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The ongoing COVID-19 pandemic caused by SARS-CoV-2 has significantly affected the
world, creating a global health emergency. For controlling the virus spread, effective and
reliable diagnostic and therapeutic measures are highly expected. Using proper biomedical
materials to produce detection kits/devices and personal protective equipment (PPE),
such as swabs and masks, has become the focus since they play critical roles in virus
diagnostics and prevention. Electrospun polymer composites have garnered substantial
interest due to their potential to provide antiviral healthcare solutions. In this review, we
summarized the recent efforts in developing advanced antiviral electrospun polymer
composites for virus detection and prevention. We highlighted some novel strategies
for developing effective antiviral personal protective equipment (PPE), including self-
sterilization, reusability, and potential antiviral drug encapsulation. Besides, we
discussed the current challenges and future perspectives for improving the materials’
performance to achieve better virus detection, antiviral, prevention, and therapeutics.
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INTRODUCTION

The worldwide COVID-19 pandemic caused by the novel coronavirus SARS-CoV-2 has significantly
impacted the world’s economy and people’s life (Chakraborty et al., 2020; The Lancet, 2020; Tu et al.,
2020; Gao et al., 2021; Yüce et al., 2021). The number of confirmed cases across the world so far has
reached more than 200 million, and the number of deaths has gone beyond 4.5 million1. Based on the
current pandemic status analysis, it is not very likely that the pandemic will end in a short period due
to the rapid mutation of the coronavirus. Therefore, developing strategies for accurate and rapid
diagnostics, efficient protection, and effective therapeutics is in high demand to control the virus
spread (Alsharif and Qurashi, 2021; Majumder and Minko, 2021; Rai et al., 2021). To achieve the
goal, multidisciplinary research is needed. Scientists from various fields such as chemistry, materials
science, and biotechnology need to work together to tackle multiple challenges (Colombani et al.,
2021; Guo et al., 2021; Jarai et al., 2021). For example, biologists and biochemists are working hard to
reveal the structures of viral proteins and identify the critical pathways for the infection. Materials
scientists and biochemists focus on developing effective point-of-care (POC) diagnostic kits or
devices for rapid and accurate diagnosis. Biologists, chemists, and clinicians are collaborating to
innovate effective treatment and vaccination strategies (Dinnes et al., 2020; Smith et al., 2020;

Edited by:
Evie L. Papadopoulou,

Italian Institute of Technology (IIT), Italy

Reviewed by:
Peng-Cheng Ma,

University of Chinese Academy of
Sciences, China

Benjamin Tawiah,
Kwame Nkrumah University of

Science and Technology, Ghana

*Correspondence:
Chengchen Guo

guochengchen@westlake.edu.cn

Specialty section:
This article was submitted to

Polymeric and Composite Materials,
a section of the journal
Frontiers in Materials

Received: 09 September 2021
Accepted: 12 October 2021

Published: 16 November 2021

Citation:
Li J, Wang W, Jiang R and Guo C

(2021) Antiviral Electrospun Polymer
Composites: Recent Advances and

Opportunities for Tackling COVID-19.
Front. Mater. 8:773205.

doi: 10.3389/fmats.2021.773205 1https://www.who.int/publications/m/item/weekly-operational-update-on-covid-19—6-september-2021.

Frontiers in Materials | www.frontiersin.org November 2021 | Volume 8 | Article 7732051

MINI REVIEW
published: 16 November 2021

doi: 10.3389/fmats.2021.773205

http://crossmark.crossref.org/dialog/?doi=10.3389/fmats.2021.773205&domain=pdf&date_stamp=2021-11-16
https://www.frontiersin.org/articles/10.3389/fmats.2021.773205/full
https://www.frontiersin.org/articles/10.3389/fmats.2021.773205/full
https://www.frontiersin.org/articles/10.3389/fmats.2021.773205/full
http://creativecommons.org/licenses/by/4.0/
mailto:guochengchen@westlake.edu.cn
https://doi.org/10.3389/fmats.2021.773205
https://www.who.int/publications/m/item/weekly-operational-update-on-covid-19---6-september-2021
https://www.frontiersin.org/journals/materials
www.frontiersin.org
https://www.frontiersin.org/journals/materials#articles
https://www.frontiersin.org/journals/materials
https://www.frontiersin.org/journals/materials#editorial-board
https://doi.org/10.3389/fmats.2021.773205


