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Electrorheological (ER) fluids are a type of smart material with adjustable rheological
properties. Generally, the high yield stress (>100 kPa) requires high electric field strength
(>4 kV/mm). Herein, the TiO2 nanoparticles were synthesized via the sol–gel method.
Interestingly, the ER fluid-based TiO2 nanoparticles give superior high yield stress of
144.0 kPa at only 2.5 kV/mm. By exploring the characteristic structure and dielectric
property of TiO2 nanoparticles and ER fluid, the surface polar molecules on samples were
assumed to play a crucial role for their giant electrorheological effect, while interfacial
polarization was assumed to be dominated and induces large yield stress at the low
electric field, which gives the advantage in low power consumption, sufficient shear stress,
low leaking current, and security.
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1 INTRODUCTION

Electrorheological (ER) fluids are a kind of smart ER fluids, which are composed of polarizable solid
particles and non-polar liquid medium. When an external DC electric field is applied, the rheological
properties of ER fluids display continuous, rapid, and reversible changes (Halsey, 1992; Wen et al.,
2008; Hwang et al., 2016; Su et al., 2016; Tao et al., 2016; Kim et al., 2017). This characteristic makes
ER fluids have broad application prospects in the fast-acting valves, clutches, brakes, shock absorbers,
inaccurate polishings, and robotics (Gamota and Filisko, 1991; Zhao et al., 2003; Wen et al., 2004).
This has made ER fluids a persistent area of study in soft matter research, ever since their discovery
several decades ago. Special interest has been given to TiO2 as a promising candidate for high-
performance ER materials, owing to its high permittivity (εrutile � 90∼100, εanatase � 30∼40) (Yin and
Zhao, 2004a; Ji et al., 2017). However, the ER performance of the crystalline TiO2-based ER fluids is
very bad, with only several kPa generally (e.g., 0.6 kPa at 4 kV/mm, Yin and Zhao, 2004a). The
phenomenon is not consistent with conventional polarization mechanisms. In previous studies,
many researchers have done effective ways to enhance the performance of TiO2 ER fluids (Whittle
and Bullough, 1992; He et al., 2017). Yin and Zhao (2004a) noticed that the crystalline TiO2,
dominated by fast ionic or atomic polarization, could not supply high ER activity with optimal
dielectric or polarization properties. Furthermore, several strategies, including new synthesis method
(microwave-assisted) (Plachy et al., 2015), surface coating/modification by polar molecules (Shen
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et al., 2005; Wang et al., 2007a; Cheng et al., 2008; Niu et al.,
2014), 2D nanosheets (He et al., 2018), internal structure
activation by metal ions (Zhao and Yin, 2002a; Zhao and Yin,
2002b; Wang and Zhao, 2003; Yin and Zhao, 2004b), and doping
with chromium (Cr) (Almajdalawi et al., 2013), have been
developed to increase the ER response. However, despite the
broad interest, applications have been hampered by the weakness
of the ER effect (still generally less than 5 kPa, too low to meet the
requirements for practical applications).

In recent years, a new group of giant ER fluids, consisting
of amorphous TiO2 and MTiO(C2O4)2 (M�Ca, Ba, Sr)
nanoparticles, which are coated with deliberately chosen
polar molecules, showing high yield stress up to over
200 kPa under an applied electric field of 5 kV/mm, was
developed (Wen et al., 2003; Shen et al., 2005; Huang
et al., 2006; Wang et al., 2007a; Wang et al., 2007b; Cheng
et al., 2008). The induced polarization model of dielectric ER
fluids cannot explain many phenomena of these ER fluids. An
obvious character of these ER fluids is not the quadratic
dependence of yield stress but the linear dependence upon
the electric field for the dielectric ER fluids.

