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As a powerful analytical technique, atom probe tomography (APT) has the capacity to
acquire the spatial distribution of millions of atoms from a complex sample. However,
extracting information at the Ångstrom-scale on atomic ordering remains a challenge due
to the limits of the APT experiment and data analysis algorithms. The development of new
computational tools enable visualization of the data and aid understanding of the physical
phenomena such as disorder of complex crystalline structures. Here, we report progress
towards this goal using two steps. We describe a computational approach to evaluate
atomic ordering in the crystal structure by generating radial distribution functions (RDF).
Atomic ordering is rendered as the Fractional Cumulative Radial Distribution Function
(FCRDF) which allows for greater visibility of local compositions at short range in the
structure. Further, we accommodate in the analysis additional parameters such as
uncertainty in the atomic coordinates and the atomic abundance to ascertain short-
range ordering in APT data sets. We applied the FCRDF analysis to synthetic and
experimental APT data sets for Ni3Al. The ability to observe a signal of atomic ordering
consistent with the known L12 crystal structure is heavily dependent on spatial uncertainty,
irrespective of abundance. Detection of atomic ordering is subject to an upper limit of
spatial uncertainty of atoms described with Gaussian distributions with a standard
deviation of 1.3 Å. The FCRDF analysis was also applied to the APT data set for a six-
component alloy, Al1.3CoCrCuFeNi. In this case, we are currently able to visualize
elemental segregation at the nanoscale, though unambiguous identification of atomic
ordering at the Ångstrom (nearest-neighbor) scale remains a goal.
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INTRODUCTION

An unambiguous understanding of structure provides the
essential link between developing a predictive relationship
between material processing and component performance.
Many valuable material characterization techniques provide
spatially averaged information on the structure, essential for
bulk properties but insufficient for uncovering the nuances
that exist in the local ordering of atomic systems. Atom probe
tomography (APT) stands out as an analytical technique that
targets local structure, due to an ability to resolve spatial
coordinates and identities of atoms. The potential for
extracting the maximum amount of information from APT
data sets motivates the continued exploration of new data
analysis techniques.

Routine structural characterization techniques such as powder
x-ray diffraction provide important spatially averaged structural
information. To investigate local fluctuations within this average,
very high-resolution techniques are required. As a state-of-the-art
technique, APT has becoming an important tool to study novel
materials, such as High Entropy Alloys (HEAs), alloys made with
equal proportions of five or more elements, where the
distribution of atoms at the atomic level is thought to be
crucial to material properties. APT provide a three-
dimensional (3D) element mapping allowing scientists to map
out the local chemical nature of complex alloys. APT can perform
nearly in atomic resolution level and provide quantitative
chemical analysis. Furthermore, APT has a high spatial
resolution (∼0.1–0.3 nm in depth and 0.3–0.5 nm laterally at
best) with high sensitivity (∼10 ppm), and therefore, APT can
be used to probe the local atomic structure, averaged-out in bulk
property characterization techniques such as powder X-ray
diffraction. (Gault et al., 2010a) Because the understanding of
multiphase microstructures, segregation at phase boundary and
dislocations, local composition fluctuations and unique atomic
configurations are a prerequisite for the future development of
mechanical properties of HEA, analytical tools such as APT are
essential in this field. (Cairney et al., 2015; Marceau et al., 2015;
Diao et al., 2019; Kuo et al., 2019; Hu et al., 2020).

Although, APT experiments can provide coordinates of
millions of atoms, it is constrained by two primary limitations.
The presence of data sparsity (only about one third of atoms are
spatially resolved) and noise (uncertainty in the atomic
coordinates on the order) are ongoing issues. These issues
limit the accurate determination of atomic positions in the
crystal structure. Therefore, interpreting atomic ordering on
the Ångstrom scale from the APT data has been a great
challenge and a subject of great interest among the materials
and computational scientific communities. In the past, numerous
efforts have generated Radial Distribution Function (RDFs) from
APT data (Sudbrack et al., 2004; Sudbrack et al., 2006; Geiser
et al., 2007; Haley et al., 2009; Gault et al., 2010b; Blum et al., 2012;
Zhou et al., 2013; Hernández-Saz et al., 2016; Dumitraschkewitz
et al., 2017; Mukherjee et al., 2017; Zhao et al., 2018; Inoue et al.,
2021), however, data integrity remains a fundamental concern.
Further, due to limitations in spatial resolution of the APT data,

the calculated RDF could be prone to misinterpretation regarding
crystal structure and the presence of short-range ordering.

