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The recent advent of acoustic metasurface displays tremendous potential with their unique
and flexible capabilities of wavefront manipulations. In this paper, we propose an acoustic
metagrating made of binary coiling-up space structures to coherently control the acoustic
wavefront steering. The acoustic wave steering is based on the in-plane coherent
modulation of waves in different diffraction channels. The acoustic metagrating
structure with a subwavelength thickness is realized with 3D printed two coiling-up
space metaunits. By adjusting structural parameters of the metaunits, the −1st-order
diffraction mode can be retained, and the rest of the diffraction orders are eliminated as
much as possible through destructive interference, forming a high-efficiency anomalous
reflection in the scattering field. The anomalous reflection performance of the designed
metagrating is achieved over a wide range of incident angles with high efficiency.

Keywords: metasurface (MS), acoustic metamaterial (AMM), beam steering (BS), wavefront control, retroreflected
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INTRODUCTION

The recently appeared acoustic metasurfaces, as the two-dimensional (2D) version of metamaterials
with subwavelength thicknesses, have shown outstanding capabilities in manipulating acoustic waves
compared to natural materials (Li et al., 2013; Zhao et al., 2013; Ma et al., 2014; Xie et al., 2014; Xie
et al., 2017; Assouar et al., 2018; Zhu et al., 2018; Chen et al., 2019; Long et al., 2020; Zhang et al.,
2020). Metasurfaces originally have been introduced and progressed for manipulating
electromagnetic waves (Yu et al., 2011; Yang et al., 2019; Guan et al., 2020a; Ding et al., 2020;
Yuan et al., 2020; Fan et al., 2021) and then are expanded to steer the acoustic waves given that both of
the them obey the generalized Snell’s law. Basically, the uniqueness of metasurfaces rested with their
ability of easily adjusting the phase and/or amplitude so as to fully control the wave fields. At present,
acoustic metasurfaces with various profiles have been proposed for different functions and
applications, including (but not limited to) Helmholtz-resonator-like (Li et al., 2015; Wang
et al., 2016; Zhang et al., 2021), membrane-type (Ma et al., 2014; Tang et al., 2019; Liu et al.,
2020), and coiling-up space (Xie et al., 2014; Liang and Li, 2012; N. Almeida et al., 2021). By properly
designing the inner structures of metasurfaces, a great deal of fascinating features has been realized,
such as anomalous reflection and refraction (Liu et al., 2017; Li et al., 2018; Liu and Jiang, 2018; Qian
et al., 2019; Su and Liu, 2020), asymmetric propagation (Shen et al., 2016; Li et al., 2017; Song et al.,
2019), orbital angular momentum (Shi et al., 2019; Gao et al., 2021; Hou et al., 2021), near-perfect
absorption (Zhu et al., 2019; Kumar and Lee, 2020; Donda et al., 2021; Liu et al., 2021a), beam
focusing (Ma et al., 2018; Liu et al., 2021b; Xie and Hou, 2021), self-bending beams (Li and Assouar,

Edited by:
Ke Chen,

Nanjing University, China

Reviewed by:
Xumin Ding,

Harbin Institute of Technology, China
Cheng Zhang,

Wuhan University of Technology,
China

Yadong Xu,
Soochow University, China

*Correspondence:
Yuancheng Fan

phyfan@nwpu.edu.cn
Fuli Zhang

fuli.zhang@nwpu.edu.cn

Specialty section:
This article was submitted to

Metamaterials,
a section of the journal
Frontiers in Materials

Received: 07 October 2021
Accepted: 09 November 2021
Published: 07 December 2021

Citation:
Chen S, Fan Y, Yang F, Sun K, Fu Q,
Zheng J and Zhang F (2021) Coiling-

Up Space Metasurface for High-
Efficient and Wide-angle Acoustic

Wavefront Steering.
Front. Mater. 8:790987.

doi: 10.3389/fmats.2021.790987

Frontiers in Materials | www.frontiersin.org December 2021 | Volume 8 | Article 7909871

