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In the two-step open stope subsequent filling mining method, the determination of the
strength model for the backfill-rock interface is of great engineering significance to study
the stress distribution and stability of the backfill in the stope. Considering the deformation
mechanism of the interface and the interaction of the asperities, a strength model for
backfill-rock with irregular interface has been proposed based on fractal theory, which can
effectively describe the shear mechanical behavior of interfaces with random roughness.
The model has been compared with the two-body mechanistic model and good
agreements have been achieved. The results show that the shear strength of the
interface changes non-linearly with increasing fractal dimension D, when the fractal
dimension D is in the range of 1∼1.12. The complete relationship between the
interface shear strength and the fractal dimension is given, as the fractal dimension
increases from 1 to 2 based on the presented model. At the same time, the quantitative
relationship between the interface and backfill friction angles during direct shear testing is
analyzed.

Keywords: backfill, irregular interface, strength model, fractal theory, roughness

INTRODUCTION

In recent years, the backfill mining method has been continuously developed (Fall et al., 2005;
Ghirian and Fall, 2013; Lingga and Apel, 2018; Jiang et al., 2019) due to its advantages, such as
maximizing the rate of ore recovery, improving the safety of the working face, and solving the
pollution problem of the tailings pond (Belem and Benzaazoua, 2008; Chen et al., 2018; Tariq and
Yanful, 2018). The shear stress between the backfill and surrounding rock reduces part of the self-
weight stress, resulting in the arching effect of the backfill (Cui and Fall, 2017; Liu et al., 2017; Fang
and Fall, 2019; Fang et al., 2020), as shown in Figure 1. The arching effect leads to the redistribution
of the backfill internal stress, which has an effect on the stability of the backfill. Therefore, researching
the mechanical properties of the interface between backfill and surrounding rock is of great
engineering significance.

Numerical simulation is required to more fully reveal the mechanical behavior of the interaction
between the backfill and surrounding rock (Sivakugan et al., 2013; Ting et al., 2014; Li and Aubertin,
2015). However, only a few models take the influence of interface elements into account. Liu et al.
(2016) investigated the influence of the mechanical interface characteristics on the stress distribution
within backfill by setting up boundary elements. However, the interface had a regular saw tooth
shape. The roughness of the interface was characterized by the height and angle of the saw teeth. Due
to the heterogeneity of rock and the influence of mining and blasting operations, the exposed surface
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of surrounding rock is usually rough and irregular. At the same
time, laboratory tests are an important research method used to
reveal the mechanical properties of an interface. Selcuk and Asma
(2019), Li et al. (2014), and Wu et al. (2021) carried out uniaxial
compression tests and triaxial compression tests to investigate the
influence of the interface inclination on the strength and
deformation response. Koupouli et al. (2016), Fall and Nasir
(2010), Fang and Fall (2018), and Jiang and Fall (2017) obtained
qualitative and quantitative relationships between the strength
parameters of the backfill-rock interface and backfill under
different curing times, curing temperatures and normal
stresses by direct shear testing. The laboratory test method can
truly reflect the macroscopic mechanical behavior of an interface
but ignores the microscopic deformation mechanism of the
interface. Therefore, by considering random roughness,
establishing an interface strength model is necessary to
provide a theoretical basis for further exploring the
microscopic deformation mechanism of the interface and
more realistically simulating the mechanical properties of the
interface.

To solve the contact problem taking into account the
microscopic deformation mechanism and irregular roughness,
the statistical model and the fractal theoretical model are mainly
used. The statistical model uses the parameters that are influenced
by the resolution of the measuring device. Thus, the results of the
interface characterization and analysis are not unique
(Greenwood and Williamson, 1966; Sayles and Thomas, 1978;
Carbone, 2009; Beheshti and Khonsari, 2014). Majumdar and
Bhushan (1991) proposed an interface contact model based on
fractal theory, namely, the M-B fractal model, to overcome the
deficiencies of the statistical method. The fractal dimension is
used to characterize the random roughness of the interface, and
could describe the mechanical characteristics of the material
during deformation (Maruschak et al., 2012). But the
elastoplastic deformation is not considered in this model.
Then, Morag and Etsion (2007) and Liou et al. (2010)
modified the model proposed by Majumdar and Bhushan and
came to the important conclusion that the deformation of an
asperity is first elastic. However, Liu et al. (2015) showed that the
deformation of an asperity is first plastic, which is the same as the
conclusion of Majumdar and Bhushan. During elastoplastic