Despite all these limitations, short-range ordering of complex
alloys was determine using APT data by employing a
computational approach called the generalized
multicomponent short-range order (GM-SRO) as a function of
atomic radial distances. The GM-SRO method utilizes a shell-
based counting of atoms in a three-dimensional (3D) radial
distances and it is very similar to the construction of RDF
using experimental APT data. (Rentenberger and Karnthaler,
2003; Santodonato et al., 2015; Owen et al., 2017; Qiu et al.,
2017; Mo et al., 2019; Pandey et al., 2019) In the data processing,
the GM-SRO method can account for limited detector efficiency
and spatial resolution of the experimental APT data. In general, a
positive value of GM-SRO means a co-segregation (clustering) of
a particular atom within a certain crystallographic shell. On the
other hand, the negative value of GM-SRO indicates the anti-
segregation (ordering) of the considered elements within the
crystallographic shell. If the GM-SRO value is zero or very
closer to zero, indicates the randomness of the system.
Marceau et al. (Marceau et al., 2015) discusses the drawbacks
of GM-SRO method in the presence of instrument detector
efficiency and the spatial resolution using Fe-Al system. As
authors presented, enforcing both detector efficiency and
spatial resolution to the GM-SRO calculation leads the GM-
SRO values closer to zero indicating the randomness of the
structure by obscuring the true nature of the SRO. (De Geuser
et al., 2006; Haley et al., 2009; Ceguerra et al., 2012) Because of the
limitations of the APT experiment, recent work suggests caution
in the interpretation or spatial coordinates. (Gault et al., 2021).

It has also been recently shown that machine learning
algorithms, based on topological data analysis, are able to
categorize local neighborhoods in experimental APT data sets
by crystal structure with near perfect accuracy. (Spannaus et al.,
2021) This “material fingerprinting” classification was applied to
high-entropy alloy APT datasets containing body-centered cubic
(bcc) and face-centered cubic (fcc) crystal structures. Local
atomic configurations were assigned a topological descriptor in
the form of a persistence diagram, by which it was classified. This
work provides an important example, despite the inherent noise
in the dataset, that there remains significant information in the
atomic coordinates that can be extracted through advanced data
analysis techniques.

Therefore, the exploration of new computational methods is
essential to understand the nanoscale structure of complex
alloys. In HEA research, computational methods can provide
very accurate atomic scale information ultimately responsible
for materials’ physical behavior. For example, computational
methods can be applied to derive the radial distribution
function (RDF), which allow us to evaluate the structure of
HEAs at the atomistic level. (Plimpton, 1995; Lee et al., 2005;
El Azrak et al., 2020) Moreover, it is possible to convert an RDF
into a Fractional Cumulative Radial Distribution Function
(FCRDF) which allows for greater visibility of local
compositions from short to medium range in the structure.
Validating computational simulations to experimental data is
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crucial to optimize not only the experimental tools but also to
understand the mechanical properties of the HEA.

In this work, we propose a novel combination of data
mining to interpret APT data and interrogate atomic scale
ordering of a binary alloy with a well-known atomic ordering,
Ni3Al, and an HEA, Al1.3CoCrCuFeNi. Herein, an innovative
computational approach was developed to visualize complex
local correlations between atoms using simulated RDF
patterns. Our computational approach confirmed that
synthetic structural models can be produced to match the
RDF data obtained from the APT experiment. This allows us to
understand the effect noise and abundancy of Ni3Al and
Al1.3CoCrCuFeNi at the local level. The combination of an
innovative computational approach and advanced
experimental methods allowed us to extract and evaluate
correlations between atoms within complex structures such
as HEAs, which will eventually help to improve castability,
develop compositions compatible with powder production and
understand strengthening mechanisms. (Savin et al., 1999;
Czeppe and Wierzbinski, 2000)

COMPUTATIONAL AND EXPERIMENTAL
METHODS

RDF, CRDF, and FCRDF Definitions
A multicomponent material containing N elements, can be
described by an N×N matrix of pairwise component RDFs.
Because the matrix is symmetric, only N (N+1)/2 of these
pairwise RDFs are unique. In the case of a binary alloy, such as
our example material, Ni3Al, there are three unique RDFs, Ni-
Ni, Al-Al and Ni-Al. The Al-Ni RDF is the same as the Ni-Al
RDF. Any A-B RDF describes the distribution of atoms of type
B around atoms of type A. In neutron and x-ray total
scattering experiments, only a total RDF is observable. This
total RDF is a combination of the pairwise component RDFs
weighted by the relative strength of scattering of the
constituent elements. In simulation, the pairwise RDFs are
directly calculated. If one is interested in the direct
comparison of a simulation RDF with an experimental
RDF, one can generate the total RDF from the pairwise
component RDFs. Because an APT data set provides the
same category of data as simulations (namely spatial
coordinates of atoms and their atomic identity), pairwise
component RDFs can be directly calculated from APT data
sets. In this work, only pairwise component RDFs, obtained
either from computation or from APT experiment are
reported. Henceforth, the term RDF is used and it
explicitly refers to a pairwise component RDF.