ORIGINAL RESEARCH
published: 07 December 2021

doi: 10.3389/fmats.2021.790987

http://crossmark.crossref.org/dialog/?doi=10.3389/fmats.2021.790987&domain=pdf&date_stamp=2021-12-07
https://www.frontiersin.org/articles/10.3389/fmats.2021.790987/full
https://www.frontiersin.org/articles/10.3389/fmats.2021.790987/full
https://www.frontiersin.org/articles/10.3389/fmats.2021.790987/full
http://creativecommons.org/licenses/by/4.0/
mailto:phyfan@nwpu.edu.cn
mailto:fuli.zhang@nwpu.edu.cn
https://doi.org/10.3389/fmats.2021.790987
https://www.frontiersin.org/journals/materials
www.frontiersin.org
https://www.frontiersin.org/journals/materials#articles
https://www.frontiersin.org/journals/materials
https://www.frontiersin.org/journals/materials#editorial-board
https://doi.org/10.3389/fmats.2021.790987


2015), acoustic cloaking (Jin et al., 2019; Li et al., 2019; Zhao et al.,
2019; Fan et al., 2020; Zhou et al., 2021), and convolution
operation and addition operation (Cao et al., 2021).

Most of the demonstrated metasurfaces for anomalous
reflection based on generalized Snell’s law requires the
arrangement of multi-metaunits with gradient indexes to
provide additional phases of the scattered waves. Furthermore,
the phase-gradient metasurface shows poor power efficiency due
to mismatched wave impedances, because it cannot direct all
incident energy to the required direction and eliminate the
undesired scattered waves (Mohammadi Estakhri and Alù,
2016; Díaz-Rubio and Tretyakov, 2017). In addition, complex
structural metaunits lead to unavoidable viscosity loss and non-
negligible coupling effect between adjacent metaunits, and both
of them will influence the efficiency of wavefront manipulation
(Tang et al., 2021). Therefore, tremendous research studies have
been devoted to achieving high-efficiency anomalous reflection.
Retroreflector is a device that can reflect electromagnetic waves or
acoustic waves back to the incident direction. Shen et al. proposed
an acoustic retroreflector on the basis of conventional gradient-
index metasurfaces without parasitic diffraction (Shen et al.,
2018). Díaz-Rubio et al. presented a new synthesis method
that introduces nonlocal response or local and nonsymmetric
response into reflection and refraction, respectively. This method
overcomes the radical limitations of traditional designs, permits
complete control of the acoustic energy flow, and achieves perfect
anomalous reflection and refraction (Díaz-Rubio and Tretyakov,
2017). Fu et al. investigated theoretically and experimentally
phase gradient metagratings (PGMs), which can completely
reverse the anomalous transmission and reflection through
higher-order diffraction by changing the integer parity of the
PGM design (Fu et al., 2019a). Li et al. induced self-induced
surface waves into acoustic metasurfaces to meet the local power
conservation requirements and cultivated an approach to design
bianisotropic metasurfaces for arbitrary beam splitting and
anomalous reflection with theoretically power efficiency of
100% (Li et al., 2020). However, these studies are proposed
with complex theories and designed by metaunits with full
phase range that make the designs difficulty to realize.
Therefore, a new metasurface, i.e., metagrating, has been
proposed to steer the acoustic wavefront with simpler
methodology (Fu et al., 2019b; Fu et al., 2020a; Fu et al.,
2020b). Guan et al. utilized metagrating to achieve helicity-
switching and helicity-preserving performances in
electromagnetic field (Guan et al., 2020b). Fu et al. reported a
simple metagrating to achieve multifunctional reflection in
acoustic field, which provides an alternative way for the
manipulation of acoustic waves with high efficiency (Xie et al.,
2017). However, this study is not yet verified in experiments.

In this paper, we propose an acoustic metagrating on the basis
of the in-plane coherent modulation of acoustic waves in different
diffraction channels, which does not need to be based on the
generalized Snell’s law. The metagrating is made of binary
coiling-up space metaunits to coherently control the wavefront
steering. In our study, two 3D printed metaunits whose reflected
waves satisfy the coherent condition are periodically arranged to
form a metagrating that can realize high-efficiency anomalous

reflection of acoustic waves. The validity of the wavefront
manipulation method is proved in simulations and
experiments. At last, the wide-angle characteristic of the
designed metagrating is demonstrated in a range of 40° with
high efficiency.