So far, much theoretical analysis has also been adopted to
explain the high yield stress of giant ER fluids, and the interaction
between induced charges and polar molecules adsorbed on
particle surfaces is generally assumed to be a key for Ca-Ti-O
in understanding the giant ER effect (Shen et al., 2005; Wang
et al., 2007a). However, up to now, high-performance ER fluids
with strong yield stress (>100 kPa) still suffer from high electric
field (up to 5 kV/mm) (Wang et al., 2007a). The irreproducibility
of ER fluids, low colloidal stability, insufficient shear stress, or
wear of pipes and valves still limit their industrial applications
(Wang et al., 2005; Lu et al., 2007; Shen et al., 2009).

Herein, we present a new TiO2 ER fluid with a strong ER
response (106.8 kPa) at a low electric field (1.5 kV/mm). This
yield stress in such a lower electric field is several orders higher
than the reported giant ER fluids. The novel characteristic of the
high yield stress at the low electric field may have many
advantages, such as low power consumption, sufficient shear
stress, low leaking current, and security.

2 EXPERIMENTAL SECTION

2.1 Materials
Tetrabutyl titanate (TBT, >98%) was bought from Aladdin
Biochemical Technology Co., Ltd. (Shanghai, China). Absolute
ethanol (C2H5OH, AR), acetic acid (CH3COOH, AR), oxalic acid
dihydrate (H2C2O4·2H2O, AR), and calcium chloride (CaCl2, AR)
were obtained from Sinopharm Chemical Reagent Company
(Shanghai, China). All reagents were of analytical-grade and
had no purification. Deionized Millipore-Q water
(18.2 MΩ cm) was used during the whole experimentation.

2.2 Sample Preparation
The TiO2 nanoparticles were synthesized through the sol–gel
method. TBT was used as the inorganic precursor, and
ethanol and water were used as solvents. First, TBT and

ethanol were mixed at a TBT/ethanol volume ratio of 1/2.
Meanwhile, a small amount of acetic acid was added under
the condition of intense agitation to prevent TBT from
reacting with water in the air during the stirring process.
Then the deionized water was dropped into the TBT solution
with vigorous stirring. In the preparation, the volume ratio of
H2O, TBT, and ethanol is kept at 7:17:34. The ER fluid was
stirred for 12 h and then aged for 10 h to deposit the particles.
Then the white precipitate was filtrated and, using water and
ethanol, it was washed three times. Finally, the precipitation
was transferred to a vacuum drying oven, vacuum dried at
60°C for 12 h, and then vacuum dehydrated at 120°C for 2 h.
The bulk density of the as-prepared TiO2 particles was 2.0 g/
cm3. The fabrication processing schematic diagram is
presented in Figure 1.

The calcium–titanium–oxygen precipitate (Ca-Ti-O)
nanoparticles were prepared by the co-precipitation method
and no special additives were added to the particles (Lu et al.,
2007). In brief, calcium chloride, TBT, and absolute ethyl alcohol
were the initial solution, and oxalic acid solution was the
precipitant. White precipitate came into being as soon as
oxalic acid solution was added. After 8 h of aging at room
temperature, the precipitation was filtrated and washed. The
drying steps were the same as those of TiO2 nanoparticles.
The bulk density of the as-prepared Ca-Ti-O particles was
1.8 g/cm3.

The ER fluids were obtained by blending the prepared TiO2

and Ca-Ti-O nanoparticles with silicone oils (50 mPa s at 25°C)
via ball milling. The blended ER fluid was dried at 60°C for 1 h
before use. The solid content of the ER fluids is denoted by the
mass of the ER nanoparticles, e.g., 0.5 g of the TiO2 nanoparticles
blended with 1 ml of silicone oil is denoted by 0.5 g/ml.