Parupudi et al., 2021). From a materials science perspective,
developing efficient antiviral materials is critical in protecting
against the virus, particularly during the pandemic (Tang P. et al.,
2020; Zhou et al., 2020; Luzuriaga et al., 2021; Seyfoori et al., 2021;
Tang et al., 2021). Up to date, some antiviral materials in the
forms of nanoparticles, hydrogels, and fibers have been developed
to tackle COVID-19, where most of them are based on
electrospun polymer composites (Mahmood et al., 2020; Park,
2020; Rowan and Laffey, 2021).

Electrospun polymer composites (Bhardwaj and Kundu, 2010;
Chowdhury et al., 2021; Pandit et al., 2021) have been widely used
for making personal protective equipment (PPE) against virus
infections (Haggag et al., 2019; Karagoz et al., 2021). They are
composed of nano/microscale electrospun fibers with tailored
compositions for specific application needs. These composites
generally have a high surface-to-volume ratio, tunable porosity
and mechanical properties, and designed functionalities such as
hydrophobicity and bio-responsiveness.

Here in this mini-review, we briefly summarized the recent
progress on antiviral electrospun polymer composites for
controlling the COVID-19 pandemic, focusing on virus
sampling and detection, antiviral protection, drug
encapsulation and delivery, and materials sustainability. We
also discussed the current challenges and future opportunities
for improving the performance of materials for better viral
protection, detection, and treatment.

VIRUS SAMPLING AND DETECTION

Efficient sampling and rapid detection help control the spread of
viruses. For viral detection, immunoassays and polymerase chain
reaction (PCR)-based tests are widely used. These two detection
techniques require different sampling strategies. Immunoassays
are usually applied for the viral detection of infected patients.
They require finger-prick or blood-draw for the detection of
generated antibodies. In comparison, the PCR-based tests are
typically less invasive, and it is used to detect viral DNA or RNA.
The PCR-based tests are applied widely to detect the single-
stranded RNA virus SARS-CoV-2 during the COVID-19
pandemic. Sampling techniques such as swab sampling and
bronchoalveolar lavage are adopted to collect specimens from
the environments and individuals2 (Liao et al., 2020; Nourmoradi
et al., 2021; Rahmani et al., 2020). Electrospun polymer
composites are considered good materials for developing
highly efficient sampling strategies, particularly swab sampling.

Swab sampling is a standard method used to collect biological
specimens, and it is the most popular diagnostic technique during
the COVID-19 pandemic (Whulanza et al., 2020; Wyllie et al.,
2020; Rokney et al., 2020; McCarthy et al., 2021). To ensure early
and accurate diagnostic outcomes, good swab fabrication
techniques are required. For example, achieving sufficient
biomarkers collection from limited biological samples and later

efficient recovery from the swab is one key aspect (Vermeiren
et al., 2020; Pan et al., 2020; West et al., 2020). McCarthy et al.
reported a new class of nanofiber swabs tipped with hierarchical
3D nanofiber objects produced by expanding electrospun
membranes with a solids-of-revolution-inspired gas foaming
technique (Figure 1) (Whulanza et al., 2020; McCarthy et al.,
2021). In the study, they generated radially aligned gelatin-coated
PCL nanofiber objects with cylindrical shapes and bonded them
to plastic swab sticks. The developed nanofiber swabs
significantly improved the absorption and release of proteins,
cells, viruses, etc., from solutions and surfaces. The nanofiber
swabs in SARS-CoV-2 detection showed reduced false negative
rates at two viral concentrations. They pushed the detection limit
to a ten times lower viral concentration than classical flocked and
cotton swabs (Whulanza et al., 2020; McCarthy et al., 2021).
Moreover, both electrospinning and lyophilization are easy to
scale up. Therefore, nanofiber swabs have great potential for
broader diagnostic applications.

