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We report, both theoretically and experimentally, a type of ultra-thin metasurface-based
low-frequency sound absorber with bandwidth optimization. Such a metasurface unit
consists of an ultrathin resonator (thickness∼1/90 wavelength) with a circular hole on the
upper panel and four narrow slits inside a multiple-cavity structure. Eigenmode simulations
of the unit show rich artificial Mie resonances, in which a type of monopolar Mie resonance
mode can be obtained at 238.4 Hz. Based on the excitation of the monopolar mode, we
can realize the near-perfect low-frequency sound absorption with the maximum
absorption coefficient and fractional bandwidth of 0.97 and 12.9%, respectively, which
mainly arises from the high thermal-viscous loss around the circular hole and four narrow
slits of the unit. More interestingly, by combining 4 units with different diameters of the
circular hole, we further enhance the fractional bandwidth of the compound unit to 18.7%.
Our work provides a route to design ultra-thin broadband sound absorbers by artificial Mie
resonances, showing great potential in practical applications of low-frequency noise
control and architectural acoustics.
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INTRODUCTION

Studies on low-frequency sound absorption have attracted great scientific and engineering
fascination due to its extensive practical applications in noise control, architectural acoustics,
and environmental protection. Traditionally, the realization of sound absorption is mainly based
on porous and fibrous materials (Biot, 1956; Zarek, 1978) and micro-perforated plate structures with
cavities at the back (Maa, 1998; Arenas and Crocker, 2010). However, these absorbing structures
usually have imperfect impedance matching with free space and relatively large sizes comparable to
working wavelengths.

In the past few years, rapid development of metamaterials (Liu et al., 2000; Fang et al., 2006; Li et al.,
2009; Toyoda et al., 2011; Christensen and de Abajo, 2012; Liang and Li, 2012; Quan et al., 2014; Cummer
et al., 2016; Cheng et al., 2019; Gao et al., 2021) andmetasurfaces (Li et al., 2013; Tang et al., 2014; Xie et al.,
2014; Xie et al., 2017; Assouar et al., 2018; Holloway et al., 2019; Quan et al., 2019; Zhu and Assouar, 2019;
Gao et al., 2020; Nikkhah et al., 2020) provides an unprecedented way to overcome the limits of
conventional absorption materials and realize high absorption performance. These absorbing structures
usually contain subwavelength resonant units to enhance energy density and dissipate sound energy
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inside. The previously demonstrated resonant units mainly include
Helmholtz resonators (Jimenez et al., 2016; Li et al., 2016; Romero-
Garcia et al., 2016; Jimenez et al., 2017; Long et al., 2017), sound
membranes (Mei et al., 2012; Ma et al., 2014; Yang et al., 2015; Yang
et al., 2015), coiled Fabry-Perot resonators (Zhang and Hu, 2016;
Jimenez et al., 2017; Yang et al., 2017), split-ring-resonators (Wu
et al., 2016), acoustic metasurfaces (Cai et al., 2014; Li and Assouar,
2016; Tang et al., 2017; Donda et al., 2019; Ge et al., 2019; Long et al.,
2019; Gao et al., 2021), etc. The above designs exhibit high efficiency
for low-frequency sound absorption. However, due to their resonant
nature, the design of sound absorption structures with both broad
bandwidth and deep subwavelength thickness remains a challenging
task. Theoretical analysis shows that broadband absorption can be
achieved by dispersive dissipative meta-films (Duan et al., 2015).
Meanwhile, sound absorption can also be theoretically obtained by
coherent perfect absorbers based on interference cancellation (Song
et al., 2014; Wei et al., 2014).

Recently, a type of maze-like unit consisting of eight zigzag
channels has become a hot topic due to its rich artificial Mie
resonances and subwavelength size (Cheng et al., 2015; Landi
et al., 2018). Based on different types of Mie resonance modes
created by themaze-like units, a variety of application designs of low-
frequency sound have been realized, including rainbow trapping
(Zhou et al., 2016), extraordinary transmission (Xia et al., 2015;
Zhang et al., 2017), sound filtering (Sun et al., 2019), energy
harvesting (Gao et al., 2019) and directional propagation (Lu
et al., 2017). Additionally, a multi-band near-perfect sound
absorber based on the multi-orders monopolar and dipolar Mie
resonances has been designed (Long et al., 2018). However, this
system is composed of a Mie resonator array backed by a rigid wall,
and broadband sound absorbers designed by a single layer of Mie
resonator array with deep subwavelength thickness still pose a
challenge.