2.3 Characterization
The microstructures of the samples were acquired by using
Hitachi S4800 field scanning electron microscopy (FE-SEM;
Hitachi, Japan) and Tecni F20 transmission electron
microscopy (TEM; FEI, United States). By virtue of the
Nicolet 6700 transform infrared spectrometer record,
Fourier transform infrared (FT-IR; Thermo-Fisher,
United States) spectra were from 400 to 4,000 cm−1 using
KBr pellets. All infrared spectra were collected 32 times the
scan data accumulation at a resolution of 4 cm−1. X-ray
diffraction (XRD; Bruker, Germany) spectra were obtained
by a D8 Advance/Discover diffractometer using Cu kα
radiation. Dielectric properties of the powders and ER fluids
were performed via a broadband dielectric/impedance
spectrometer with an Alpha-A analyzer (Novocontrol,
Germany). The performed voltage is 1.0 V during the
dielectric measurements.

The rheological behaviors of the ER fluid were obtained by
the Haake RS6000 rotational rheometer with a 15-mm
diameter circular plate, and the gap of the height of the
parallel plate is 1 mm (Thermo-Fisher, United States). To
get the static yield stress, we adopted a stress–strain
measurement at a very low shear rate (0.2 rad/s), and the
yield stress is the stress value when the viscosity decreases
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abruptly. The shear stress vs. shear rate curve of the ER was
measured using the CR mode with shear rates from 1 to
100 s−1. The external electric field was generated from the
SL 300 DC high-voltage generator (Spellman, United States).
The controlled humidity environments were achieved by
placing in a temperature humidity chamber for calibration
at a set humidity for 5 h. Experimental data were carried out
with the aid of the software package Rheowin. All data were
accomplished at room temperature.

3 RESULTS AND DISCUSSION

3.1 Characterization of the Dielectric
Nanoparticles
The size and shape of the TiO2 particles were examined by SEM
and TEM. From Figure 2A, it can be observed that the particles
have a spherical shape and a rather uniform size distribution, or
some irregular agglomerates. The primary particle size is less than
500 nm. The TEM image (inset in Figure 2A) reveals that the
surface of the TiO2 particle is rough and has tiny little balls
sticking around it. The powder XRD patterns of the TiO2 particles
is shown in Figure 2B. The pattern almost is a smooth line
without the characteristic peak of a TiO2 crystal, which indicates
the amorphous structure of the TiO2 particles. Figure 2C is the
infrared spectra of the TiO2 particles. The wide peak from 2,900
to 3,500 cm−1 is derived from the asymmetric and symmetric
stretching vibration of the −OH group. The peak around
1,647 cm−1 is assignable to the H-O-H bending vibration. The
Ti-O band sorption is found in the broad peaks from 900 to
500 cm−1. The peak from 1,455 to 1,380 cm−1 is assignable to CH2

and CH3 in-plane deformation distortion, which indicates a small
amount of CH3 and CH2 groups present on the TiO2 surface. The
peak around 1,038 cm−1 is attributed to the C-O stretching
vibration of butanol. All these data show that the titanium
oxide has some residual butanol. These are typical precipitated
TiO2 particles. The dipoles of C�O and O-H are 2.3∼2.7 and 1.51
Debye, respectively. Based on the mechanism of the giant ER
effect proposed, sufficient active groups on the surfaces of the
particles would promote ER response (Shen et al., 2009).

3.2 Electrorheological Properties of
Electrorheological Fluids
The particle distribution of the TiO2 ER fluids (1.0 g/ml) was
observed by an optical microscope (Figure 3). Without the
electric field, the TiO2 particles are randomly dispersed in the
silicone oil. When the electric field strength reaches 0.5 kV/mm,
these TiO2 particles are polarized, and then swiftly form a thick
chain-like structure along the direction of the electric field
between the positive and negative electrodes. The fibril
phenomenon of the TiO2 particles at the low electric field
indicates that the TiO2 fluids might have high yield stress at
the low electric field.