MATERIALS AND METHODS

Because the propagation of acoustic waves follows the Huygens-
Fresnel principle, the effect of acoustic diffraction can be easily
understood. As shown in Figure 1A, the acoustic waves with an
incident angle α incident on the surface of a grating. The grating
constant is d. When the incident wavelength λ0 is sufficiently
short compared to the grating constant d, one or more diffraction
modes could be motivated with a non-specular diffraction angle.
Therefore, we can adjust d to remain one of the reflection
diffraction modes and eliminated as much as possible by
destructive interference, so as to realize anomalous reflection.
This structure with optional diffraction modes is called
metagrating, which combines the diffraction ability of the
acoustic grating with the phase control capacity of the
metasurface. The concept of metagrating renders a valid
platform to realize the control of the acoustic wavefront.
When a single-frequency acoustic wave travels in the same
medium, the length difference of different transmission paths
will cause phase difference between them. According to the two
reflection paths in Figure 1A, the path difference can be
calculated by the geometric analysis. When the value is an
integer of the wavelength, constructive interference occurs,
that is, it satisfies

Kλ0 � d(sin βK − sin α) (1)

where K � 0, ±1, ±2, . . ., λ0 is the wavelength, and βK is the
reflected angle of diffraction order K. When the grating
constant d satisfies Eq. 1, diffractions of different orders
will occur in the acoustic field due to constructive
interference. When K is 0, it is the normal specular
reflection of 0th order. Metagrating is an artifical structure
designed by the grating theory, which is made of metaunits
instead of the traditional materials with different indexes. To
obtain anomalous reflection based on acoustic metagrating, it
is necessary to use two artificial metaunits in one grating
period to eliminate the extra diffraction orders by means of
destructive interference. Here, the −1st anomalous reflection
is desired in our study. To make sure of the reflected acoustic
waves without 2nd-order or higher-order diffraction
components, the grating constant d and incident angle
αshould satisfy

2λ0 > d(1 + |sin α|) (2)

In this work, we hope to obtain the anomalous reflection with
a −1st-order diffraction, so the designed metagrating should
eliminate the 0th order and +1st-order diffraction. When
α ≠ 90o, the essential condition for grating without +1st-order
diffraction given by
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λ0 > d(1 − |sin α|) (3)

Therefore, the anomalous reflection can be achieved by
eliminating the 0th-order diffraction, as shown in Figure 1B.
In this case, only two metaunits with phase difference of π for
constructive interference are needed in a grating period. As a

result, the 0th-order reflection is eliminated, and only the −1st-
order diffraction is remained.

The designed metagrating includes two coiling-up space
metaunits, as shown in Figure 2A. Each metaunit is designed
with width of m � 5 cm, height of p � 6 cm, and wall thickness of
w � 4 mm. By adjusting the length of the branches in the

FIGURE 1 | (A) The geometric paths of two parallel acoustic beams. (B) The schematic of a binary metagrating for coherent modulation of acoustic waves.

FIGURE 2 | (A) The inner structures of the binary coiling-up space metaunits. (B) The reflection phase difference between unit A and unit B varying with l2. (C) The
normalized coefficients of each diffraction order in the reflection fields with difference l2, where the dotted lines represent the −1st orders and the solid lines represents the
0th orders. (D) Phase curves (green and blue) and phase difference curves (orange) of unit A and unit B when the selected optimal structure l2 � 2.89 cm.
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metaunits, the propagation path of acoustic waves will be changed
and the reflected phase will be modulated accordingly. The length
of branches of unit A is l1 � 3.18 cm, and parametric sweep of the
length of branches in unit B is performed so that the reflected
phase difference of the two metaunits is π to eliminate the 0th-
order acoustic wave as much as possible. In this case, the acoustic
grating constant is d � 10 cm. When the wavelengthλ0is slightly
larger than the acoustic grating constant, with any incident angle
α, both (2) and (3) are all satisfied, which means that the acoustic
waves are coherently controlled in different diffraction channels
and higher-order diffraction modes are eliminated in the acoustic
fields.

