the
convex function by separating the k terminal and taking its
maximum value. On the basis of the Maxout unit, the first
layer of the network is designed as shown in Eq. 6.

Fi
1(x) � max

j∈[1,k]
f i,j1 (x), f i,j1 � Wi,j

1 × I + Bi,j
1 (6)

whereWi,j
1 is an inverse filter with a center value of −1 and a size

of 3 × 3. This means that the maximum output after the Maxout
activation function is the minimum color channel value, which is
the idea of the dark channel. The automatic learning of dark
channel features is realized through feature extraction of the
first layer.

In the second layer, a multi-scale convolution neural network
is used to extract the features of the target. To improve the
robustness of the feature extraction under different resolutions,
the multi-scale extraction capability of the Inceptionv3 module
structure is utilized, and the adaptability to the network width

and depth is increased. It can be seen that the spatial filters (5 × 5,
7 × 7) with larger computing power are replaced by a convolution
kernel (3 × 3) with smaller computing power in the second layer
network structure, which not only reduces the number of
parameters, but also speeds up the computations. Cross-
channel information integration can be realized by designing
the dimension reduction structure of a 1 × 1 convolution kernel
followed by a 3 × 3 convolution kernel. The outputs of the
adjacent activation responses are highly correlated, and the local
representation ability is not reduced when reducing the number
of these activation effects before aggregation. At the same time,
the 3 × 3 convolution kernel is decomposed into two one-
dimensional convolution kernels 1 × 3 and 3 × 1 by the
convolution kernel decomposition design. Not only can this
speed up the computations, but it can also increase the depth
and nonlinearity of the network.

In the third layer, space invariance is achieved by selecting the
maximum value of the neighborhood. Moreover, the local
extremum is also consistent with the assumption that the
medium transmission is locally constant in foggy weather, and
the noise in the transmission image can be suppressed. In the
fourth layer, inspired by the ReLU and Sigmoid activation
functions, the BReLU activation function is used for nonlinear
activation. The range of atmospheric transmittance t is 0–1, which
cannot be infinite or infinitesimal. Both local linearity and bilateral
restrictions aremaintained through a 3 × 3 convolution kernel. The
transmittance image of the atmosphere can be mapped end to end.
Ultimately, the input fog image is used to estimate the atmospheric
light intensity at infinity, and the clear image can be restored. The
lightweight YOLOv4 network model is utilized to detect concrete
surface cracks.

The Estimation of Atmospheric Light Intensity at
Infinity A∞
According to the atmospheric scattering model of Eq. 3, the
accuracy of the atmospheric light intensity estimation at infinity
is analyzed. It directly determines the clarity of the restored target.
Consequently, the atmospheric light intensity at infinity is
directly related to the image clarity. In this paper, based on
the dark channel of the haze image and combined with the
quadtree spatial index principle, the atmospheric light

FIGURE 9 | The principle of the quadtree spatial index.

TABLE 1 | The method for estimating atmospheric light intensity at infinity.

Input image： Original foggy image I and Dark channel image Idark

(1) Perform median filtering on I: Imedian � median(Idark)
(2) Perform quadtree segmentation on Imedian. The image area information is stored in
four leaf nodes
(3) The leaf node score is defined as:Iscore(Ω) � ave{Imedian(Ω)};
(4) Select the leaf node with the largest score Ω
(5) Loop 2–5 steps until the area Ω is smaller than the threshold area size ψ of the
adaptive image resolution. The threshold area is defined
as: ψ � 0.04 ×min(raw, col)
(6) Calculate the average value of the corresponding coordinate area in the original
foggy image I as the atmospheric light intensity at infinity: A∞ � ave{I(Ω)}
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intensity at infinity is estimated. Figure 9 illustrates the principle
of the quadtree spatial index. The specific method of estimation is
shown in Table 1.

The atmospheric light intensity at infinity is estimated by the
above method, and the transmission image is reconstructed with
the neural network. Through combination with the atmospheric
scattering model of Eq. 3, a clear concrete crack image can be
recovered, and by combination with the lightweight YOLOv4
network model framework, the crack training and detection can
then be carried out.

The Construction of the Network Loss Function
The loss function of the network model is composed of the
following parts: the transmittance estimation loss, the regression
loss, the confidence loss and the classification loss. The regression
loss of the prediction box adopts the CIOU loss function of the
YOLOv4 network model. The mathematical expression is shown
in Eqs. 7–9.

LCIOU � 1 − IoU + d2

c2
+ αv (7)

v � 4
π2
(arc tan wgt

hgt
− arc tan

w
h
)2

(8)

α � v
1 − IoU + v

(9)

where d represents the Euclidean distance between the center
points of the two prediction boxes and c represents the diagonal
distance of the closed area of the prediction box.