ANTIVIRAL PROTECTION

One key and effective strategy of preventing virus infection is
physical protection. Face masks with specific cut-off sizes are
mainly used as barriers to reduce human-to-human transmission.
In general, there are two types of masks: face (surgical) masks and
respirator masks, which are used in low- and high-risk medical
settings, respectively, for providing satisfying protection
(Tebyetekerwa et al., 2020). The outbreak of the novel
coronavirus SARS-CoV-2 has witnessed a worldwide rapid
surge in face mask needs and facilitated the rapid
technological development of antiviral face masks. Besides
serving as a physical barrier to reduce virus transmission, it
could be much more attractive if a face mask has additional
functionalities such as encapsulation of anti-virus agents, self-
sterilization, and reusability.

Recently, an innovative and stimuli-responsive face mask
was developed based on electrospun polycaprolactone (PCL)
composite fibers integrated with antiviral polyphosphate
(Müller et al., 2021). Compared to traditional face masks
solely based on a passive filtration principle, the developed
masks could attract aerosol droplets and kill the captured
viruses. Specifically, the polyphosphate components present
in the mask can transform into a gel-like coacervate upon
contact with divalent cations and virus-containing protein-
like mucin in aerosol droplets. Additionally, using calcium
polyphosphate nanoparticles as drug carriers in the mask to
incorporate tretinoin could further block the function of the
envelope (E) protein of SARS-COV-2. In another study,
Nikhil et al. fabricated phytochemicals-encapsulated 3-ply
cotton-PLA-cotton layered biodegradable face masks for
protecting individuals from bacterial and viral infections
(Patil et al., 2021). In this work, a needleless
electrospinning technique was used to construct a close-
packed mesh structure of a nanofibrous mat, leading to
effective adsorption of particulate matter, aerosol particles,
and bacterial targets deep inside the filtration layer. Besides,

2https://www.cdc.gov/coronavirus/2019-ncov/lab/guidelines-clinical-specimens.
html.
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the mat achieved enhanced air permeability (differential
pressure of 35.78 Pa/cm2) and better bacterial filtration
efficiency (97.9%) (Patil et al., 2021).

Conventional polypropylene (PP)-based medical masks suffer
severe issues such as increased electrostatic adsorption of viral
particles associated with the water vapor exhaled by wearers.
Recently, a new medical mask composed of electrospun polyvinyl
alcohol (PVA) as an inner layer was fabricated to replace the PP
melt-blown layer in conventional medical masks. Since the PVA
is rich in hydroxyl groups, the electrospun polyvinyl alcohol
(PVA) formed hydrogen bonds with water molecules exhaled by
the human body. The trapped water molecules thus increased the
triboelectricity and enhanced charge retention performance in a
high humidity environment (Wang et al., 2021).

Besides synthetic materials, biomass was also used to develop a
biobased antiviral face mask to control the spread of SARS-COV-
2. A recent study explored the design and fabrication of an
antiviral face mask using licorice root extracts, which has
antimicrobial properties due to glycyrrhetinic acid (GA) and

glycyrrhizin (GL) (Chowdhury et al., 2021). With
electrospinning, a nanofibrous membrane using licorice root
extract was successfully fabricated. Nanofibers were about
15–30 μm in diameter with random porosity and orientation
and could potentially capture and kill the virus.