Any A-B RDF can be integrated up to an arbitrary value of r
along the radial dimension to provide the number of atoms of
type B within a sphere of size r centered on an atom of type A.
This integral of the RDF is designated a cumulative RDF or
CRDF. When the upper limit of integration is chosen only to
include nearest neighbors, the CRDF is described as a
coordination number of B about A. However, the CRDF has a

more general meaning since it can be evaluated at any arbitrary
value of r.

Any complete set of pairwise component can be normalized
on the basis of cumulative fraction of atom types. This function is
called the fractional cumulative RDF, or FCRDF. In Figure 1, the
RDFs and FCRDFs of a perfect (0 K) crystal structure of Ni3Al are
plotted. Four FCRDFs are shown in Figure 1B, representing the
cumulative fraction of atoms of type A around atoms of type B for
all (A,B) combinations of Ni and Al. The FCRDFs are not all
independent. At any value of r, the Ni-Ni and Ni-Al FCRDFs sum
to unity, because the system is a binary alloy and any atom that is
not Ni must be Al. The Al-Al and Al-Ni FCRDFs also sum
to unity.

We can exploit this interdependence to present the FCRDFs in
a manner that is visually more communicative. In Figure 2, we
show the FCRDFs about Ni (A) and Al (B). The most important
component of this visualization of the FCRDF is that any
deviation from the bulk composition (75% Ni and 25% Al)
represents atomic ordering. Let’s examine the FCRDF plots to

FIGURE 1 | Computational approach to generate (A) RDF and (B)
FCRDF data using the Ni3Al fcc parent structure (inset) with lattice parameters
of 3.577 Å and space group Pm-3m.
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understand how they capture the atomic ordering in Ni3Al. The
Strukturbericht designation for this structure is L12. (Villars et al.,
1984) Because L12 is an fcc structure, both Ni and Al have twelve
nearest neighbors. However, all twelve of the nearest neighbors of
Al are Ni. Therefore, the FCRDF about Al (Figure 2A) indicates
100% Ni in the range of radial distance greater than or equal to
the nearest neighbor distance and less than the next-nearest
neighbor distance. In L12, eight of the twelve nearest
neighbors of Ni are Ni and four are Al. Therefore, the FCRDF
about Ni (Figure 2B) indicates 66.7% Ni and 33.3% Al in this
same radial range. In this perfect crystal, no fraction appears at
distances less than the nearest neighbor distance because no
atoms occupy that excluded volume. As the radial distance
increases, the FCRDF accommodates first the next-nearest
neighbors then incrementally yet more distant neighbors.
Eventually this FCRDF must approach the bulk value of the
alloy. In the Ni3Al example, the bulk value of 75%/25% Ni/Al is
very nearly reached by 25 Å, Figure 2.

Atomic Ordering Metric Definitions
The plots of the FCRDF shown in Figure 2 effectively visualize
atomic ordering. In this work we also explored effort to generate
an atomic ordering metric, specifically designed to interpret the
FCRDF, which takes the form of a dimensionless scalar number
that characterizes atomic ordering in a material. Here, we report
only one candidate metric, which eliminated many of the artifacts
associated with other proposed metrics. For a binary alloy, the
atomic ordering metric, FA,O, is defined as

FA,O � 1
nr − 1

∑
rmax

r�rmin

[FCRDF(r) − 〈FCRDF(r)〉]2

where rmin and rmax define a radial range and nr is the number of
discretized values of r in that range. The FCRDF(r) is a local
average of the FCRDF about point r. By inspection, equation
(Gault et al., 2010a) is a local variance of the FCRDF. The local
variance has a lower limit of zero. A material with no atomic
ordering has a FA,O of zero. The number is dimensionless because
it is based on fractional compositions. In this work, we further
normalized FA,O so that it has a maximum value of unity, by
scaling the metric by the value of FA,O for the data shown in
Figure 2. Notably the value of FA,O is the same for Figures 2A,B.

As noted, this choice of metric came about through an iterative
process. The use of the bulk average FCRDF rather than a local
average did not sufficiently weight sharp transitions at small r.
The need to define a lower radial limit, rmin, arose to avoid
statistically unreliable data at very small rwhere the volume of the
spherical shell approaches zero as r3. (This problem will be
discussed further below.). The need to define an upper radial
limit, rmax, arose in order to compare different materials on a
standard scale. In this work, we chose rmin � 1.00 Å and rmax �
50.0 Å. The calculated FA,O for the synthetic data set in Figure 2 is
FA,O � 1.67. We identify this as the ideal FA,O value, (Fid). In other
words, Fid is the metric when 100% of the atoms are present and
there is no spatial noise. Subsequently, we report the scaled
atomic ordering metric, FA,O/Fid, bound between zero and
unity. The local average, 〈FCRDF(r)〉, was obtained by
averaging over the nearest 5 points symmetrically about r. For
multicomponent systems, the atomic ordering metric can be
determined by an average over all unique elemental boundary
lines in the FCRDF plots.