The confidence loss function adopts cross entropy and is
divided into two parts: obj and noobj. In order to reduce the
contribution weight of the noobj calculation part, the loss of
noobj increases the weight coefficient λnoobj. It is shown in Eq.
10 The classification loss function adopts cross entropy. When
the jth anchor box of the ith network is responsible for a real
target, the bounding box generated by this anchor box will

calculate the classification loss function. This is shown in Eq. 11
The loss of transmittance estimation learns the mapping
relationship between the input image and transmittance by
minimizing the loss function between the estimated
transmittance and the actual transmittance. The mean square
error between actual transmittance and predicted transmittance
is defined as the loss function. The loss function is defined as
Eq. 12.

Lconf � ∑K×K
i�0

∑M
j�0

Iobjij [Ĉilog(Ci) + (1 − Ĉi)log(1 − Ci)]−
λnoobj ∑K×K

i�0
∑M
j�0

Inoobjij [Ĉilog(Ci) + (1 − Ĉi)log(1 − Ci)] (10)

Lclasses � ∑K×K
i�0

Iobjij ∑
c∈classes

[p̂i(c)log(pi(c)) + (1 − p̂i(c))log(1 − pi(c))]
(11)

Ltrans � ⎡⎣1
m

∑m
i�1
(1
2
‖ hw,b(x) − y‖2)⎤⎦ + λ

2
∑nl−1
l�1

∑sl
i�1

∑sl+1
j�1

(w(l)
ji )2 (12)

In Eq. 12, The first term on the right side of the equation is the
mean square error term, and the second term is the regular term.
The regular term has nothing to do with the bias b(l)i and can only
control the size of the weight, so it is also called the weight
attenuation term. The weight decay parameter λ in the weight
decay term can be used to determine the proportion of the two
items in the loss function. The key of training is to obtain the
minimum cost function by continuously adjusting the weightw(l)

ij

and bias b(l)i .
In this section, the loss function of the crack detection model

framework in fog is defined as:

Ltotal � LCIOU + Lconf + Lclasses + Ltrans (13)

EXPERIMENTS

Image Database Creation
A smartphone is used for image acquisition. For the purpose of
collecting images of small cracks on a concrete surface, all
images are taken from a distance of 0.1 m between the
smartphone and concrete surface. 2000 original images (3,024
× 3,024 pixels) are extracted from the surfaces of concrete
buildings. Each original image can be cropped to generate
139 images (256 × 256 pixels). However, some cropped
images do not include cracks. As a result, the images with
cracks are meticulously selected from the cropped image set.
Finally, 10,000 images conforming to requirements are selected
to create the database.

The actual transmittance of the defogging images needs to be
obtained as a label for training. Since the shooting target in actual
fog needs to be aligned with the pixel position of the shooting
target on a sunny day, there can be no shooting error, and the
construction is too arduous. Accordingly, in this paper, images
taken on sunny days are manually fogged to build the database.

TABLE 2 | The initial parameters of the first stage.

Parameter Value

Base_LR 10–3

Batch_Size 16
Train_Epoch 100
Weight_decay 5 × 10−4

Lr_scheduler_Max_iterations 5
Lr_scheduler_Minimum_lr 10–5

TABLE 3 | The initial parameters of the second stage.

Parameter Value

Base_LR 10–4

Batch_Size 16
Train_Epoch 500
Weight_decay 5 × 10−4

Lr_scheduler_Max_iterations 5
Lr_scheduler_Minimum_lr 10–5
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FIGURE 10 | The indices of the original YOLOv4 model and the lightweight YOLOv4 model: (A) Precision of the original YOLOv4 model (B) Precision of the
lightweight YOLOv4 model (C) F1 of the original YOLOv4 model (D) F1 of the lightweight YOLOv4 model (E) AP of the original YOLOv4 model (F) AP of the lightweight
YOLOv4 model.
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Matlab is used to realize by adding different degrees of white noise
to the image pixel by pixel. Furthermore, with reference to the
Mosaic data enhancement method of YOLOv4, four images are
randomly selected from the database, randomly scaled, and then
randomly distributed for stitching. Not only can this greatly
expand the original database, but it can also enrich the
background of the images. When performing random
cropping, if a part of the label box in the sample is cropped, it
will be discarded and the intact label box will be retained after
cropping. In the process of random scaling, many small targets
are added to balance the scale problem of the original database,
and the robustness of the network is better. Another benefit of
Mosaic data enhancement is that the data of four pictures can be
directly calculated during training, and the batch size can be
improved in disguise. Therefore, the Mini-batch size set during
training does not need to be large, which reduces the training
difficulty of the model.