Some inorganic nanomaterials have also been used to integrate
antiviral properties into the electrospun polymer composites
(Castro-Mayorga et al., 2017; Karagoz et al., 2021). For
example, silver nanoparticles (AgNPs) have antibacterial and
antiviral properties and have been widely applied in a broad
range of biomedical applications (Galdiero et al., 2011; Haggag
et al., 2019; Jeremiah et al., 2020; Chen and Liang, 2020). A
coating technique using electrospun poly 3-hydroxybutyrate-co-
3-hydroxyvalerate (PHBV)/AgNPs fiber mats have been
developed to achieve antiviral surfaces. The coating showed
good antiviral properties and efficacy against norovirus
surrogates (Castro-Mayorga et al., 2017). In another study,
researchers fabricated multifunctional electrospun poly (methyl
methacrylate) (PMMA) nanofibers decorated with ZnO

FIGURE 1 | Electrospun nanofiber swabs for detection of SARS-CoV-2 and other biological specimens. (A) The fabrication process of nanofiber swab tips; (B) The
microstructures of the nanofiber swabs and their usage method [Adapted with permission from (McCarthy et al., 2021). Copyright (2021) American Chemical Society].

FIGURE 2 | Examples of the electrospinning process for the fabrication of the functional mask layers. (A) The schematic of the synthesis of ZnO nanorods,
preparation of the electrospinning solution of PMMA and ZnO nanorods with in situ generated AgNPs, and fabrication of the PMMA/ZnO-Ag nanofibers for further PPE
usage [Adapted with permission from (Karagoz et al., 2021). Copyright (2021) American Chemical Society]. (B) The illustration of the incorporated N-doped TiO2

nanoparticles into the PVA, PEO, CNF mixture for electrospinning to engineer photocatalytic antiviral face masks [Adapted with permission from (Li Q. et al., 2021).
Copyright (2021) American Chemical Society].
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nanorods and Ag nanoparticles (PMMA/ZnO–Ag NFs) as
protective mats (Figure 2A) (Karagoz et al., 2021). The mats
showed good antibacterial and antiviral properties for killing
Gram-negative and Gram-positive bacteria and inhibiting corona
and influenza viruses, respectively. Moreover, the incorporated
photocatalyst enhanced the degradation of organic pollutants,
enabling self-cleaning protective mats. Such multifunctional
materials showed great potential for use in protective clothing
applications.

DRUG ENCAPSULATION AND DELIVERY

Electrospun drug-loaded fibers have shown great potential in drug
delivery systems. They have several merits, such as the high surface
area, tunable diameters and structures, good porosity,
functionalization, and potential to encapsulate various active
substances, making them suitable for drug loading and sustained
release (Balusamy et al., 2020). Acyclovir (ACY) is one of the most
effective and selective antiviral drugs used to treat herpes viruses but
is only slightly soluble in water. Yu et al. have undertaken several
investigations into ACY-encapsulated fibers, using both slow and
fast dissolving polymers. They reported electrospun polyacrylonitrile
(PAN) nanofibers loaded with ACY could be used as a nanofiber-
based drug delivery system showed a sustained drug release profile
over 12 h (Yu et al., 2010). They further developed a new type of solid
dispersion in the form of core-sheath nanofibers using coaxial
electrospinning to deliver ACY (Yu et al., 2011). Additionally,
Shekh et al. chemically modified electrospun PAN nanofibers
with oxidized chitosan (OC) to promote the effective transdermal
delivery for ACY (Shekh et al., 2020). For treating human
immunodeficiency virus (HIV) infection, combinative drug
therapy can enhance efficacy while reducing toxicity and
addressing the emergence of drug resistance (Greco and Vicent,
2009). Blakney et al. developed a co-delivery system for the
prevention of HIV in 2014. In the study, they prepared polyvinyl
alcohol (PVA) based electrospun fabrics with different microscale
geometries for the co-delivery of a hydrophilic (TFV) and
hydrophobic (LNG) drug with high drug loading (Blakney et al.,
2014). Griffithsin (GRFT), a biological antiviral lectin, can inhibit
HIV-1 infection by adhering and inactivating HIV-1 immediately
upon contact. Griffithsin-modified electrospun fibers were made
using poly (lactic-co-glycolic acid) (PLGA) to prevent HIV infection
(Grooms et al., 2016). Recently, researchers developed a new type of
electrospun fibers that incorporated the GRFT to provide dual-
purpose protection against HIV-1 and HSV-2 infections. These
fibers were composed of polyethylene oxide (PEO), polyvinyl
alcohol (PVA), and polyvinylpyrrolidone (PVP) (Tyo et al.,
2020). Furthermore, Baskakova et al. developed electrospun fibers
containing acyclovir, ciprofloxacin, and cyanocobalamin to treat
cytomegalovirus infections for patients with AIDS (Baskakova et al.,
2016). These electrospun fiber-based drug delivery systems hold
great promise in current investigations and future clinical practices.
With the development of the antiviral drugs, such as for COVID-19
(Alshammari et al., 2021; Ohashi et al., 2021), this technique could be
applied to the on-demand therapeutic applications, showing great
prospectives in the clinic.