deformation, the relationship between the contact area and
contact load of an asperity is very complicated (Kogut and
Etsion, 2002; Jackson and Green, 2003). Therefore, the
modified model is controversial.

In this paper, the M-B fractal model is modified based on the
proportion of elastic deformation and plastic deformation to
better describe the deformation mechanism. The interaction of
asperities is described by force analysis. Combined with the
Mohr-Coulomb criterion, a strength model of the backfill-rock
interface with random roughness is proposed on this basis to
further reveal the mechanical behavior of the backfill-rock
interface. The relationship between the fractal dimension and
the shear strength is also investigated. Finally, the quantitative
relationship between the interface and backfill friction angles is
presented.

MODELING

Establishment of a Single Asperity Strength
Model Based on Fractal Theory
Fractal Model of a Single Asperity
The contact between two rough surfaces can be approximately
equivalent to the contact between a rough surface and a rigid
smooth flat plane (Majumder and Tien, 1990). From the W-M
fractal function, it follows that the profile curve of a single asperity
on the backfill surface before deformation can be expressed as
(Berry and Lewis, 1980; Mandelbrot, 1985)

FIGURE 1 | Schematic diagram of the arching effect.

FIGURE 2 | Deformation schematic diagram of a single asperity.
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z(x) � GD−1l2−D cos
πx

l
(1)

whereD is the fractal dimension of the rough surface, and 1 <D <
2; G is the characteristic length scale of the rough surface; l is the
base length of an asperity; x is the horizontal distance from any
point on the base to the tip of an asperity; and z(x) is the profile
curve of a single asperity before deformation.

Figure 2 presents the deformation schematic diagram of a
single asperity. The parameters δ, r, and a are the deformation at
the tip of an asperity, the microcontact radius, and the
microcontact area in Figure 2, respectively. Meanwhile,
according to the M-B fractal model, the relationship between
a and l can be simplified as l � a1/2. Then, the deformation and the
curvature radius of an asperity are given as follows:

δ � GD−1a(2−D)/2 (2)

R � 1
GD−1l−Dπ2

(3)

where R is the radius of curvature at the tip of an asperity.
The microcontact area and micro- contact load of an asperity

depend on its deformation regime: Elastic, elastoplastic, or plastic.

1) Elastic Deformation

Considering Hertz contact theory (Johnson, 1985), the elastic
microcontact area, the elastic microcontact area-load relation,
and the maximum microcontact pressure of an asperity are

a � πRδ (4)

Fe � 4Ep

3
��
π

√ GD−1a
3−D
2 (5)

P0 � 2Ep

π
(δ
R
)

1
2

(6)

where E* is the composite elastic modulus of the interface, and
Ep � (1−μ21E1

+ 1−μ22
E2

)−1; μ1, μ2, E1, and E2 are the Poisson’s ratios and
the elastic moduli of the two microcontact materials, respectively;
Fe is the elastic load of an asperity; and P0 is the maximum
microcontact pressure during deformation.

The maximum microcontact pressure is 3/2 times the average
microcontact pressure that arises during elastic deformation
(Johnson, 1985), namely,

Pe � 2
3
P0 � 4Ep

3π
(δ
R
)

1
2

(7)

where Pe is the average elastic microcontact pressure on an
asperity.

Without taking friction into account, the critical average
pressure of an asperity at the first yield is

Pec � 1.1σy (8)

where Pec is the critical average pressure of an asperity,
demarcating the elastic and elastoplastic microcontacts, and σy
is the yield strength of the softer material.

