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Ultrahigh-strength (UHS) steels have shown great potential in the field of high-end
equipment manufacturing in demand of lightweight engineering and performance
upgrade. A significant research effort has been directed toward the development of
advanced UHS steels with excellent combination of strength and toughness. In the course
of development, tailoring precipitates by means of composition design and process
optimization is absolutely a critical module. In this mini review, typical UHS steels
strengthened by carbides and intermetallics are systematically summarized and
discussed. With the increase of strength, the toughness losses of UHS steels
strengthened by carbides and intermetallics have been compared in detail. In
particular, the in-depth mechanisms leading to various strength/toughness variation
trends have been discussed, extracting the bottleneck in developing new-generation
UHS steels containing merely one type of precipitate. Meanwhile, prospects on designing
advanced UHS steels strengthened by coexisting dispersive precipitates have been
proposed to achieve better performance.
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INTRODUCTION

Ultrahigh-strength (UHS) steels, which exhibit ultimate tensile strength above 1,300 MPa, are
widely used in the most challenging structural applications, such as aircraft landing gear,
rocket cases, high-performance shafts and rings, and other critical sectors (Jeckins et al., 1993;
Wanhill et al., 2017). In addition to strength, actually there exist other vital issues which are
always the determining factor in the materials selection. The high strength must be combined
with toughness to resist fracture, ductility for safety coefficient in service, and resistance to
corrosion damage (Sun et al., 2014; Tian, J. et al., 2017; Wang, L. et al., 2005). Three basic
classes of UHS steels won out in the multi-property selection process to become key
competitors for UHS steel applications:

i) High-strength low-alloy (HSLA) steel: 300M (contains 0.4%C, generally used for first-
generation aircraft landing gear) (Youngblood et al., 1977), M50 (contains 0.8%C, widely
applied to second-generation aircraft bearing) (Rydel et al., 2017);

ii) Maraging steels: Custom 465 (famous high-strength stainless steel) (Daymond et al., 2016),
18Ni (strongest UHS with acceptable ductility and toughness) (Wang, B. et al., 2017), PH 13-8Mo
(well-known high-strength stainless steel) (Leitner et al., 2011);

iii) Co–Ni secondary hardening steels: Aermet 100 (used for second-generation aircraft landing
gear) (Wang, L. et al., 2005), Ferrium S53 (developed for manufacturing advanced aircraft landing
gear serviced in a marine environment) (Kuehmann et al., 2008).
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In these three classes of UHS steels, various alloying elements
have been combined optimally to obtain the desirable
microstructure and properties. All of them are processed to
obtain the martensitic matrix and are hardened by an internal
distribution of dispersive precipitates. At present, it has been
widely accepted that lath martensite with high dislocation storage
is the ideal matrix microstructure considering strength and
toughness synergy (Sandvik et al., 1983; Morris et al., 2013;
Galindo-Nava et al., 2015). However, there is still no
unanimous viewpoint on the optimal precipitate and three
aforementioned UHS steels differ in the nature of precipitates.
HSLA steels usually use cementite Fe3C and ε-carbides, while
maraging steels are strengthened by intermetallics such as
η-Ni3Ti and NiAl. In comparison, Co–Ni secondary hardening
steels introduce M2C and MC carbides. The present review aims
in retrospect at the development of UHS steels with superior
strength/toughness combinations and accounting for the most
recent developments in this area. Various methods have been
proposed to improve the performance of UHS steels. Modifying
the steel with trace rare earth has been demonstrated to be
effective to enhance the toughness (Malakondaiah et al., 1997;
Gong et al., 2021). Meanwhile, the lamellar microstructure
containing martensite and austenite indicates superior
strength/toughness synergy (Liu, L. et al., 2020; Zhang et al.,
2021). These two methods could be widely introduced into a
variety of alloys. However, unique process technologies are
usually matched to obtain the ideal property and this leads to
the difficulty and stability in the manufacture process. In this
work, we focus on the fundamental role of precipitates in
achieving desirable properties of UHS steels and evaluate our
current understanding on the intrinsic interactions between

composition designing–precipitate features–properties.
Following the detailed discussion, we will prospect the
pathways that could be further performed to make a
breakthrough in the field of UHS steels with exceptional
combinations of strength and toughness, particularly
concerning corrosion resistance.