For the purpose of assessing the generalization ability of the
proposed model, 10,000 images are divided into five parts
based on the fivefold cross-validation principle, among which
80% are used to train and validate the model and the remaining
20% are used to test. More precisely, 8,000 images are
randomly selected from the 10,000 images, among which
7,000 images are used to generate a training set and 1,000
images are used to create a validation set. The remaining 2,000
images not selected for training and validation are used to
build a testing set.

Model Initialization
In the process of network training, in order to improve efficiency
and better save computing resources and time, this paper adopts
the training strategy of freezing some layers. The whole training
process is divided into two stages. In the first stage, only the
Backbone network structure is trained; in the second stage, the
overall network structure is trained. In the training process, the
Cosine Annealing learning rate strategy is adopted, and the
hyperparameters are optimized according to the genetic

algorithm. The initial parameter settings of the first stage and
the second stage are shown in Tables 2, 3, respectively.

Evaluation Metrics of Accuracy
For the purpose of assessing the accuracy of any object
detection technique, many evaluation criteria are proposed
and adopted. The most frequently-used metric for object
detection is the mean Average Precision (mAP) which is
currently used to measure how the labeling methods
perform on a task. Before introducing the mAP, it is
necessary to introduce the commonly-used metrics in the
field of object detection, such as Intersection over Union
(IoU), Precision and Recall. IoU is the ratio of the
intersection and union of the candidate bound and the
ground truth bound, which is also called the Jaccard index.
The classification problem generally sorts the concerned
classes into positive classes and other classes into negative
classes. The prediction results of the testing set may be correct
or wrong, and these results can be divided into four categories:
True Positive (TP), True Negative (TN), False Positive (FP)
and False Negative (FN). The accuracy refers to the number of
correct recognitions of all samples predicted to be positive.
According to the above classification, Eqs. 14–15 define the
precision and recall, respectively.

Precision � TP
TP + FP

(14)

Recall � TP
TP + FN

� TP
P

(15)

where P is the number of positive samples in the testing set.
The Recall reflects the missing rate of the model. The
Precision and Recall are independent of each other. High
precision means that the FP rate is low, which can lead to a
high missing rate. Eq. 16 defines the comprehensive
evaluation value F1. Taking the recall as the horizontal axis
and the precision as the vertical axis, the P-R curve can be
obtained and the Average Precision (AP) can be calculated. In

TABLE 4 | The performance comparison of the lightweight YOLOv4 model with the original YOLOv4 model and the YOLOv3 model.

Algorithm mAP (%) Parameters (M) FLOPs (GMacs)

The YOLOv3 model 93.13 234 32.8
The YOLOv4 model 97.32 244 29.9
The lightweight YOLOv4 model 96.88 121 1.95

FIGURE 11 | The detection results of the concrete surface cracks.
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FIGURE 12 | The indices of the lightweight YOLOv4 model and the improved model in fog: (A) Precision of the lightweight YOLOv4 model (B) Precision of the
improvedmodel in fog (C) F1 of the lightweight YOLOv4model (D) F1 of the improvedmodel in fog (E) AP of the lightweight YOLOv4model (F) AP of the improved model
in fog.
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short, this is for calculating the mean value of precision on the
P-R curve. Eqs. 17, 18 are the formulas for AP and mAP,
respectively.

F1 � 2 × P × R
P + R

(16)

AP � ∫
1

0

p(r)dr (17)

mAP � 1∣∣∣QR
∣∣∣ ∑

QR

q�1
AP(q) (18)

In this paper, in addition to the mAP, the model size and
computational complexity FLOPs are used to evaluate the model
compression algorithm. The model’s size is closely related to its
parameters, which can be used to measure the simplification of
the YOLOv4 model. FLOPs reflects the calculation amount of the
algorithm. The unit of FLOPs is GMacs, which is short for Giga

TABLE 5 | The performance comparison between the lightweight YOLOv4 model and the improved model in fog.

Algorithm mAP (%) Parameters (M) FLOPs (GMacs)

The lightweight YOLOv4 model 90.72 121 1.95
The improved model in fog 96.50 132 2.24

TABLE 6 | The input and output of the lightweight YOLOv4 model and the improved model in fog in concrete surface crack detection.

Original image Prediction by the
lightweight YOLOv4 model

Prediction by the
improved model in fog
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Multiply-Accumulation operations per second. It represents the
floating-point operations per second, which can reflect the
algorithm’s calculation performance.

RESULTS AND DISCUSSIONS

The Lightweight YOLOv4 Model
To verify the concrete surface crack detection performance of the
lightweight YOLOv4 model proposed in this paper, the
experimental results are compared with those of the original
YOLOv4 model. The detection rate (precision), comprehensive
evaluation value F1 and AP are used for evaluation, as shown in
Figure 10.