The COMSOL Multiphysics software is used to perform the
numerical of the distribution of the acoustic fields. The speed of
acoustic waves and mass density of air are c0 � 343 m/s and ρ0 �
1.21 kg/m3, respectively, the incident angle αis 45°, and the
amplitude of the incident plane wave is 1 Pa. According to the
diffraction equation, the −1st diffraction angle is
c1 � arcsin(sin α − λ/d). The phase difference between unit A
and unit B is shown in Figure 2B; when l2 � 2.85, 2.87, and
2.89 cm, there are two frequency points where the phase
difference is π, and at l2 � 2.91 cm, one frequency point of the
phase difference is close to π. These frequencies are generally
around 2,500–2,600 Hz. Figure 2C shows the normalized
diffraction coefficients of diffraction modes. It can be seen
that, for different values of l2 of unit B, the normalized
diffraction coefficients of the 0th-order and −1st-order
diffractions of the unit B are different. For l2 � 2.85, 2.87, and
2.89 cm, the 0th-order diffraction curve has two minimum
frequency points, and the distance between the two minimum
points gradually decreases with the increase of l2. At the same
time, there is a maximum frequency point between the two
minimum values, and the normalized diffraction coefficients of
0th order at this point gradually decreases with the increase of l2.
When l2 increases to 2.91 cm, there is only one minimum
frequency point for 0th-order diffraction. It is in good
agreement with the phase difference curves of the two
metaunits in Figure 2B, that is, the closer the phase difference
is toπ, the smaller proportion of 0th order in the reflected fields. It
also proves that the 0th-order diffraction in the reflected fields
shows destructive interference due to the phase adjustment of the
twometaunits. Meanwhile, this study also provides a strong proof
of the validity of diffraction-based acoustic metagrating in
wavefront control.

According to the discussions above, the 0th diffraction angle
is 45° because of specular reflection and the −1st diffraction
angle is c1 � arcsin(sin α − λ/d)according to the diffraction
equation. Therefore, the normalized diffraction coefficients
can be obtained by the normalization of integrals of far-field
acoustic intensity around the diffraction angles. Under the
consideration of the high efficiency of −1st-order diffraction,
we choose l2 � 2.89 cm and the workting frequency is f2 �
2,590 Hz where the theoretical diffraction coefficient of
anomalous reflection is 0.97. As shown in Figure 2D, the
green and the blue curves represent the reflection phase of
unit A and unit B, respectively, and the orange curve is the phase
difference curve of the two. It is obvious that the phase

difference curves of the two metaunits are much smoother
than respective reflection phase curves, and anomalous
reflection can also be achieved in a certain frequency
bandwidth, although the theoretical efficiency is less than 100%.

Figure 3 shows the acoustic pressure distributions of incident
waves and reflected waves at f1 � 2,890 Hz and f2 � 2,590 Hz.
After comparison, it can be clearly seen that, when the incident
angle is 45°, the 0th-order diffraction plays a dominant role at f1,
and the propagation of acoustic waves is specular reflection with a
reflection angle β1 of 45°. At f2, the reflected acoustic waves are
also plane waves, but the propagation direction is negative,
coexisting with the incident acoustic wave on the same side of
the interface normal. According to the acoustic pressure fields,
the diffraction angle can be estimated to be about −38°, which is
consistent with the diffraction angle calculated by the diffraction
equation.

RESULTS

In simulation, the designed binary metagrating is used to achieve
high-efficiency anomalous reflections. To further verify the
wavefront manipulation capability of the designed
metagrating, we prepare the model using 3D printing
technology, and the printing material is polylactic acid. A
scanning stage is used to perform the measurement, as shown
in Figure 4A. A 2Dwaveguide is made of two paralleled plexiglass
plates (1.2 × 2.2 m2), and absorbing sponges are installed around
the waveguide closely to minimize the echo and environmental
noise. To form a plane wave in the waveguide, a sine signal is
generated by a computer and transmitted to an amplifier by a
digital collector that converts the digital signal into an acoustic
signal. A loudspeaker array is arranged on the top of the
waveguide that is motivated by the amplifier. The acoustic
pressure in the waveguide is measured by two microphones,
one for detection and one for reference. Then, the acoustic signal
is achieved and transmitted back to the computer by the collector
through different channels.