The rheological properties of the TiO2 ER fluid were evaluated
under different electric field strengths. With increasing intensity
of electric field strength, the yield stress of the TiO2 ER fluid
significantly rises by several orders of magnitude. When the
electric field strength is 2 kV/mm, the yield stress reaches
120 kPa. As the electric field strength increases further, the
yield stress deviated from the linearity. Ca-Ti-O is a kind of
high-performance electrorheological material (Wang et al., 2005;
Cheng et al., 2010; Wu et al., 2016). To compare with our TiO2

material, we refer to the literature to synthesize Ca-Ti-O
electrorheological fluid (The XRD pattern and IR spectrum of
Ca-Ti-O particles are shown in Supplementary Figures S1 and
S2). The yield stress of the Ca-Ti-O ER fluid is only 14.4 kPa at
2.0 kV/mm, which is 15% that of the TiO2 ER fluid under the
same conditions (Figure 4A and Supplementary Figure S3).
Moreover, we noted that the TiO2 ER fluid demonstrates a much
higher ER efficiency [defined as (τE–τ0)/τ0, where τE is the shear
stress with an electric field, and τ0 is the shear stress at zero field]
than that of Ca-Ti-O ER fluid at the lower applied electric field.
The yield stress of TiO2 ER fluid reached 122.4 kPa at an electric
field of 2.0 kV/mm, and the ER efficiency is about 204. The
current density is only 8 μA/cm2 leaking through the fluids (the
relative curves are shown in Supplementary Figures S4, S6). In
contrast, the yield stress of Ca-Ti-O ER fluid is only 14.4 kPa with
an ER efficiency of 6 at 2.0 kV/mm (Supplementary Figure S5),
which is consistent with the previous report of Shen et al. (2009).

Figure 5 shows the yield stress of TiO2 ER fluids with different
solid particle fractions. It was discovered that the yield stress is

FIGURE 1 | The fabrication processing schematic diagram of TiO2 particles.
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FIGURE 2 | Scanning electron microscopy (SEM) images of (A) TiO2, (B)
X-ray diffraction (XRD) patterns, and (C) the infrared spectra of the TiO2

particles.

FIGURE 3 | Optical picture of an electrorheological fluid (A) without
electric field and (B) at 0.5 kV/mm.

FIGURE 4 | (A) Static yield stress and (B) current densities (j) of the
prepared electrorheological (ER) fluids at different DC electric fields
(solid–liquid ratio of 2 g/ml).
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positively correlated with the solid concentrations. The yield
stress is enhanced with the concentration increasing. When
the concentration is less than 1.0 g/ml, the yield stress is small,
and the change is not obvious. The yield stress increased
significantly from 1.0 to 1.5 g/ml, and the yield stress
increased slowly from 1.5 to 2.0 g/ml. When the solid content
increases from 1.0 to 1.5 g/ml, the yield stress appears remarkably
improved. The yield stress is related to the concentrations of the
TiO2 closely. As for the GER fluids, the high yield stress major
comes from the interfacial polarization. Polarized particles will
generate interaction force, when the concentration is higher, the
distance will be closer. Hence, the interaction force becomes
stronger with the concentration. As the solid content further
increases, the yield stress is saturated gradually. It is attributed to
the polarization (P) of the particles slowed down at high field
strengths for high nanoparticle concentrations.

The electric field dependencies of the measured shear stress
and solid particle concentrations are shown in Figure 6. The
shear stress was measured as a function of the shear rate under
various electric field strengths (0–3 kV/mm). The ER fluid with
low solid content (0.5 and 1.0 g/ml) is a Newtonian fluid when the

electric field is zero, and the diagram of shear stress and the shear
rate was a constant slash (Supplementary Figure S7). After
applying the electric field (the ER fluid behaved as a Bingham
fluid under an electric field), the dynamic shear stress can reach
3.3 kPa (0.5 g/ml) and 23.5 kPa (1.0 g/ml) at 3 kV/mm,
respectively. When the shear rate is added to nearly 100 s−1,
the shear stress of the two ER fluids is maintained almost constant
(plateau region), which suggested that the process of forming the

FIGURE 5 | (A) Static yield stress versus electric field strength at different
TiO2 concentrations. (B) Static yield stress versus concentration at different
electric field strengths.