Synthetic Data Sets
The purpose of this work is to use the FCRDF and atomic
ordering metric to characterize atomic ordering in APT data
sets. In order to validate the technique, we created a suite of
synthetic data sets in order to demonstrate how the analysis tool
works on known systems. The data quality issues of interest are
(Gault et al., 2010a) number of atoms in the data set (Cairney
et al., 2015), fraction of the atoms in the material captured by the
data set, i.e., the relative abundance of atoms in the sample, and
(Diao et al., 2019) noise in the spatial coordinates of the atoms.
The number of atoms were set to approximately 400,000 since
that is the number of atoms in the APT data set for Ni3Al to which
we will compare. The other two parameters, abundance and
noise, were varied. We created a full matrix with four values

FIGURE 2 | FCRDF data sets generated from ordered fcc Ni3Al structure
with lattice parameters of 3.577 Å and space group Pm-3m. (A) FCRDF of Al;
(B) FCRDF of Ni.
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of noise and three values of abundance. The noise is reported as
the standard deviation of a Gaussian distribution in each
dimension, x, y and z. It ranges from 0 Å (no noise) to 2.00 Å,
which is comparable to experiment and previous APT simulated
structures (Hyde et al., 2017). The spatial resolution achieved in
the APT experiment depends not only upon the instrument, but
the temperature and manner in which the experiment is run, e.g.,
voltage mode versus laser mode (Larson et al., 2013; Miller and
Forbes, 2014). These instrumental issues, while important, impact
the application of the FCRDF approach, only in that they change
the magnitude of the uncertainty in the spatial coordinates. As a
reminder, a standard deviation of 2.0 Å in one spatial dimension
corresponds to 99.7% of the population falling within a range
from −6.0 Å to +6.0 Å. The abundance ranges from 100% (no
missing atoms) to 40%, comparable to APT data sets. The
number of atoms in the synthetic data sets are independent of
abundance. We began with larger crystals data sets with a higher
fraction of missing atoms.

This set of twelve structures was generated twice, once from a
perfectly ordered Ni3Al according to L12 and one perfectly
disordered Ni3Al in which the atoms were randomly
distributed. The twenty-four systems are summarized in
Supporting Information, Supplementary Table 1. The purpose
in examining both ordered and disordered synthetic data sets is to
quantitatively identify the strengths and limitations of this
technique in terms of providing true positive, false positive,
true negative and false negative indications of atomic ordering.

Atom Probe Tomography
APT sample preparation was performed using a Thermo Fisher
Nova 200 dual beam scanning electron microscope (SEM) with a
focused ion beam (FIB). The APT tips were prepared using
standard procedures including FIB lift-out and sharpening
using a 30 kV Ga+ beam for bulk milling and a 2 kV beam for
final cleaning. (Thompson et al., 2007) APT was carried out on a
CAMECA LEAP 4000XHR in both laser and voltage mode. For

laser mode, a 60–80 pJ laser energy, 200 kHz pulse repetition rate,
a 30 K base temperature, and a 0.5% detection rate were used. For
voltage mode, a 20% pulse fraction, 50 K base temperature,
200 kHz pulse repetition rate, and 0.5% detection rate were
used. The results were reconstructed and analyzed using
CAMECA’s integrated visualization and analysis software
(IVAS 3.8.2). All compositional measurements using the peak
decomposition routine were background corrected. APT was
performed on Ni3Al and Al1.3CoCrCuFeNi alloys.

Analysis Algorithm
The analysis algorithm used in this work to identify atomic
ordering in APT samples is described in Figure 3.
Conceptually, the analysis provides both a statistical validation
and physical validation of the FCRDF generated from the APT
experiment. The top data flow in Figure 3 represents a straight-
forward manipulation of the experimental data set to generate a
FCRDF. The middle data flow represents a statistical model that
takes the form of a synthetic data set with the same number of
atoms and composition as the experimental data set. A proposed
model of the atomistic structure, including atomic ordering, is
then subject to the data sparsity and noise conditions similar to
the experiment. From this statistical model the same process is
used to generate a FCRDF. The bottom data flow represents a
physical model based on the same atomistic model used in the
statistical process. In this case, the peaks in the RDF of the
atomistic model are subject to experimental broadening and
result in a third FCRDF.