In this work, we propose a metasurface unit which consists of an
upper surface panel with a central circular hole and a multiple-cavity
structure. By applying eigenmode simulations to the unit, a series of
artificial Mie resonancemodes can be observed, such as amonopolar
Mie resonance (MMR) mode at 238.4 Hz and a second MMRmode
at 1,145.4 Hz. Based on the thermal-viscous loss created by the
circular hole and four narrow slits of the unit under the excitation of
the MMRmode, the near-perfect low-frequency sound absorption is
observed at 239 Hz, and the maximum absorption coefficient and
fractional bandwidth can reach about 0.97 and 12.9%, respectively.
Additionally, we discuss the influences of structure parameters on the
sound absorption performance, and design two types of broadband
compound units by combining 4 units with different central circular
holes. The fractional bandwidth of the compound unit can be further
enhanced to 18.7%. The measured sound absorption spectra agree
well with the simulated ones.

DESIGN AND PERFORMANCES OF SOUND
ABSORBER

Design of Unit
As schematically shown in Figure 1A, we propose an acoustic
metasurface-based absorber consisting of periodic square

units with a length a and a thickness h. A central circular
hole with a diameter d is located at the upper surface of the
unit. Each unit is composed of an upper surface panel (with a
thickness t3) and a multiple-cavity structure (with a thickness
t4) on the bottom (Figure 1B). As shown in Figure 1C, the
multiple-cavity structure consists of a central square cavity
(with a length b) surrounded by four interconnected identical
cavities which are divided by four narrow slits (with a width
t1), showing a high structure symmetry. The distance between
the slits and the outer frame is t2, and the frames (with a
thickness t) are made of epoxy resin based on 3D-printing
technology. Here, the COMSOL Multiphysics software is used
to numerically simulate sound absorption characteristics, and
the structure parameters are selected as a � 100 mm, b �
42 mm, d � 5 mm, t � t1 � 2 mm, t2 � 10 mm, t3 � 1 mm, and
t4 � 15 mm. In our work, the sound absorption is created by
the thermoviscous loss of the unit structure, and we use the
module of Thermoviscous Acoustic-Solid Interaction inside
the unit, and the module of Acoustic Pressure outside the unit
due to the huge computation load. In the simulations, the
thermoviscous acoustic boundary is used for all the surfaces
inside the unit (include the inner surface of the hole), and the
acoustic-thermoviscous acoustic boundary is adopted for the
interface between the hole and the external space. The
parameters of epoxy resin are the density ρe � 1,180 kg/m3,
the longitudinal wave velocity cl � 2,720 m/s, and the
transversal wave velocity ct � 1,460 m/s, and those of air are
calculated as ρa � p0M/RT and ca �

�������
cRT/M

√
, in which the

FIGURE 1 | (A) Structure of acoustic metasurface-based absorber
composed of periodic square units. (B) 3D structure of the unit constructed by
an upper surface panel with a central circular hole and a multiple-cavity
structure on the bottom. (C) 2D structure of the multiple-cavity structure.
(D) Top view of paragraph of the unit.
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ratio of the molar heat capacities c, the molar massM, and the
temperature of air are 1.4, 28.97 × 10–3 kg/mol, and 293 K,
respectively, the molar gas constant R � 8.31 J/(mol/K), and
p0 � 101.325 kPa. The paragraph of the unit is shown in
Figure 1D.

Characteristics of Two Types of MMR
Modes
Figure 2 shows the simulated pressure amplitude and phase
eigenfunctions of the proposed unit. We can see that two types
of eigenmodes present typical characteristics of the MMR,
which are denoted as the monopole and second monopole.
Additionally, due to high symmetry of the multiple-cavity
structure, the Mie resonance of the dipole and quadrupole can
also be observed (see Supplementary Material), showing rich
Mie resonant modes of the unit. As shown in Figure 2A, for
the MMR mode at 238.4 Hz, the sound energy is mainly
concentrated into the surrounding four cavities, and the
whole structure exhibits a collective in-phase characteristic
(Figure 2B). But for the second MMR mode at 1,145.4 Hz, the
sound energy is mainly in the central square cavity
(Figure 2C), and an out-of-phase feature (Figure 2D) is
observed between the internal and external cavities. Here,
to further demonstrate the mechanism of both MMR
modes, we simulate the pressure amplitude and phase
eigenfunctions of the units with different number of
surrounding cavities (see Supplementary Material). The
results show that the eigenfrequencies of both MMR modes
change greatly with different number of cavities, but their
mode characteristics are almost the same.