Developing Ultrahigh-Strength Steels With
Upgraded Strength–Toughness Balance
The first criterion in ranking the UHS steels according to their
performance is the ratio of fracture toughness to ultimate tensile
strength. In order to achieve the promising combination of
strength and toughness, various alloy systems and processing
routes have been developed. The compositions and the
mechanical properties of some conventional UHS steels have
been picked out, shown in Table 1. The ratio of fracture
toughness to ultimate tensile strength of various UHS steels
has been reviewed and represented by a diagram in Figure 1A
(Hopkin et al., 2017; JeckinsForrest, 1993; Lv et al., 2011;
Mondiere et al., 2018; Morris Jr, 2017; Niu et al., 2019;
Schnitzer et al., 2010).

HSLA steels indicate rock-bottom balance of strength and
toughness among three aforementioned classes of UHS steels.
Obviously, the fracture toughness of HSLA steels sharply dropped
to be around 25 MPa m1/2 when reaching 1,600 MPa, except for
three cases with better performance, while the cost of HSLA steels
was the lowest, which is often the determining factor in the
ultimate materials selection. For instance, in the past 50 years,
conventional 300M steel has been widely used for the landing
gear of civil aircraft. In order to enhance the strength of HSLA

TABLE 1 | Compositions and mechanical properties of the conventional ultrahigh-strength steels.

wt% 300M 4,340 M50 Custom
465

18Ni PH
13-8Mo

Aermet100 Ferrium
S53

Ferrium
M54

C 0.41 0.42 0.84 0.0046 0.003 0.03 0.23 0.21 0.30
Cr 0.78 0.83 4.15 10.70 × 12.70 3.10 10.00 1.00
Ni 1.77 1.78 × 10.90 17.70 8.20 11.10 5.50 10.00
Co × × × × 14.70 × 13.40 14.00 7.00
Mo 0.42 0.24 4.20 0.86 6.73 2.20 1.20 2.00 2.00
Ti × × × 1.40 1.23 × ≤0.05 × ≤0.02
Al × × × 0.04 × 1.10 × × ×
Cu × 0.03 × × × × × × ×
Mn 0.65 0.78 0.20 × × × × × ×
Si 1.65 0.26 0.19 × × × × × ×
W × × × × × × × 1.00 1.30
V 0.10 × 0.97 × × × × 0.30 0.10
Precipitates Cementite/ε Cementite/ε Cementite/M2C/

M4C3
Ni3Ti Ni3Ti/R NiAl/M2C M2C/MC M2C/MC M2C/MC

YS (MPa) 1,785 1,920 2,200 1,688 2,650 1,413 1,697 1,551 1,731
UTS (MPa) 2,080 2,040 2,480 1,778 2,760 1,482 1,980 1,986 2,021
KIC

(MPa.m1/2)
57.4 53.0 18.6 70.5 31.6 127 132 71 110

Stainless No No No Yes No Yes No Yes No
References (JeckinsForrest, 1993;

YoungbloodRaghavan,
1977)

(JeckinsForrest,
1993; Clarke
et al., 2014)

(Hopkin et al.,
2017;

JeckinsForrest,
1993)

(Daymond
et al., 2016;
Ifergane

et al., 2015)

Wang,
W. et al.
(2010)

(David E.
Wert,
2006;

Schnitzer
et al., 2010)

WanhillAshok,
(2017)

Kuehmann
et al. (2008)