FIGURE 6 | Shear stress as a function of shear rate for (A) 0.5, (B) 1.0,
and (C) 2.0 g/ml TiO2 ER fluids in silicone oil under DC electric field.
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chain structure is still dominated by the electrostatic force at low
ER fluids. However, when the solid–liquid ratio increased to
2.0 g/ml, the expelling of the ER fluid materials from the center
region of the testing apparatus was observed in the concentration
and electric field strength applied. Indeed, the expelling behavior
is a generic problem encountered in all the parallel plate types of
ER measurement apparatus when a higher concentration of ER
fluid was used (Gamota and Filisko, 1991). Interestingly, it has
been found that the yield stress results from the potential energy
of the repulsion between particle chains in an ER fluid (Song et al.,
2012). As for the ER fluids shown in Figure 6C, when the shear
rate was increased to 8∼12 s−1, the shear stress has a net reduction
due to expelling behavior. Another reason for such behavior may
be that the nearest particles separate from the electrode induced
by the weaker interaction at the fluid–electrode interface since the
commercial electrodes were not made rough (Wang et al., 2007b).

The TiO2 ER fluids maintain high yield stress during the wide
temperature scope from 20°C to 100°C. For representation, the
yield stress as a function of temperature for the ER fluid with
2.0 g/ml under various electric field strengths is shown in
Figure 7. The best yield stress is around 60°C, which is
consistent with the permittivity of the TiO2 particles prepared
in a similar way. Taking in the negligible variation of ε in the
tested temperature range, the mismatch in ε between TiO2 and
silicone oil would reach a maximum value and leads to a
maximum yield stress at around 60°C. Thus, the TiO2 fluids
presented here are preceded by other known ER fluids and have
potential applications in fabricating novel ER devices, for
instance, clutches and shock absorbers.

3.3 Effect ofWater on the Electrorheological
Behaviors
For typical inorganic electrorheological materials, the yield stress,
apparent viscosity, and leaking current density of the ER fluids
passed through its maximum with the moisture content
increasing (Espin and Płocharski, 2007), while the yield stress
of organic and polymer ER fluids increases monotonously with

water content (Wen et al., 1997; Zhang et al., 2001). For typical
dielectric-type ER fluids, yield stress data are properly formulated
by the power law: τy ∝ E0

m (m < 2), where E0 is the applied
electric field (Choi et al., 2001). As indicated in Figure 8A and
Supplementary Figure S8, the yield stress of TiO2 and Ca–Ti–O
ER fluids increases with the water content, and the leaking
current increases with the water content as shown in
Figure 8B, which conforms to the widely accepted dramatic
effect of water on the ER effect. However, different trends of yield
stress by increasing the electric field strength were observed for
ER fluids with different water contents. For TiO2 ER fluids with
very low water content, the slope of E0 vs. τy is m ≈ 2.0, while the
slope approaches 1.0 by increasing the water content. It also
showed that there exists a critical value, which corresponds to the
giant ER behavior where m � 1 at a high electric field.
Unexpectedly, a saturation trend is observed over a range of
unscaled water contents greater than the critical value, which also
resembles the phenomenon in the log–log scale, the slope of 1 at
low electric field and becomes 0.4 at high electric field, the reason
is that the interficial polarization dominates at low electric field

FIGURE 7 | Temperature dependence of the yield stress at E � 2.5 kV/
mm of the TiO2 ER fluid with 2.0 g/ml in silicone oil.

FIGURE 8 | The effect of moisture level on the yield stress (A) and
corresponding current densities (B) of TiO2 ER fluids with 2.0 g/ml
in silicone oil.
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and approach saturation with electric field increasing resulting in
the diminishing of the slope (Supplementary Figure S9).