The algorithm has two points of comparison. The first
compares the FCRDF of the experimental data with the
statistical model. If the similarity is not sufficiently high, as
measured by a combination of the shape of the curve and the
ordering metric, then a newmodel is proposed. If the comparison
is good, then a second level of comparison is made. This second
level is needed due to the amount of uncertainty in the positions
of the atoms in the APT data sets. The second comparison is

FIGURE 3 | The algorithm for identification of atomic structure in APT data sets. See text in Section 2.5 for complete description.
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intended to ensure that matches from the statistical model make
sense in the light of a physical model of the atomic structure. A
model that passes both the statistical and physical comparison is
said to have confirmed the proposed atomic ordering. At this
stage, we do not present a definitive proof of uniqueness of the
model. It remains a possibility that for some materials, more than
one proposed model of atomic ordering could potentially satisfy
both the statistical and physical criteria. However, given the
current level of the resolution of APT instruments, there is
good value in identifying a model that satisfies both criteria.
Below, we will provide an example of this algorithm where the
atomic ordering is known.

RESULTS AND DISCUSSION

FCRDF of Ni3Al Synthetic Data Sets
Figure 2 displays the calculated FCRDF for Ni3Al parent
compound with 100% abundance and zero noise which can
be considered as the perfect Ni3Al structure without any
disorder. The large deviations in the fraction of atomic
distribution from the bulk average indicate the regular
atomic ordering of Ni3Al. Further, the validation of the
synthetic data sets is critical to the success of the FCRDF
calculations of Ni3Al. Therefore, our approach is to generate
FCRDF data by introducing different degrees of noise and
abundance to the parent Ni3Al structure and matching the
synthetic data with the FCRDF data generated from the APT
experiment. The FCRDF plots for Ni3Al synthetic data sets as a
function of abundance and noise are shown in Figure 4. Only
the atomic ordering around Al is shown here; the atomic
ordering of Ni is provided in the supporting information,
Supplementary Figure S1. In Figure 4A, twelve FCRDF
plots are shown for an atomically ordered crystal structure,

according to L12. In Figure 4B, twelve FCRDF plots correspond
to random distribution of Ni and Al on the same fcc lattice.

There are several important observations to take from
Figure 4. First, by comparing the three FCRDF plots in the
same row in Figure 4A, it can be established that the positive
identification of atomic ordering is not significantly impacted
by abundance. Atomic ordering can still clearly be seen even
when only 40% of the atoms are present. Analogously, by
comparing the three FCRDF plots in the same row in
Figure 4B, it can be established that the correct absence of
atomic ordering is not influenced by abundance. The presence
of noise in the data does in fact negatively impact the ability to
see atomic ordering in the FCRDF. The effect can be observed
by comparing the four FCRDF plots in any column of
Figure 4A. As a distinctive feature, in Figure 4A, at a
noise level of 0.67 Å atomic ordering are smeared together.
With the increase in noise, the smearing worsens until at a
noise level of 2.0 Å, there is very little residual signature of
atomic ordering. By comparing the four FCRDF plots in the
same column in Figure 4B, it can be established that the
correct absence of atomic ordering is not influenced by noise.
We also note that the excluded volume seen at small values of r
in the absence of noise is filled with atoms as soon as noise is
introduced. This occurs because a Gaussian distribution
around nearest neighbors and next nearest neighbors places
some atoms in the excluded volume, a feature that is also seen
in real APT data sets (Miller et al., 2003; Miller and Kenik,
2004; Boll et al., 2007; Haley et al., 2009). Since all plots using
randomized atomic positions (Figure 4B) show no atomic
ordering, it can be concluded that the FCRDF technique
successfully identifies true negatives and never returns false
positives. However, based on the plots in Figure 4A, it can be
concluded that the FCRDF is capable of returning true
positive identification of atomic ordering in data sets with

FIGURE 4 | FCRDF data sets of Ni3Al within the atomic rang of 0–25 Å (x-axis of each individual plot). The data is plotted Noise (Å) against Abundance (%). (A)
atomic ordering of Al in ordered Ni3Al structures; (B) atomic ordering of Al in random Ni3Al structures.
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little or no noise regardless of the abundance (up to the limit
studied here). However, the presence of sufficient noise can
smear out the information in the FCRDF resulting in a false
negative, namely the failure to correctly identify the presence
of atomic ordering.

The identification of atomic ordering is also reflected in the
atomic ordering metric. As mentioned previously, for the perfect
structure FA,O/Fid value is a unity, and this can be considered as
our true positive case. The opposite of the true positive case (true
negative) where we assume zero noise with 100% abundancy in
the random Ni3Al structure and it produces FA,O/Fid value of
0.00119. As displayed in Figure 4, at true negative, there is almost
no deviation of the atomic ordering within the range of 0–25 Å.
An absence of atomic ordering is observed by applying the
maximum noise (2 Å) and lowest abundance (40%) for both
ordered and disordered Ni3Al structures. The fitting data
produced a false negative (FA,O/Fid � 0.0283) and true negative
(FA,O/Fid � 0.0279) for the ordered and random Ni3Al structures,
respectively.