Low-Frequency Sound Absorption Created
by the MMR Mode
Next, we experimentally measure the absorption performance
of low-frequency sound created by the MMR mode in
Figure 2A. As shown in Figure 3A, in the experiment, the

sample (shown in Figure 1D) is placed at the right side in the
straight waveguide which is made of acrylic plates to satisfy
sound hard boundary condition. The experimental set-up is
presented in the Supplementary Material. Figure 3B shows
the measured and simulated sound absorption spectra created
by the unit. We find that there exists a sound absorption peak
at 239 Hz for both results, and the absorption coefficient can
reach about 0.97, showing a near-perfect low-frequency sound
absorption. Moreover, the bandwidth of sound absorption
(black shaded region) is about 31 Hz, and its corresponding
fractional bandwidth (the ratio of the bandwidth to the center
frequency) can reach about 12.9%. The measured and
simulated sound absorption spectra match well with each
other. Beyond that, the thickness h of the unit is only
16 mm, which is equal to λ/90, exhibiting a deep
subwavelength thickness of the proposed low-frequency
sound absorber.

To explain the existence of the sound absorption peak, we
introduce the relative acoustic impedance of the unit defined
as Zr � 〈p〉

Za〈v⊥〉(Li et al., 2016), where Za � ρaca is the acoustic
impedance of air, p and v⊥are the total acoustic pressure and
the sound velocity normal to the surface, respectively, and 〈.〉
represents averaging over the surface of the unit. The
simulated real and imaginary parts of Zr are shown in
Figure 3C. We observe that, at the frequency of
absorption peak, the real and imaginary parts of Zr are
about 1.35 and 0, respectively, indicating better impedance
match between the proposed structure and air at 239 Hz.
Therefore, the near-perfect sound absorption can be created
by the unit structure.

Furthermore, we find that the frequency of sound
absorption peak is almost the same as that of the MMR
mode, and thus the sound absorption may arise from the
MMR mode of the unit. To make a further insight into it, we
simulate the distributions of the pressure amplitude and total
thermal-viscous power loss density in the unit created by a
normal incidence of sound at 239 Hz, which are shown in
Figures 3D,E, respectively. Note that the excited pressure
amplitude distribution of the unit (Figure 3D) agrees well
with that of the MMR mode (Figure 2A), indicating that the
low-frequency sound absorption is created by the MMR mode
of the unit. Moreover, as shown in Figure 3E, there exist an
obvious thermal-viscous sound loss around the central
circular hole and four narrow slits, especially the central
circular hole. Therefore, we deduce that the sound
absorption of the unit arises from the thermoviscous loss
around the central circular hole and four narrow slits under
the excitation of the MMR mode. Beyond that, we also
simulate the sound absorption spectra created by the MMR
mode of the unit with different incident angles (θ), and the
absorption spectra are relatively stable below θ � 60°. (see
Supplementary Material).

Besides the sound absorption created by the MMR mode,
we simulate the performances of sound absorption created by
the second MMR mode of the unit. The results show that the
sound absorption can also be created by the second MMR
mode, but its absorption performance is reduced greatly due

FIGURE 2 | Simulated pressure amplitude and phase eigenfunctions of
Mie resonance modes of the unit for (A), (B) monopole at 238.4 Hz and (C),
(D) second monopole at 1,145.4 Hz.
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to the sound reflection created by the impedance mismatch
(see Supplementary Material). Furthermore, we simulate the
sound absorption spectra of the units with different number
of surrounding cavities (see Supplementary Material), in
which the results further demonstrates that the sound
absorption of the unit arises from the excitation of both
MMR modes.