MATERIAL SUSTAINABILITY

Personal protective equipment (PPE), such as masks and
protective suits, is expected to prevent and control SARS-CoV-
2 attacks both effectively and efficiently (Leung et al., 2020a;
Leung et al., 2020b; Karim et al., 2020; Weiss et al., 2020; Tang Z.
et al., 2020; Zangmeister et al., 2020). However, conventional PPE
can only set a physical barrier for viral entry without virus-killing
ability. As a result, the virus will accumulate on the surface of
PPE, and the arbitrary disposal of medical PPE may cause cross-
contamination (Li Q. et al., 2021). Besides, the massive use and
disposal of polypropylene for mask manufacturing have caused
burdens to the environment due to its weak degradability (over
10 years by soil) (Canopoli et al., 2020). Therefore, developing
PPE with a combination of antiviral properties and reusability is
highly desired for tackling the COVID-19 pandemic and the
future underlying infection outbreak in a more sustainable way.
Li et al. developed techniques to fabricate fabrics with real-time
self-antiviral capabilities using a highly efficient aggregation-
induced emission photosensitizer (namely, ASCP-TPA) (Li B.
et al., 2021). These ASCP-TPA-attached fabrics (ATaFs) showed
rapid and real-time antiviral capabilities to kill mouse
coronavirus murine hepatitis virus A59 (MHV-A59) under
ultralow-power lamp light irradiation (Horváth et al., 2020;
Tang Z. et al., 2020). Furthermore, the ATaFs showed good
washability, photostability, and reusability (>100 times with
persistent use for more than 2 weeks), offering a sustainable
solution to the global PPE supply shortage (Li B. et al., 2021).
In addition, Li et al. reported reusable, biodegradable, and
antibacterial masks made with electrospun polymer fibers
composed of PVA, PEO, and CNF. The electrospun
polymer composites were modified with a nitrogen-doped
TiO2 and TiO2 mixture for achieving photocatalytic effect
under simulated/natural sunlight for bacterial disinfection
(Figure 2B) (Li Q. et al., 2021). The fabricated masks
showed good mechanical performance with ten times elastic
modulus and two times tensile strength higher than a
commercial single-use mask.

CONCLUSION AND OUTLOOK

A virus is a biological particle at the nanoscale level, making
detection and prevention challenging. To ensure efficient virus
capture for the detection or effective protection, it typically
requires that the materials used in such practices have
structural features at nanoscale similar to the size of the virus.
Electrospinning offers a convenient way to fabricate nanofibers
with well-controlled structures and properties. Electrospun
polymer nanofibers have been used to make virus-blocking
platforms, such as PPE, showing great promise in preventing
the spread of virus. However, some challenges remain, and more
efforts are required. For example, rapid virus detection of high
accuracy and a low price is needed. To achieve this goal, tailoring
surface chemistry of materials for better virus capturing and
developing cost-effective manufacturing methods to reduce the
detection cost should be considered. Furthermore, the delivery of
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antiviral drugs can be integrated in the system with rational
material designs to improve the therapeutic ability of electrospun
polymer composites. Besides synthetic polymers, natural
polymers such as silk and chitosan can also be used for
making antiviral electrospun polymer composites since these
natural polymers are biocompatible and the processing is
generally environmentally friendly. Lastly, in terms of
sustainability, developing reusable or recyclable electrospun
polymer composites for antiviral protection is of great
interest with respect to the economic costs and future
environmental impacts.
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