Figure 10 shows that the detection performance of the
lightweight YOLOv4 model is basically consistent with that of
the original YOLOv4 model, and the curves of the precision, F1

and AP are similar. It can be concluded that there is basically no
loss in performance after the model is simplified. The model size
and FLOPs are used to verify the simplification effect of the
model. Table 4 shows the performance comparison of the
lightweight YOLOv4 model with the original YOLOv4 model
and the YOLOv3 model. Table 4 shows that in the lightweight
YOLOv4 model, the weight is reduced by 50% and the FLOPs is
reduced by 93.5%. Compared with the YOLOv3 model, the
performance of the lightweight YOLOv4 model has certain
advantages in terms of the mAP, the weight and the FLOPs.
To demonstrate the detection performance of the proposed
model more intuitively, some images shown in Figure 11 were
randomly selected from the database for testing.

The Crack Detection Model in Fog
To verify the performance of the improved YOLOv4 model when
detecting concrete surface cracks in fog, the lightweight YOLOv4
model and the improved model in fog were trained with the same
experimental conditions, the same foggy database and the same
optimization algorithm. As shown in Figure 12, the precision, F1

and AP are used for evaluation.
Figure 12 illustrates that the lightweight YOLOv4model does not

performwell in fog, while the improvedmodel performs better. It can
be seen that the AP has a higher improvement, which proves that the
performance of the improved network model in detecting concrete
surface cracks in fog exhibits a certain improvement. The model size
and FLOPs are used to verify the performance of the improved
model. Table 5 shows the performance comparison between the
lightweight YOLOv4 model and the improved model in fog.

Table 5 shows that the improved model in fog is slightly
higher than the lightweight YOLOv4 model in terms of weight
and FLOPs, but has a greater benefit in the mAP than the
lightweight model. In order to more intuitively show the
performance of the improved model in detecting concrete
surface cracks in fog, some images were randomly selected
from the database for testing, as shown in Table 6.

It can be seen intuitively from Table 6 that the detection result of
the lightweight YOLOv4model in the first image is not accurate, and
some of the crack features are not recognized. The improvedmodel in
fog has a better recognition effect. In the second image, due to the
heavy fog, the thin crack structure and the inconspicuous features, the
lightweight YOLOv4 model fails to make a correct identification,
while the improved network model is accurate. Both algorithms can
correctly detect cracks in the third image. In order to intuitively show

TABLE 7 | The haze removal results of the concrete surface cracks.

Original image Transmittance image Restoration image
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the effect of crack scene restoration in the middle layer of the
improved model, several test images are selected to illustrate the
effect of haze removal, as shown in Table 7. It can be seen that the
results of restoring the crack structure using this paper’s improved
model are clearer and more obvious than the original fog image,
which is more conducive to feature extraction by the subsequent
lightweight YOLOv4 model.

CONCLUSION

A crack detection method based on the YOLOv4 algorithm is
proposed, which provides a more accurate, efficient and intelligent
method for the detection of cracks on concrete surfaces. A
smartphone is used for collecting 2000 raw images (3,024 × 3,024
pixels) from the surfaces of concrete buildings. To reduce the
computation of the training process, the collected images are
cropped to 256 × 256 pixels. 7,000, 1,000 and 2,000 images are
used for training, validation and testing, respectively. The YOLOv4
architecture described in detail in Section 2.3was simplified for crack
detection. The lightweight YOLOv4 model achieved an mAP of
96.88% with 121M and 1.95 GMacs. The results showed that the
proposed method can provide good crack detection results with a
lower trained model weight. In this paper, images taken on sunny
days are manually fogged to build the database. The lightweight
YOLOv4 model was modified to have better performance for crack
detection in fog, which is described in detail in Section 3.3. The
improved model for crack detection in fog achieved an mAP of
96.50% with 132M and 2.24 GMacs. The results showed that the
improvedmethod can provide better crack detection results with only
a slightly higher trained model weight. The detection performance of
the proposed model has been improved in both subjective vision and
objective evaluation metrics, and is more effective at detecting
concrete surface cracks in fog.

Though the proposed method in this paper exhibits good
performance, there is still a long way to go for engineering

applications. In the experiment, there are several directions we
found that may be tried and improved. Firstly, to reduce the
computation of the training process, the model only uses small
pixel images (256 × 256 pixels). If a large number of images must
be processed, the images shall be cropped or scaled. It is
absolutely not a fundamental solution to the problem. It is
worth exploring approaches to improve the algorithm to
adapt it to larger image inputs. Secondly, many hyper-
parameters need to be artificially adjusted when applying
the method. We must still carry out plenty of experiments to
thoroughly explore the impact of these hyper-parameters on
the performance of the model. Finally, more types of defect
images across more complex backgrounds should be collected
to enlarge the database, thus improving the accuracy and
robustness of the proposed method.
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