(Mondiere
et al., 2018;
Wang, C. C.
et al., 2018)
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steels, the universal choice is to increase the carbon content.
Unfortunately, higher carbon addition (>0.2 wt%) would
certainly result in the formation of twinned martensite in the
quenching process (Pan et al., 2016; Stormvinter et al., 2011). In
comparison to lath martensite, twinned martensite is a brittle
matrix phase because of deficient plastic deformation and strain
hardening capacity. In addition, coarse carbides are prone to form
in the solidification and cooling process because of the high
carbon content (Fukuda, 2006), thus seriously deteriorating the
toughness (Leap, 2021). In conclusion, strengthening the UHS
steels by increasing carbon content will deteriorate the toughness
seriously, and this is not the ideal choice if neglecting the cost of
the manufactured product.

In order to achieve better balance of properties to meet the
property requirement of the aerospace field with no cost
consideration, maraging steels came to the scene and gained
intensive attention in the past decades (1950–1970) (Decker et al.,
1988). In comparison to HSLA steels, superior strength/
toughness synergy of maraging steels should be attributed to
the combination of carbon-free lath martensitic matrix and
dispersive nano-size intermetallic precipitates. In conventional
maraging steels, typical precipitates such as Ni3Ti, Ni3Mo, NiAl,

and ε-Cu have been usually introduced (Xu et al., 2010; Jiao et al.,
2014; Jiao et al., 2015). Precipitation hardening is the dominant
strengthening mechanism in maraging steels; thus, more
precipitate-forming elements should be added in order to
achieve a higher strength level. However, this will lead to a
higher risk in forming harmful inclusions (such as Al2O3 and
TiN) (Karr et al., 2017; Tian, J. et al., 2021); thus, special
metallurgy technology will always be controlled meticulously
to decrease the O/N content to an extremely low level. In
addition, attributed to lack in the interaction between
interstitial C atoms and dislocation, the strain hardening
factor of maraging steel is quite lower than that of
C-strengthening steels. This acts as the obstacle to achieve
better strength and toughness combination among classical
maraging steels.

At present, the optimal combination of properties in UHS
steels ought to be achieved in the Co–Ni secondary hardening
steel, particularly at a higher strength level (>1,800 MPa)
indicated in Figure 1A. The design concept is to obtain lath
martensite in the quenching process, achieved by setting the
carbon content to be 0.2–0.3 wt%. Furthermore, in order to reach
a higher strength level at this carbon content level, dispersive

FIGURE 1 | (A) Fracture toughness—ultimate tensile strength diagram for several conventional UHS steels. (B–E) Microstructure characterizations showing the
precipitates in Ferrium M54, 18Ni, M50 and PH 13-8Mo, respectively.
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nano-size carbides (M2C, M usually denotes Cr or Mo) are
obtained via controlling the tempering process to trigger a
strong secondary hardening effect (Mondiere et al., 2018;
Wang, C. C. et al., 2018). Based on previous studies and the
Orowan precipitate hardening mechanism, the secondary
hardening phenomenon should be attributed to the
magical effect of cobalt, which could lead to smaller
precipitates accompanying a higher number density (Helis
et al., 2009; Murthy et al., 2012). Absolutely, a high Ni content

was another key point to guarantee the toughness. In
summary, the pioneering nature of Co–Ni secondary
hardening in three classes of UHS steels could be
attributed to the following aspects: toughening the matrix
by obtaining a lath martensite, retaining suitable interstitial C
atoms to guarantee a high strain hardening factor, modifying
carbides by cobalt addition to trigger a strong secondary
hardening effect, and weakening the risk to form harmful
inclusions.