FCRDF of Ni3Al Experimental Data
In Figure 5, we present the FCRDF around Ni (A) and Al (b)
from 0–25 Å for the experimental APT data set of Ni3Al
containing 396,254 atoms. Of these atoms, 77.6% were Ni and
22.4%were Al. At first glance there appears to be little signature of

atomic ordering in the experimental data set. Based on the
analysis above, this is because of the noise in the spatial
coordinates rather than the abundance of atoms. The
normalized atomic ordering metric of Ni3Al obtained from the
APT data is FA,O/Fid � 0.0351.

Intriguingly, the FCRDF generated from a synthetic data set
with the noise of 1.34 Å and 40% abundance of ordered Ni3Al
structure is remarkably similar to the FCRDF data obtained from
the APT data, Figure 6. As a reminder, a Gaussian distribution
with a standard deviation of 1.34 Å corresponds to 99.7% of the
population falling within −4 Å to +4 Å. Figures 6A–D
summarizes the short-range FCRDF around Ni and Al from
the APT data set and the synthetic data set with 1.34 Å noise and
40% abundance, respectively. Interestingly the deviation of the
FCRDF from bulk values appears at very small distances, which
lie in the excluded volume region of a system without noise. The
statistical reliability of the FCRDF depends upon the number of
atoms at a given radial value. Because the sampling volume
shrinks as r3 with decreasing radial position, the sampling is
unreliable at very small r, where there are almost no atoms. The
FCRDF below 0.25 Å (greyed-out in Figure 6A through 6D)
should be ignored as noise due to small sampling volume.
However, in the region from 0.25 Å and greater, it is still
worthwhile investigating whether any meaningful signature of
atomic ordering can be extracted as pointed in Figure 6. Visually,
we observe a similarity in the experimental and synthetic FCRDFs
about both Ni and Al. In the case of the structure about a central
Al atom, we observe a distinct enrichment in Ni and depletion of
Al in both the experimental and synthetic FCRDFs, with peaks
centered about 0.35 Å with a maximum atom fraction over 0.8.
Since the bulk composition is 0.75 Ni, this signal represents Ni
enrichment about the Al. In the case of a central Al atom, we
observe a weaker enrichment in Al in both FCRDFs in both
regions.

The FCRDF shown in Figures 6C,D were generated from an
ordered synthetic data set, subject to data sparsity and coordinate
noise. The similarity with the FCRDF generated from experiment
is therefore a first step in the validation of the model. It is
worthwhile to compare the analogous FCRDF from a
comparable synthetic data set generated from a model without
any order, as shown in Figure Supplementary Figure 2A,2B. In
that case we do not observe the enrichment of Ni about Al or the
more modest enrichment of Al around Ni. We observe only a flat
profile about the mean of 75% Ni subject to increasing noise with
a reduction in radial distance for the same statistical reasons
described above, namely a reduction in sampling volume that
scales as the radial distance cubed. In the statistically valid region,
the fluctuation in the composition is no larger than +/− 2%.
Importantly, there is no peak that exceeds 80% Ni about Al as
observed in the FCRDFs of both the experimental and ordered
synthetic data sets.

In order to interpret the signal of atomic ordering observed in
Figure 6, we present a model of the FCRDF in the presence of the
uncertainty in atomic coordinates as present in the experimental
signal. In Figure 7, we provide an illustration of a model of Ni3Al,
in which the closest Ni-Ni and Ni-Al neighbors for Ni
(Figure 7A) and the closest Al-Al and Al-Ni neighbors for Al

FIGURE 5 | FCRDF generated from experimental APT data sets of Ni3Al:
(A) FCRDF around Ni; (B) FCRDF around Al.
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FIGURE 6 | FCRDF data sets of Ni3Al within the atomic range of 0–2.5 Å (A) and (B) FCRDF data generated using APT data around Ni and Al, respectively. (C) and
(D) FCRDF data generated using the ordered Ni3Al structure with 1.34 Å noise and 40% abundance around Ni and Al, respectively. The grayed-out section from 0.0 to
0.25 Å in (A) through (D) corresponds to a region with statistically unreliable signal due to small sampling volume. (E) Visualization of atoms in APT data. (F) comparison
of atomic ordering metric for simulated and experimental data.

FIGURE 7 | Extraction of information within atomic excluded volume from APT data sets of Ni3Al. (A) and (B) Four closest neighbors of Ni and Al expanded in
Gaussian distributions. (C) and (D) The cumulative fractional RDFs resulting from (A) and (B).
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(Figure 7B) are expanded in Gaussian distributions about
their lattice sites. (Marceau et al., 2015; Owen et al., 2016;
Owen et al., 2017) The Gaussians are multiplied by the
appropriate number of neighbors of each atom type at each
distance. The standard deviation of the Gaussian is the same
for all eight Gaussians shown in Figures 7A,B. The FCRDF can
be constructed based just on these distributions as shown in
Figures 7C,D for Ni and Al, respectively. (We note that the
Gaussian in the radial direction approximates the mapping of a
three-dimensional Gaussian onto the RDF.) There is clear
signature resulting from atomic ordering in this excluded
volume space. Because there is no sampling in this model,
the curves are reliable at all values of r. The clearest signal is the
enrichment of Ni about Al (Figure 6D) due to the fact that
100% of the nearest-neighbors around Al are Ni. One also
observes a maximum in the Al fraction around Ni at about 3 Å.
This Al enrichment results from the fact that one third of the
nearest neighbors of Ni are Al, which is greater than the bulk
composition of one fourth Al.