So, the action mechanism of moisture in the giant
electrorheological fluids is governed by its content. It is easy to
form a hydrogen bond bridge between particles in fluids with
higher moisture levels with the co-action of the electric field and,
hence, the stronger the ER properties. When the moisture content
is higher, the “current channel” along the fiber structure of the ER
fluid will be formed through the free water in the ER fluids
immigrating to the surface of the particles, which screened the
dipole–dipole interaction and, hence, the saturation of induced
the dipole. The increase in electric field will mainly assist the
establishment of the current channel, which reduces the local
electric field and increases the yield stress. As for those ER fluids
with very low water content, no free water was present, and the
absorbed water acts as surface polar molecules, and hence,
dielectric-type ER behavior will be observed. Meanwhile, the
effect of the temperature and humidity on the yield stress of
the TiO2 ER fluids is researched. The effect is similar for
temperature and humidity; both have good yield stress during
a wide temperature or humidity range, and the yield stress
increases with the humidity at the same temperature and
electric field. Compared with the curve of the temperature,
they have the same tendency; the yield stress increases and
then decreases when the temperature increases
(Supplementary Figure S10).

3.4 Dielectric Properties of
Electrorheological Fluids
It is known that the large polarizability and appropriate
dielectric relaxation time of ER particles are critical in
producing better and more rapid electrostatic interactions,
wherein they can remain as stable structures and rheological
properties under shear flow conditions. Polarizations can be
divided into four contributions: electronic, atomic, Debye
(related to the orientation of dipoles), and interfacial
polarization (the Maxwell–Wagner polarization). Among
them, electronic and atomic polarization are fast

polarizations located in the high-frequency range, which
could not supply optimal dielectric or polarization
properties for high ER activity (Zhao and Yin, 2002a),
while Debye and interfacial polarization are appear at the
low-frequency range, and their response speeds are slower. It
has long been found that in the heterogeneous systems with a
clear interface, the strong polarization effect is originated
from ion accumulation in the interfacial area, rather than the
dipole polarization for the most part. The interfacial
polarization, which was properly described by the Wagner
model (Wagner, 1914), rather than other polarization
including electronic polarization, atomic polarization, and
dipole polarization, is generally admitted as that which
reflects the underlying physics. When an electric field is
applied, two dominant processes occur in the ER fluid
simultaneously: one is the polarization of molecules, and
the other is the interfacial polarization between clusters.

Figure 9 shows the relaxation spectrum of the as-prepared
TiO2 ER fluids. It can be observed that the permittivity (ε′)
first decreases and approaches a constant value as the
frequency increases. The value of ε′ of TiO2 ER fluid is
about six orders smaller than that of Ca-Ti-O ER fluid
(Supplementary Figure S11), and an obvious dielectric
relaxation peak is observed in the TiO2 ER fluid, while this
peak is not found in Ca-Ti-O ER fluid. This may be attributed
to its high conductivity; conductivity plays an important role
only in the low-frequency range. Through the measurement
of the current density, shown in Figure 4B and
Supplementary Figure S6, it is found that both Ca–Ti–O
and TiO2 fluids exhibit the Poole–Frenkel conduction,
i.e., ln j∝E1/2, one of the important features of giant ER
fluids (i.e., polar molecule-dominated ER fluids). The current
density is obtained by Ohm’s law:

J � σE (1)

where σ is the electrical conductivity. The current density can be
written as the product of the mean charge drift velocity vc and the
volume charge density, i.e,

J � ρvc (2)

and substituting this into Eq. 1, we have,

σ � ρ|vc|/|E| � ρμ � (nq)μ (3)

where q is the charge carriers, μ is the mobility of the charge in the
electric field, and n is the number density of the charge.