Therefore, the critical microcontact deformation is

δec � (3.3σyπ
4E*

)2

R � (3.3σy

4E*
)2πaD/2

GD−1 (9)

where δec is the critical microcontact deformation of an asperity,
demarcating the elastic and elastoplastic deformations.

Then,

δec
δ

� π(3.3σy
4E*

)2( a

G2
)D−1

(10)

When δ � δec, the critical microcontact area of an asperity at
the first yield is obtained as follows:

aec � G2[1
π
( 4E*

3.3σy
)2]

1
D−1

(11)

where aec is the critical microcontact area of an asperity,
demarcating the elastic and elastoplastic microcontact areas.

2) Completely Plastic Deformation.

When an asperity undergoes completely plastic deformation,
the microcontact area is equal to the truncated microcontact area
(Johnson, 1985), that is,

a � 2πRδ (12)

At this time,

β � E*r

σyR
≈ 30 (13)

Thereby,

apc � G2⎡⎣π(E*)2
225σ2y

⎤⎦ 1
D−1

(14)

δpc � G⎡⎣π(E*)2
225σ2y

⎤⎦ 2−D
2D−2

(15)

where apc is the critical microcontact area of an asperity,
which delimits the elastoplastic and plastic microcontact area,
and δpc is the critical microcontact deformation of an asperity,
which delimits the elastoplastic and plastic microcontact
deformation.

When the average microcontact pressure is equal to 3σy, the
asperity is in the completely plastic deformation (Johnson, 1985),
namely,

Ppc � Pp � 3σy (16)

where Ppc is the critical microcontact pressure of an asperity,
demarcating the elastoplastic and plastic microcontacts, and Pp is
the average microcontact pressure of an asperity.

In summary, the critical microcontact areas (aec and apc) and
the critical microcontact deformations (δec and δpc) are
independent of the radius of curvature at the tip of an
asperity. These parameters relate to only the physical
parameters of the materials and the fractal parameters of the
surface. In other words, the critical microcontact area and critical
microcontact deformation are unique for a rough surface. Then,
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the critical microcontact deformations are used to determine the
microcontact area and microcontact load of an asperity during
elastoplastic deformation.

3) Elastoplastic Deformation

When δec ≤ δ ≤ δpc, the asperity is in elastoplastic deformation.
Considering the proportion of elastic deformation and plastic
deformation, the average microcontact pressure is expressed as
(Zhao et al., 2000)

Pep � 3σy − 1.9σy( lnδpc − ln δ

ln δpc − lnδec
) (17)

where Pep is the average elastoplastic microcontact pressure on an
asperity.

The microcontact area and microcontact load of an
asperity are

aep � πRδ + (2πRδ − πRδ) × [ − 2( δ − δec
δpc − δec

)3

+ 3( δ − δec
δpc − δec

)2]
� πRδ[1 − 2( δ − δec

δpc − δec
)3

+ 3( δ − δec
δpc − δec

)2]
(18)

Fep � Pep · aep � [3σy − 1.9σy( ln δpc − ln δ

ln δpc − ln δec
)]

× [1 − 2( δ − δec
δpc − δec

)3

+ 3( δ − δec
δpc − δec

)2] · πRδ
(19)

where aep is the elastoplastic microcontact area of an asperity, and
Fep is the elastoplastic microcontact load of an asperity.

In summary, the different deformation regimes of an asperity
can be determined by the critical deformation. When δ>δpc, an
asperity is undergoing completely plastic deformation. When
δec ≤ δ ≤ δpc, an asperity is undergoing elastoplastic
deformation. When δ<δec, an asperity is undergoing elastic
deformation.

Strength Model of a Single Asperity
TheM-B fractal model clearly shows that the vertical deformation
of an asperity gradually evolves from plastic to elastic
deformation. The asperity volume is assumed to remain
constant during loading (Hill, 1950), considering the energy
conservation theorem. The asperity shape evolves from “tall
and thin” to “short and fat”, as shown in Figure 3. The force
p is the vertical external load, and the force T is the horizontal
internal force. Thus, the horizontal deformation of an asperity
gradually evolves from elastic to plastic.