Guided by this model, we can return to an examination of the
short-range FCRDF of the synthetic and APT data sets shown in
Figure 6. For the FCRDF around Al, we do observe the
predicted increase in Ni fraction with decreasing r in both
the experimental and synthetic data sets (Figures 6B,D),
until the signal becomes unreliable below 0.25 Å. For the
FCRDF around Ni, we do observe the predicted modest
increase in Al fraction with decreasing r in both the

experimental and synthetic data sets (Figures 6A,C), until
the signal becomes unreliable below 0.25 Å.

Figures 6, 7 provide some indication that the signal of atomic
ordering is present in statistical sense and consistent with the
physical model. However, there are two additional factors that
should be considered before a conclusive observation is drawn.
First, APT data should be compared with randomly disordered
synthetic data to eliminate the possibility of a false positive.
Second, it is important to note the differences in the overall
composition between the synthetic data set and the APT data.
The synthetic data set adheres to the perfect crystalline
stoichiometry of 75% Ni and 25% Al, whereas the atoms
resolved in the APT data set correspond to ∼78%Ni and ∼22%Al.

Figure 8 allows direct comparison between the ordered and
disordered synthetic sets and APT data. In Figures 8A,B, the
FCRDF for the APT data set is compared with a disordered set
and with two ordered sets with different amounts of spatial
uncertainty (standard deviations of 1.34 and 2.0 Å). As seen
before in Figure (Hu et al., 2020), the similarity between the
experimental set and the ordered synthetic data set with standard
deviation of 1.34 Å is most compelling. However, in Figures
8C,D, the data is normalized to account for the variation in bulk
composition, so that the FCRDF should go to unity at long r
irrespective of composition. From this comparison, the
correspondence of the experimental data to the ordered 1.34 Å
is somewhat weakened. When normalizing by the composition
however, the experimental signal of atomic ordering is further

FIGURE 8 | Fractional nickel composition of the various sets of FCRDF data in the atomic range of 0.2–2.0 Å (A) and (B) Fractional nickel composition of each set of
FCRDF data. (C) and (D) Normalized FCRDF data, accounting for the differences in composition between the synthetic and APT data. All synthetic data has 40%
abundance.
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degraded. The APT data quickly reaches the average bulk nickel
value faster than either ordered synthetic data set. From this
analysis, we conclude that, for this experimental data set, the
degree of uncertainty is such that a false negative result (the
absence of order) is difficult to distinguish from a true positive.

As a final aspect of this investigation of the Ni3Al, we explored the
effect of asymmetry in the spatial coordinates. It is well established
that the uncertainty in the z dimension of the APT data sets is less
than (nominally a third of) the noise in the x and y dimensions, based
on the instrument and reconstruction algorithm (Larson et al., 2013;
Miller and Forbes, 2014). In order to take advantage of this difference
in resolution, samples can be oriented such that a particular plane is
normal to the z-axis. This orientation minimizes out-of-plane
uncertainty relative to in-plane uncertainty and has previously
been exploited to identify characteristics of local ordering
(Sudbrack et al., 2004; Inoue et al., 2021). In the case of the Ni3Al
sample examined in this work, to our knowledge, a crystallographic
plane was not oriented along the z-axis. Therefore, any special ability
to exploit the asymmetry of the uncertainty in the spatial coordinates
does not apply to this case. However, due to the importance of sample
orientation, we created an additional synthetic data set with 40%
abundance and a standard deviation of noise of 1.34 Å in the x and y
dimensions and 0.442 Å (one third of the x and y noise) in the z
dimension, which corresponded to the (001) crystallographic plane.
The resulting FCRDF in the range of 0–2.5 Å is shown in
Supplementary Figure S3. There is a significant difference
between the short-range FCRDFs for the asymmetric case

(Supplementary Figure S3A,B) and the corresponding symmetric
case (Figures 6C,D). There is greater enrichment of Al around Ni
and slightly more enrichment of Ni around Al. The origin of this
difference is found in the fact that Ni3Al in the (001) direction is
composed of alternating planes of pure Ni and NiAl, which can be
seen only in the asymmetric synthetic data set. (See Supplementary
Figure S5) From this example, we draw two conclusions. First, the
exercise illustrates that the FCRDF method is capable of detecting
asymmetry of the uncertainty of spatial coordinates in samples in
which a crystallographic plane has been aligned with the z axis of the
APT instrument. Second, we infer from this example that the (001)
plane of the Ni3Al experimental sample examined in this paper was
not aligned in the instrument.