FIGURE 2 | Typical cases indicating the characters of precipitates in advance steels. (A) Co-precipitation of NiAl and carbides; (B) Co-precipitation of ε-Cu and
carbides; (C) Introduce nitrogen to form V(C,N) precipitates; (D) Substitution of carbon by nitrogen to form coexisting carbides and nitrides.
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Prospects on Candidate Pathways to Make
Breakthrough: Concentrating on Tailoring
Precipitates
Besides the strength–toughness balance, corrosion resistance of
the UHS steel (itself, with no protected coating) is also a critical
indicator that usually dominates the material selection property;
particularly, the candidate materials will be subjected to
extreme mechanical loads and harsh environmental
conditions where corrosion is an important issue (Liu, Z.
B. et al., 2014). Despite numerous studies in developing UHS
stainless steels, many issues are still unsettled, leaving space
for new ideas. In the year 2008, in order to solve the existing
dilemmas between strength and corrosion resistance when
selecting high specific-strength steels for critical landing gear
components, QuesTek Innovations has designed Ferrium S53
to serve as a UHS corrosion-resistant drop-in replacement for
300M (Kuehmann et al., 2008). The fracture toughness in
3.5% salt water (KISCC) was the main concern when
evaluating the performance of similar UHS stainless steels.
Thus, the current challenge is to achieve better balance of
toughness and corrosion resistance at the objective
strength level.

Ferrium S53 is actually the derivate of traditional secondary
hardening steels, which has been modified by 10%Cr addition to
guarantee sufficient chromium in the matrix to provide
passivation against corrosion. Approximately 14 wt% cobalt
has been added to trigger a strong secondary hardening effect
by forming nanoscale M2C carbides. Under the funding from
Boeing Company, cooperating with Institute of Metal Research,
we have performed systematic studies on developing an optimal
UHS stainless steel used for manufacturing critical aircraft
landing gear (Tian, J. et al., 2017). A fundamental
breakthrough has been perceived: cobalt could accelerate the
spinodal decomposition of Cr atoms during the tempering/
aging process, which would deteriorate the corrosion
resistance of UHS stainless steels (Tian, J. et al., 2016; Tian,
J. L. et al., 2018). This phenomenon was also the key factor leading
to aforementioned dilemma between strength and corrosion
resistance. Thus, the content of cobalt has to be decreased to
eliminate the spinodal decomposition of Cr atoms. This
composition-optimizing concept has been demonstrated to be
feasible in previous research (Tian, J. et al., 2017), and the novel
UHS stainless steel with low cobalt content (7 wt%) indicated a
better balance of strength and corrosion resistance. However, it
still leaves space for performance improvement.

In order to offset the strength loss caused by lowering the
cobalt content, new ideas are urgently needed to produce strong
secondary hardening effects in the tempering/aging process. It
has been mentioned that the nature of the cobalt-driven
secondary hardening phenomenon was that cobalt addition
could lead to smaller precipitates accompanying a higher
number density. Thus, concentrating on the routes to enhance
the precipitation hardening mechanism by tailoring the
precipitates features, two candidate pathways based on
literature summary and authors’ intelligence have been
prospected (Figure 2).

One candidate pathway is to produce a microstructure
strengthened by co-precipitation of nanoscale carbides and
intermetallic precipitates. The objective microstructure could
evade the limitation of the microstructure with individual-type
strengthening precipitate (maraging steel use intermetallic phase,
secondary hardening steel employ carbide). Tracing back to
3 decades ago, researchers have succeeded in developing high-
strength steels by incorporating multi-precipitates of nanometer-
scale M2C carbides and intermetallic NiAl phases (Danoix et al.,
2011; Garrison et al., 1988; Hamano, 1993). It has been
demonstrated that the NiAl particle itself could provide strong
precipitation hardening contribution. In addition, it could lead to
significant modification of the precipitation sequence and the
arrangement of carbide nucleation sites compared to the steel
with individual-type precipitate (Delagnes et al., 2012). At the
initial stage of tempering, NiAl usually precipitates out of the
supersaturated solid solution. In the following, a part of carbides
would nucleate on the nano-size NiAl precipitates to form a
core–shell structure. This interaction mechanism could provide
considerable secondary hardening contribution even without
high cobalt addition. The nanoscale M2C carbides are
sufficiently small, and this frees chromium ions to be
incorporated into the passive film in a corrosive environment.
In a similar case (Mulholland et al., 2011; Jain et al., 2016), it has
been demonstrated that multiple precipitates containing ε-Cu
intermetallic phase and M2C carbide could contribute to the
enhancement of both strength and toughness. Definitely, co-
precipitation of nanometric carbides and intermetallics provides
a candidate pathway to achieve better balance of strength,
toughness, and corrosion resistance.