BANDWIDTH OPTIMIZATION OF SOUND
ABSORBER

Finally, we discuss the influences of the parameters b and d on
the sound absorption and further optimize the working
bandwidth of the sound absorber. Figures 4A,B show the
simulated sound absorption spectra created by the MMRmode

as a function of the parameters b and d, respectively, in which
other parameters remain unchanged. It is found that, with the
decrease of both parameters, the working bandwidth moves to
the low-frequency region with a high sound absorption
coefficient. The corresponding measured results for the
parameters b and d are displayed in Figures 4C,D, which
agree well with the simulation ones. Thus, we can reduce the
working frequency of the sound absorption by simply
decreasing the values of b and d.

To further optimize the working bandwidth, we design two
types of compound units A and B consisting of 4 units (2 × 2
array) with different values of d (d � 8, 10, and 12 mm for the
units I, II and III), and experimentally measure sound
absorption of both compound units. The experiment set-up
is shown in Figure 5A, in which the width and height of the
waveguide double those in Figure 3A, and the other

FIGURE 3 | (A) Experiment set-up of sound absorption. (B) Simulated (blue solid line) and measured (red open circles) sound absorption spectra of the unit. (C)
Real and imaginary parts of relative acoustic impedance Zr of the unit. Distributions of (D) the pressure amplitude and (E) total thermal viscous power loss density in the
unit excited by a normal incident wave (blue solid arrows) at 239 Hz.
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parameters are the same. As shown in Figure 5B, the
compound unit A consists of two types of units (I and II),
and the arrangement of 4 units is shown in the sample
photograph (shown in bottom inset). Note that, by
combining the units I and II, the fractional bandwidth of
the compound unit A can reach about 16.4%, in which the
working frequency range (266–313.5 Hz, black shaded region)
can cover those of a single unit I or II. Compared with the
result in Figure 3B, the maximum sound absorption
coefficient decreases slightly, but the absorption peak
becomes wide and flat due to their coupling effect of both
types of units. Additionally, as shown in Figure 5C, the
compound unit B is composed of three types of units (I, II
and III). By introducing the unit III, the working band
(266–321 Hz, black shaded region) of the compound unit B is
further improved, and its fractional bandwidth can be enhanced
to 18.7%, showing a broadband feature of the sound absorption.
The measured sound absorption spectra for both compound
units agree with the simulations. Therefore, by combining the
units with different values of d, we can further enhance the
working bandwidth of the proposed sound absorber.
Furthermore, we simulate the sound absorption spectra of
another two types of compound units C and D with different
configurations (see Supplementary Material). Compared with
the absorption performance of the compound units A and B, we
demonstrate that the absorption performance of the compound
unit is closely related to its configuration.

CONCLUSION

In conclusions, we have demonstrated ametasurface-based unit with
near-perfect low-frequency sound absorption based on artificial Mie
resonances. The results show that a series of artificial Mie resonance
modes can be observed in the unit, including the MMR mode at
238.4 Hz and the second MMR mode at 1,145.4 Hz. Based on the
excitedMMRmode and the thermal-viscous loss around the circular
hole and four narrow slits of the unit, the near-perfect low-frequency
sound absorption is achieved at 239 Hz, the maximum absorption
coefficient and fractional bandwidth of the proposed unit can reach
0.97 and 12.9%. It is noted that the thickness of the unit is only about
λ/90, showing a deep subwavelength thickness of the proposed
metasurface-based sound absorber. In addition, we discuss the
influences of structure parameters b and d on the sound
absorption in detail, and find that the working bandwidth moves
to the low-frequency region with a high absorption coefficient by
decreasing both parameters. Finally, we improve the working
bandwidth of the sound absorption by combining 4 units with
different values of b, and the fractional bandwidth of the compound
unit B can be further enhanced to 18.7%. The measured and
simulated sound absorption spectra match well with each other.
The proposed multiple-cavity units with the near-perfect sound
absorption and broadband feature provide diverse routes to
design advanced sound absorption structures with great potential
applications in low-frequency noise control, architectural acoustics
and environmental protection.

FIGURE 4 | Simulated sound absorption spectra as a function of parameters (A) b and (B) d, and the corresponding measured sound absorption spectra for the
parameters (C) b and (D) d, in which the other parameters remain unchanged.
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