The dashed box in Figure 3 is enlarged to analyze the
interaction between two asperities during microcontact. The
microcontact stress schematic diagram of the two asperities is
drawn in Figure 4.

Combined with the Mohr-Coulomb criterion, the shear
strengths of the microcontact interface, backfill and rock can
be expressed as follows:

τw � cw + σw tanφw (20a)

τ1 � c1 + σ1 tan(φ1 + i) (20b)

τ2 � c2 + σ2 tanφ2 (20c)

where τw and σw are the shear stress and the normal stress of the
microcontact interface, respectively; τ1 and σ1 are the shear stress

FIGURE 3 | Force schematic diagram of interface under a vertical
loading.

FIGURE 4 | Microcontact stress schematic diagram of two asperities.

FIGURE 5 | Force schematic diagram of the unit.
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and the normal stress on the shear failure surface of the backfill,
respectively; and τ2 and σ2 are the shear stress and the normal
stress on the shear failure surface of the rock, respectively.
Adhesion is defined as the ability of one material to adhere to
the surface of another material (Luo et al., 2017). Cohesion is
defined as the ability of adjacent parts of the same material to
attract each other. Thus, cw is defined as the adhesion of the
microcontact interface; c1 and c2 are the cohesion of the backfill
and rock, respectively; φw is the friction angle of the microcontact
interface; φ1 and φ2 are the friction angles of backfill and rock,
respectively; and i is the inclined angle of the asperities on the
rock surface to impede the movement of the asperities on the
backfill surface.

A unit on the microcontact interface in Figure 4 is taken for
force analysis, as shown in Figure 5. According to Figure 5, the
static equilibrium equations of the unit are established for
different deformation regimes. The relationships of the
strength parameters between the microcontact interface and
backfill in different deformation regimes are solved.

1) Elastic Deformation

When the asperity on the backfill surface is undergoing
elastic deformation, the normal stress on the microcontact
interface is σw � σ1 � σ2 � Pe. The shear strength of the
interface is mainly determined by the backfill, namely,
τw � τ1. Then, the cohesion and friction angle of the
microcontact interface are

{ cw � c1
φw � φ1 + i

(21)

2) Elastoplastic Deformation

When the asperity on the backfill surface is undergoing
elastoplastic deformation, the normal stress on the
microcontact interface is σw � σ1 � σ2 � Pep. The shear
strength is mainly determined by the backfill and rock,
namely, τw � τ2 − τ1. Then, the cohesion and friction angle of
the microcontact interface are

{ cw � c
tanφw � tanφ2 − tan(φ1 + i) (22)

where 0< c< c1.

3) Completely Plastic Deformation

When the asperity on the backfill surface is undergoing
completely plastic deformation, the normal stress on the
microcontact interface is σw � σ1 � σ2 � Pp. The shear
strength is mainly determined by the backfill and rock,
namely, τw � τ2 − τ1. Then, the cohesion and friction angle of
the microcontact interface are

{ cw � 0
tanφw � tanφ2 − tan(φ1 + i) (23)

Establishment of the Interface Strength
Model Based on Fractal Theory
Fractal Model of the Irregular Interface
In different deformation regimes, the contact area and contact
load are related to the deformation of the largest microcontact
when the two rough surfaces are in contact.

1) Completely Plastic Deformation

If aL < apc, all the asperities on the backfill surface are
undergoing completely plastic deformation. At this time, the
size distribution of the microcontact areas is as follows:

n(a) � D

2
ψ(2−D)/2(aL)D/2(a)−(D+2)/2 (24)

where aL is the largest microcontact area of the interface and n(a)
is the size distribution of the microcontact areas under completely
plastic and elastoplastic deformation.