When the incident angle α is 45°, the 3D printed metaunits are
arranged periodically in the waveguide periodically. Because of
the platform design, the loudspeaker array can only propagate
acoustic waves along the long axis of the waveguide. We place the
sample at an angle of 45°, which is equivalent to an incident angle
of 45°. Microphone is used to scan the acoustic pressure value at
multiple points and obtain the fields distribution in the area of the
blue dashed line box. For comparison, we measured the total
pressure fields after the plane acoustic waves incident into the
metagrating and hard boundary plane, respectively. It is clear that
there is a great difference between the two. When the reflective
interface is hard boundary plane, the reflection angle is the same
as the incident angle at 45°, and the incident waves and reflected
waves interfere to form a standing wave field, as shown in
Figure 4C. Figure 4B shows the total pressure fields when the
reflective interface is a designed model. The pressure field is
almost a plane wave along the horizontal direction, which is
formed by the interference of the −1st-order diffraction and the
incident acoustic waves.
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As illustrated in all these simulations and experiments, the
metagrating made of coiling-up space metaunits can
modulate the reflection behavior of the objects effectively.
It indicates that the metagrating provide a feasible means to
realize wavefront control. The most outstanding feature of
the metagrating is that each grating period contains only two

metaunits for coherent modulation of waves, and it simplifies
the process of realizing anomalous reflection greatly.
Compared with acoustic metasurface with reflected phases
from 0 to 2π based on generalized Snell’s law, metagrating
with only two reflected phases of 0 and π is easier to obtain in
experiment.

FIGURE 3 | (A) Incident acoustic fields with plane wave. (B) Reflected pressure fields at non-working frequency f1 � 2,890 Hz. (C) Reflected pressure fields at
working frequency f2 � 2,590 Hz.

FIGURE 4 | (A) Schematic diagram of experimental waveguide system. The dashed line box in the figure represents the measurement area where a single
microphone is used to scan and measure acoustic pressure. The insert is the picture of the coiling-up space metaunits. (B) Total pressure fields after the plane acoustic
wave passing through the sample. (C) Total pressure fields of plane acoustic wave passing through hard plane boundary.
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DISCUSSION

Because metagrating is proposed on the basis of the coherent
modulation of waves, the anomalous reflection performances of
the designed metagrating with different incident angles are also
studied in simulations. According to the diffraction equation of
metagrating, the incident angle range for metagrating with −1st-
order diffraction and without 1st-order diffraction is α> 18.6° when
the working frequency is 2,590 Hz and the grating constant is 10 cm.
The normalized −1st-order diffraction coefficients of the metgrating
with varying incident angles are shown in Figure 5A. Over the range
from 23° to 61°, the normalized diffraction coefficients are larger
than 0.85, where the phase difference between the binary metaunits
approaches to π. It means that high-efficiency anomalous reflection
is achieved over a wide range of incident angle of 38°. The simulation
results satisfy the predicted range of incident angles for the
occurrence of −1st-order diffraction. However, under the incident
angles that approach to 45°, the efficiency of anomalous reflection do
not reach the desired value of 1 because of partial destructive
interference of the 0th diffractions of the binary metaunits.

Here, we demonstrate the anomalous reflection performance under
incident angles of 23°, 40° and 61°, where the normalized −1st-order
diffraction coefficients are 0.85, 0.99, and 0.85, respectively. The
incident acoustic fields are shown in Figures 5B–D, and the
corresponding reflected acoustic fields are shown in Figures 5E–G.
It can be seen that obvious anomalous reflections are acquired under
the three incident angles. Therefore, thewide-angle performance of the
designing metagrating is verified in simulations with high efficiency.

CONCLUSION

In summary, we proposed a kind reflective acoustic
metasurface on the basis of the coherent control of

acoustic wave for wide-angle acoustic wavefront control.
By coherently modulating the reflected waves in
different diffraction channels, the high-efficiency
anomalous reflection is obtain over a wide range of
incident angles with high efficiency. The major idea is to
utilize the binary coiling-up space metaunits for the in-plane
destructive interference of extra diffraction orders in an
acoustic grating period and only remain one needed
diffraction order. The feasibility has been verified both in
simulations and experiments. Compared with the previous
wavefront control method based on the generalized Snell’s
law, the mechanism of coherent modulation of waves needs
lower requirements on the number and phase control
capability of metaunits and is valid in wide range of
incident angles. This control method renders a feasible
way for future research on the interaction between
acoustic artificial microstructures and acoustic waves. In
addition, to extend this method to a wideband, tunable
acoustic metagrating is considered for the control of
acoustic wavefront.
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