The density of carriers, n, is the fastest varying parameter in
this case. Therefore, the electric field-dependent part of the carrier
density can be expressed as:

n � n0exp( − ΔV/kBT) (4)

where n0 is the carrier density in the absent electric field, ΔV is the
electrical potential energy of the carrier, kB is the Boltzmann
factor, and T denotes the temperature. Here,

ΔV � q2/kx + qEx (5)

FIGURE 9 | Relaxation spectrum of TiO2 ER fluids with 2.0 g/ml of
silicone oil.
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where x is the relative distance between the carrier and the
electrode. The minimum value of ΔV is at dΔV/dx � 0. The
extremum results can be given by:

dΔV
dx

∣∣∣∣∣∣∣x0�0
(6)

Assuming ΔV � −2q3/2 ���
E/k

√
, for this equation, then we can

obtain hbb:

ΔV � 2q3/2
����
E/K

√
(7)

Therefore,

ln J∝ ln n∝ΔV∝E1/2 (8)

This behavior is indeed confirmed experimentally. As shown
in Figure 3A and Supplementary Figure S3, a fine linear relation
was obtained for both samples, indicating the dominant effect of
polar molecules on the ER effect.

For the TiO2 samples, a distinct dielectric loss, originating
from interfacial polarization, which may have a predominant
effect on the ER fluid efficiency, was found at 103 Hz. For the
interfacial polarization, the relaxation time t of one system, when
σp (conductivity of the particle) >> σm (conductivity of the
medium), the relationship between σp and σm can be
described as (Morgan, 1934; Hao et al., 1998):

t � ε0(2εm + εp)/σp (9)

where ε0, εm, and εp are the dielectric constant of the vacuum,
continuous (insulating) phase, and disperse (conducting) phase,
respectively; σp is the conductivity of the dispersed particles (7.2 ×
10−6 and 1.5 × 10−5 S/m for TiO2 and Ca-Ti-O powders at 1 kHz,
respectively). Therefore, by virtue of testing the ER fluid response
time, we can assume that the relaxation time of the polarization
the ER response time would control the relaxation time of the
polarization and then govern the ER effect. If the Wagner
polarization determines the ER effect in truth, according to

Eq. 1, the ER fluid answering time should be equivalent to the
Wagner polarization relaxation time (Block and Rattray, 1995),
which is shown in Figure 10. There is an inverse proportional
relation between the relaxation time and the particle conductivity.
As shown in Figure 10, the TiO2 suspension has a larger
conductivity and, hence, a shorter response time. When the
ER fluid has a particle conductivity of around 10−7 S/m, the
response time should be around 1 ms. This improved
polarization may be one factor to induce the enhancement of
the ER effect of the titania suspension at a lower electric field.
Thus, we assume that both Debye and interfacial polarization
affect the ER performance. As for the Ca–Ti–O samples, its large
dielectric constant is attributed to the polar molecule-coated
nanoparticle, whose effective dielectric constant is dominated
by its coating and the existence of the interfaces. (Wen et al., 2003;
Huang et al., 2006; Wang et al., 2007a; Cheng et al., 2008) This
induces a large dipole and, thus, a high ER response at a high
electric field. (Wen et al., 2003; Huang et al., 2006; Wang et al.,
2007a; Cheng et al., 2008; Cheng et al., 2010), while for TiO2

suspension, the strong ER effect was mainly induced by interfacial
polarization.

4 CONCLUSION

We report a novel TiO2-based ER fluid showing a pronounced
ER effect whose yield stress reaches 78.6, 106.8, and 122.4 kPa
for an external electric field of only 1, 1.5, and 2 kV/mm,
respectively. Dielectric and infrared studies indicate that
interfacial polarization dominates in the TiO2 ER fluid,
while polar molecules induced molecular polarization that
dominates in the Ca-Ti-O fluid. When carriers are present,
they can travel considerable distances through the medium,
but when they are captured or cannot be discharged at the
electrode, interfacial polarization occurs. The role of water
and other polar compounds absorbed on the surface of
particles was assumed to induce dielectric loss. The surface
polar molecules on both samples were assumed to play a
crucial role for their giant electrorheological effect, while
interfacial polarization was assumed to be dominated and
induces a large yield stress at a low electric field in the TiO2

ER fluid.
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