Then, the plastic contact area and contact load can be given by

Arp � ∫apc

0
n(a)ada � D

2 −D
ψ

2−D
D (aL)D2(apc)2−D

2 (25)

Fcp � ∫apc

0
Ppan(a)da � 3σy

D

2 −D
ψ

2−D
D (aL)D2(apc)2−D

2 (26)

where Arp and Fcp are the contact area and contact load of the
interface, respectively, during completely plastic deformation only.

2) Elastoplastic Deformation

The interface contact area and contact load during
elastoplastic deformation are solved by the critical
microcontact area and critical microcontact deformation of the
different deformation regimes. If apc ≤ aL ≤ aec and δpc ≤ δ ≤ δec,
all the asperities on the backfill surface are undergoing
elastoplastic deformation. The elastoplastic contact area and
contact load are expressed as follows:

Arep � ∫aec

apc

n(a)ada � D

2 −D
ψ

2−D
D (aL)D2[(aec)2−D2 − (apc)2−D

2 ]
(27)

Fcep � ∫aec

apc

∫δec

δpc

Fepn(a)dδda

� ∫aec

apc

∫δec

δpc

[3σy − 1.9σy( ln δpc − ln δ

ln δpc − ln δec
)]

× [1 − 2( δ − δec
δpc − δec

)3

+ 3( δ − δec
δpc − δec

)2] · πRδ · n(a)dδda

� 2∫aec

apc

∫δec

δpc

[3σy − 1.9σy( ln δpc − ln δ

ln δpc − ln δec
)]

× [1 − 2( δ − δec
δpc − δec

)3

+ 3( δ − δec
δpc − δec

)2]
· a · D

2
ψ(2−D)/2(aL)D/2(a)−(D+2)/2dδda

(28)
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where Arep and Fcep are the contact area and contact load of the
interface, respectively, during elastoplastic deformation only.

3) Elastic Deformation

If aL > aec, all the asperities on the backfill surface are
undergoing elastic deformation. The size distribution of the
microcontact areas is as follows:

n(a) � D

2
(aL)D/2(a)−(D+2)/2 (29)

where n(a) is the size distribution of the microcontact areas
during elastic deformation.

Then, the plastic contact area and contact load are expressed as
follows:

Are � ∫aL

aec

n(a)ada � D

2 −D
(aL)D2[(aL)2−D2 − (aec)2−D2 ] (30)

If 1 < D < 2 and D ≠ 1.5,

Fce � ∫aL

aec

Fen(a)da � 4E*DGD−1a
D
2
L

3
��
π

√ (3 − 2D) [(aL)3−2D2 − (aec)3−2D2 ] (31a)

Similarly, if D � 1.5,

Fce � ∫aL

aec

Fen(a)da � 1��
π

√ EpG
1
2a

3
4
L(ln aL − ln aec) (31b)

where Are and Fce are the contact area and contact load of the
interface, respectively, during elastic deformation only.

Strength Model of the Irregular Interface
A contact strength model of the interface is established by
analyzing the strength model parameters of a single asperity.

1) Elastic Deformation.

The shear strength of the interface can be expressed as follows:

τwe � c1 + Fce

Are
tan(φ1 + �i) (32)

where �i is the average inclined angle of the asperities on the rock
surface and τwe is the shear strength of the interface during elastic
deformation only.

2) Elastoplastic Deformation

The shear strength of the interface can be given by

τwep � c + Fcep

Arep
[tanφ2 − tan(φ1 + �i)] (33)

where τwe is the shear strength of the interface during
elastoplastic deformation only.

3) Completely Plastic Deformation

The shear strength of the interface is

τwp � Fcp

Arp
[tanφ2 − tan(φ1 + �i)] (34)

where τwp is the shear strength of the interface during completely
plastic deformation only.