FCRDF of Al1.3CoCrCuFeNi
High Entropy Alloys present unique challenges in materials research.
HEAs display the promise of superiormechanical properties, that could
significantly change the field of material science if made accessible.
Despite the potential of these materials, they have a unique complexity
due to the equal element proportions that they are composed of,
meaning the complexity of their structure prevents a clear description of
their atomic ordering. An unambiguous understanding of the structure
of HEAs is necessary to unlock the benefits of their mechanical
properties, a task made more complex by the influence that
processing methods have on the mechanical properties of HEA.
Therefore, understanding the microstructure of HEAs is essential
from the technology point of view and has complexity over

FIGURE 9 | (A) A 3D map of Al1.3CoCrCuFeNi APT data; (B) elemental composition map of Al1.3CoCrCuFeNi; calculated FCRDF data of Cu (C) and Cr (D).
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characterizing a single-phase structure. (Tsai and Yeh, 2014; Sims et al.,
2017; George et al., 2019; George et al., 2020; Musico et al., 2020).

As a demonstration of the fact that this computational approach
can be extended to multicomponent alloys, we applied the FCRDF
approach to an APT data set for the high entropy alloy,
Al1.3CoCrCuFeNi. This data set was first published by Santodonato
et al. (Santodonato et al., 2015) The APT data set, containing 1,229,923
atoms is visualized in Figure 9A and the composition is reported in
Figure 9B. Previous work identified nanoscale phase segregation of a
Cu-rich fcc phase, a Cr-Fe enriched bcc phase, and a bcc matrix. The
FCRDF about Cu and the FCRDF about Cr are shown in Figures
9C,D, respectively for a radial range from0 to 50Å. The aggregation of
Cu can be clearly observed in our FCRDF data generated using
experimental APT data, as an enrichment in the Cu atom fraction
around Cu. An enrichment of Cr around Cr can also be clearly seen
using the FCRDF. We note that this level of elemental segregation has
been observed by other analytical means. Because of the noise in the
spatial coordinates in the APT data set, immediate identification of
preferential nearest neighbor pairing has not yet been achieved for this
data set. The fact that three phases are present in the sample,
complicates the model. However, a process of separating atoms by
phase and applying a model as illustrated in Figure 7 can be used to
investigate signatures of nearest neighbor clustering in the excluded
volume region of the FCRDF. (Santodonato et al., 2015) Furthermore,
the ordering metric, FA,O for this data set was 0.0689 with FA,O/Fid �
0.0405. This data set contains clear elemental segregation in the formof
three different phases, and therefore, this valuemust be above the order
metric for randomly oriented materials.

CONCLUSION

In this work, we have developed and proposed the Fractional
Cumulative Radial Distribution Function (FCRDF) as a means of
visualizing and identifying atomic ordering in atomic data sets. We
have also developed and applied an atomic ordering metric to reduce
the FCRDF plot into a scalar indicator of chemical ordering in a
sample. From the application to a suite of synthetic data sets, the
FCRDF technique successfully identifies true negatives (the absence of
chemical ordering) and indicates the levels of noise in APT data that
would result in a false negative. The FCRDF is also capable of
returning true positive identification of atomic ordering in data
sets with little or no noise regardless of the abundance (up to the
limit studied here). However, the presence of sufficient noise can
smear out the information in the FCRDF resulting in a false negative,
namely the failure to correctly identify the presence of atomic
ordering. The FCRDF process was also applied to an APT sample
of Ni3Al. The noise in the spatial coordinates of the atoms smears out
much of the atomic ordering signature. However, in the region of
excluded volume, the signature of atomic ordering can be interpreted
through the FCRDF using a series of Gaussian distributions expanded
upon crystal lattice points. Careful evaluation of the experimental
APT data and comparison with synthetic data sets of comparable
uncertainty and abundance suggests that the resolution of the APT
instrument used here does not provide unambiguous confirmation of
atomic ordering. The application of the FCRDF process to an APT
sample of a phase separated Al1.3CoCrCuFeNi captured elemental

aggregation at the nanoscale. The further investigation of atomic
ordering of nearest neighbors is underway. Relative to the atom probe
instrument, the ability to extract atomic ordering is hampered by
uncertainty in spatial coordinates to a much greater extent than by
fraction of atoms resolved. With modest noise, the FCRDF approach
is able to robustly identify atomic orderingwith only 40%of the atoms
resolved. Approaches for improving the quantitative characterization
of atomic ordering in APT data sets can be pursued through
improvements in data analysis algorithms, the coupling with
complementary experimental techniques, such as TEM and XRD,
and improvements in the APT instrument that lead to a reduction in
the uncertainty in spatial coordinates.
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