Another candidate pathway is to introduce nitrogen alloying
to form ultrafine carbonitrides. The concept of alloying steels with
carbon + nitrogen has been realized in martensitic stainless steel.
The advantage of this idea has been sufficiently demonstrated in
Cronidur-30 (Seifert et al., 2015), an advanced aircraft bearing
steel with excellent mechanical and corrosive properties. Similar
to carbon, nitrogen is also an interstitial element in steel and
could provide strong interstitial solid solution strengthening
contribution. Meanwhile, the nitrogen element has revealed
some unique features and this leads to the possibility of
improving the steel’s performance by optimizing the carbon/
nitrogen combinations (Gavriljuk et al., 2008; Seifert et al., 2015).
Naturally, nitrogen has benefit effects on corrosion resistance of
steel because of its modification function on passive film (Ha
et al., 2009). In comparison to carbon steel or nitrogen steel,
alloying martensitic steels with carbon + nitrogen contributes to
an increased concentration of free electrons and an enhanced
metallic character of interatomic bonds (Gavriljuk et al., 2008).
This mechanism amounts to an increase in the ductility and
toughness of the martensitic matrix, thus allowing to increase the
strength level of UHS steel with trace loss of ductility and
toughness. Another important aspect that needs to be
concerned is the precipitate’s characteristics (including
composition, size, and density) that could be tailored
dramatically via nitrogen alloying. A recent work has reported
that introducing nitrogen into martensitic stainless steel could
facilitate the ultrafine V(C,N) precipitate, which is a very effective
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strengthening precipitate (Rietema et al., 2021). Due to the
intrinsic difference between carbide and nitride, partial
substitution of carbon by nitrogen turned out to be a
promising concept to achieve better performance (Feng et al.,
2019; Gavriljuk et al., 1999). As a result of nitrogen addition, the
composition and structure of precipitates in carbon steel will be
dramatically modified. Since nitrogen will destabilize a part of
carbides (Cr23C6 is a case), particular carbonitrides with high
thermodynamic stability are prone to precipitate [V(C,N) is a
typical case]. In addition, unmixed carbide and unmixed nitride
would precipitate separately depending on thermodynamics and
kinetics factors. Thus, introducing nitrogen into martensitic steel
could trigger fine precipitates, which are promising
microstructure units to achieve excellent combination of
strength, toughness, and corrosion resistance.

DISCUSSION

UHS steels with good balance of strength and toughness are key
materials for lightweight engineering design strategies and
corresponding CO2 savings. Over the past decades, there have
been significant achievements in the development of novel UHS
steels under the efforts of both academia and industry. In this
mini review, the strength–toughness balance of three
conventional classes of UHS steels is analyzed contrastively.

We discussed the fundamental mechanisms leading to a
mechanical difference emphasizing on the precipitate, which is
a key microstructure unit determining the performance of UHS
steels. Coarse carbides and harmful inclusions should be the
dominant inducements restricting a better strength/toughness
synergy in HSLA steel and maraging steel, respectively. High
Co–Ni secondary hardening steel has indicated an outstanding
combination of strength and toughness, while there still leaves
space for new ideas to upgrade, particularly concerning the
corrosion resistance. In order to make a breakthrough, two
candidate pathways focusing on tailoring the precipitates have
been proposed, while more systematic future studies need to be
performed to drive the exploitation and application of UHS
stainless steels.
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