Therefore, the total shear strength of the interface is

τw � c1 +

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

Fce

Are
tan(φ1 + �i)

+Fcep

Arep
[tanφ2 − tan(φ1 + �i)]

+Fcp

Arp
[tanφ2 − tan(φ1 + �i)]

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭
(35)

where τw is the total shear strength of the interface.
Eq. 35 indicates that the shear strength of the interface is

determined by the adhesion and friction. To ensure the stability of
the backfill-rock interface, the maximum adhesion (namely, c1)
during deformation is taken as the total adhesion of the interface
in Eq. 35. The total friction of the interface is the sum of all the
frictions corresponding to different deformation regimes.

Meanwhile, the relationship among the parameters can be
obtained as:

(Pe + Pep + Pp) tanφw � Pe tan(φ1 + �i) + (Pep + Pp)[tanφ2

− tan(φ1 + �i)]
(36)

VERIFICATION

Liu et al. (2005) investigated the effect of the interface roughness
on the shear strength by the two-body mechanistic model. Based
on this work, the presented model is verified in this section. The
yield strength of the concrete is chosen to 3 MPa. The
characteristic length scale of the rough surface is chosen to
10−11 m. The material parameters are shown in Table 1.

Figure 6 shows the verification diagram of the relationship
between the shear strength and the fractal dimension. The shear
strengths of the presented model and the two-body mechanistic
model are normalized to further comparatively analyze the
evolution laws between the shear strength and the fractal
dimension of the newly presented model and the two-body
mechanistic model. The trends of the two models have good
agreements, namely, the shear strength changes non-linearly with
increasing fractal dimension. The shear strength increases with
increasing fractal dimension when D < 1.095, peaks at D � 1.095
and decreases when D > 1.095, which is the same as the evolution
laws presented by Liu. Analysis suggests that it is related to the
main dislocation form of the asperities on the interface. It should
be noted that increasing the fractal dimension corresponds to
increasing the distribution density of the asperities on the
interface, namely, increasing the frequency of the asperities for
the same amplitude. The forms of dislocation between two
asperities are sliding, interlocking, and shearing. Some small
asperities merge with each other to form large asperities with
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shear when D < 1.095. The dislocation form of asperities gradually
evolves from slipping to interlocking with increasing fractal
dimension. The dislocation form of the asperities on the
interface is dominated by interlocking. The more asperities tend
to be interlocked. As a result, the shear strength of the interface
increases. When D > 1.095, the increase of interface roughness
means the decrease of asperity base area and the asperity is easier to
cut off. The dislocation form of asperity gradually evolves from
interlocking to cutting off. The dislocation form of the asperities on
the interface is dominated by cutting off with increasing fractal
dimension. The number of interlocking asperities decreases.
Therefore, the shear strength of the interface decreases. When
D � 1.095, there are most interlocking asperities on the interface
and the interlocking effect reaches the maximum. Thereby, the
shear strength of interface peaks at this fractal dimension. Noted
that it is the critical point of transformation of the main dislocation
form from interlocking to cutting off. The cutting off of the
asperities is related to the parameters of the weak material.

There is slightly difference between the presented model and
the two-body mechanistic model. Analysis shows that the
interface roughness is described by only the fractal dimension
D in the two-body mechanical model, ignoring the amplitude of
the asperities on the interface, namely, the parameter G. The
fractal dimension D is known to determine only the frequency of
occurrence for the large and small asperities on the interface. The
developed model considers the influence of the asperity

amplitude on the shear strength of the interface. It should be
emphasized that, the number, D � 1.095 in Figure 6, is to show
that the results of the presented model are consistent with the
two-body mechanistic model, demonstrating the feasibility of the
presented model.

However, the two-body mechanistic model obtained the shear
strength evolution laws when the fractal dimension is in the range
of 1∼1.12 only. Figure 7 shows the complete relationship between
the interface shear strength and the fractal dimension as the
fractal dimension increases from 1 to 2 based on the presented
model. When D > 1.366, the change in the fractal dimension has
little effect on the shear strength, namely, the shear strength
basically remains constant when D > 1.366, indicated by point B
in Figure 7.

DISCUSSION

The direct shear test results with the backfill-rock combination
indicate that the interface friction angle can be larger or smaller
than that of the backfill. However, the interface adhesion is always
less than that of the backfill (Fall and Nasir, 2010; Koupouli et al.,
2016; Fang and Fall, 2018).

Analysis suggests that the reasons for the contradictory
friction angle results of the direct shear tests are mainly
related to the difference in the strength of the contact

TABLE 1 | Material parameters.

Material Elastic modulus E/GPa Poisson’s ratio μ Cohesion φ/(°) Internal
friction angle c/MPa

Concrete 26 0.167 25 3
Rock 35 0.220 35 2

FIGURE 6 | Verification diagram of the relationship between the shear
strength and the fractal dimension.

FIGURE 7 | Relationship between the shear strength and the fractal
dimension D.
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materials and the inclined angle of the asperities on the rock
surface. The interface friction angle is larger than that of backfill,
if tanϕ2 > 2 tan(ϕ1 + i), as described by Eq. 36. If
tan ϕ2 < 2 tan(ϕ1 + i), the interface friction angle is smaller
than that of the backfill.

Meanwhile, it is known that the ability of one material to
adhere to the surface of another material remains constant.
However, the areas providing the adhesion are not the same
in different deformation regimes. The interface adhesion can be
explained by the schematic diagram of the asperity failure
mechanism, as shown in Figure 8. At the beginning, the two
asperities come into locking. Adhesion is provided by the asperity
surfaces when the asperities undergo elastic deformation. Then,
the two asperities undergo dilatation with loading, separating on
the backside of the interface relative to the direction of motion, as
shown by the red line in Figure 7. Thus, the area providing
adhesion decreases. Finally, the asperity in the backfill is cut off,
and the area providing adhesion disappears completely. In
summary, the interface adhesion is smaller than that of
backfill, which is consistent with the experimental trend.

CONCLUSION

The original M-B fractal model is modified. A model of backfill-
rock interface strength is proposed based on the modified M-B
fractal model and the Mohr-Coulomb criterion. After
verification, the following conclusions are obtained:

1) Based on fractal theory, a strength model that can reasonably
describe the shear mechanical behavior of interfaces with
random roughness is developed when materials with
different strength come into contact. The deformation
mechanism of the interface and the interaction of the
asperities can be considered in this model.

2) The relationship between the strength parameters of the
interface and that of the backfill is obtained. When the
tangent of the rock friction angle is larger than twice that
of the backfill, the interface friction angle is larger than that of
the backfill. Otherwise, the interface friction angle is smaller
than that of the backfill.

3) The shear strength of the interface changes nonlinearly with
increasing fractal dimension. The shear strength increases

with increasing fractal dimension when D < 1.095. The shear
strength peaks when D � 1.095. The shear strength decreases
with increasing fractal dimension when D > 1.095.
Meanwhile, the shear strength basically remains constant
when D > 1.366.

In this model, the interface shear strength is related to the
interface fractal dimension and the strength parameters of the
two contacting materials. In practical application, the interface
roughness and the strength of the surrounding rock can be
measured. The backfill strength corresponding to the
maximum shear strength of the interface is obtained by this
model, ensuring the stability of the underground backfill system.
However, it should be noted that, the model still has some
limitations that need to be solved in the future. The three-
dimensional strength model of the interface is beyond the
scope of this research and will continue to explore in the
future. The proposed model should satisfy the assumption of
the M-B fractal model, that the contact between two rough
surfaces is approximately equivalent to the contact between a
rough surface and a rigid flat plane. Therefore, the model is more
suitable for solving the contact problem between materials with
large differences in strength. Moreover, when the fractal model of
the interface is established, the contact area and contact load
during elastoplastic deformation are derived from the proportion
of elastic and plastic deformation. The size distribution of the
microcontact areas during elastoplastic deformation is assumed
to be the same as that during plastic deformation. Therefore,
further research on elastoplastic deformation is needed.
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