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Noble metal nanocrystals enclosed with curved surfaces are of great benefit for
applications in electrocatalysis since the atomic steps and kinks on these facets have
higher chemical activity. Herein, we report the fabrication of PdAg nanoshells with tunable
thickness in the range of 5–13 nm and a unique concave cubic morphology, as well as the
exploration of their applications for ethanol oxidation reaction (EOR) in alkaline media. The
success of current work relies on the conformal deposition of PdAg on concave Au
nanocubes, where the controlled reaction kinetics and proper chosen capping agent are
both crucial for the growth mode. When loaded on carbon black and working as
electrocatalysts, they exhibited superb electrochemical activity (e.g., 600.21mA mg−1

in mass activity and 19.57 A m−2 in specific activity), together with improved EOR kinetics
and long-term durability, as compared to Au@Pd nanoparticles and commercial Pd/C. The
current work offers a feasible strategy to produce PdAg bimetallic nanocrystals with
concave surface and validates their promising application as fuel cell catalysts, which could
be extended to morphology engineering of other noble-metal nanocrystals for a broad
range of applications.
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INTRODUCTION

Ethanol oxidation reaction is one of the important classes of cathodic reaction for fuel cells that
converts the chemical energy stored in liquid fuel to electricity(Mann et al., 2006; An and Zhao, 2011;
Hong et al., 2019; Kim et al., 2019; Kim et al., 2020; Kabiraz et al., 2021). Compared to the commercial
device directly using gaseous hydrogen as the hydrogen sources, ethanol can be of higher energy
density and bio-renewability, as well as the advantage with respect to storage and transportation
under ambient condition (Lamy et al., 2001; Shen et al., 2012). Previous studies focusing on the
detailed mechanistic and kinetic understanding of the processes have suggested that the
dehydrogenation of the ethanol occurs quickly and the rate-determining step is the oxidative
removal of the radicals by the hydroxide ions (Wang et al., 2004; Liang et al., 2009; Ishimoto et al., 2013).
To accelerate the kinetics of such process, typical commercial electrocatalysts for alkaline media are
fabricated using carbon black supported tiny Pd nanoparticles(Antolini, 2007). Moreover, the alloying of
Pdwith othermetals and/ormodificationwith non-metal elements could be a feasible strategy to improve
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the electrochemical performance since it can tune the surface affinity
towards key intermediates to achieve the maxima electrocatalytic
activity along the volcano-type plot as a function of the heat of
adsorption and also enhanced anti-poisoning ability of the
electrocatalyst (Zhang et al., 2016b). To this end, the
electrochemical activity of many metal combinations, such as
PdAu (Feng et al., 2013; Hong et al., 2014; Yang et al., 2017), PdPt
(Dutta et al., 2016), PdAg (Lu and Chen, 2012; Peng et al., 2015; Bin
et al., 2016; Fang et al., 2018; Lv et al., 2019; Yang et al., 2020a; You
et al., 2020; Cui et al., 2021; Nguyen et al., 2021), PdCu (Wang et al.,
2012;Hu et al., 2014; Liu et al., 2015; Jiang et al., 2016; Yang et al., 2019;
Jana et al., 2021), PdPtCu (Wang et al., 2020), and phosphorous-
doped Pd-based nanocrystals (Liu et al., 2019; Yang et al., 2020b; Lv
et al., 2020; Yu et al., 2020), have been extensivelymeasured, where the
underlying mechanisms are investigated using theoretical deduction
(i.e., d-band center theory) and in situ techniques (i.e., in situ FTIR).

The incorporation of more than one types of noble metal atom
in one nanoparticle allows the formation of a more complex
structure, which would greatly enhance their properties,
often making them superior to their monometallic
counterparts (Zhang et al., 2016a; Gilroy et al., 2016).
Such advance is of great value and importance in rational
design of catalyst since the binding energy of catalyst surface
and thus the catalytic performances are highly sensitive to the
spatial arrangement and atomic ordering of different types of
metallic atoms (Wang et al., 2016; Zhao et al., 2017; Fu et al.,
2020). In the context of PdAg, the two metals can form a
continuous solid solution, which makes their composition
manipulation versatile (Li et al., 2011). Additionally, the
underpotential-deposition (UPD) effect of Ag ions during the
crystal growth can be potentially used to facilitate the in situ
generation of Ag monolayer over the nanoparticle, serving as a
“metallic” capping agent to specifically bind to and stabilize the
crystal plane with high indexes (Langille et al., 2012). In this case,
the resulting product would tend to exhibit a curved surface that
normally unfavored by thermodynamics.

Thanks to research efforts from many groups, it is now
possible to fabricate PdAg-based nanocrystals with a set of
morphologies and controlled elemental composition. For
example, mesoporous nanocrystals can be prepared using soft
template methods (Stein et al., 2008; Li et al., 2013; Lahiri and
Endres, 2017; Lahiri et al., 2020). Cheng and coworkers reported
the fabrication of 2D PdAg alloy nanodendrites as a high-
performance electrocatalyst for EOR, which are obtained via
the co-reduction of Pd and Ag precursors in aqueous solution
with the presence of octadecyltrimethylammonium chloride as
the structural directing agent (Huang et al., 2018). Lee and
coworkers reported the fabrication of porous Pd-Ag bimetallic
dendrites by conducting galvanic replacement reaction between
Ag dendrites and Pd(NO3)2 and studied the composition-
dependent electrochemical activity towards EOR (Jo et al.,
2016). Tsuji and coworkers reported that noble Au@PdAg and
Au@PdAg@Ag core–shell nanorods (NRs) having PdAg alloy
shells in the form of cuboids and dumbbell were synthesized
using Au@Pd NRs as seeds (Tsuji et al., 2015). Despite of these
successful demonstrations, the fabrication of PdAg nanocrystals
with concave surface has achieved limited success (Wang et al.,
2021). It is well-accepted that the concave surface usually involves
the presence of multiple high-index facets, and thus atomic steps
and kinks with low coordination numbers in high densities would
be offered and working as active sites for the improvement of
electrochemical activity (Tian et al., 2007; Xia et al., 2011).

Herein, we report a facile synthesis of PdAg nanoshells enclosed
with concave surface via seeded growth. Starting with concave cubic
Au nanocrystals as the seed, the sequential addition and reduction of
Pd and Ag precursor allows the conformal growth to form concave
PdAg shell with limited thickness. The value of current work mainly
relies on the three following aspects: 1) for the first time, Au@PdAg
nano-alloys with a concave cubic morphology are prepared in high
purity and used as electrocatalysts for EOR; 2) The shell thickness of
PdAg can be readily tuned in the range of 5.8–12.5 nm by simply
changing the amount of Pd precursor used in seeded growth,
without causing significant loss in concave surface feature; 3) The
carbon-supported Au@PdAg core-shell concave nanocubes
exhibited superb electrochemical activity (∼10 fold in specific
activity higher than that of commercial Pd/C), improved EOR
kinetics, and long-term durability, revealing the contribution of
curved surface and demonstrating their advantage in both
structure and elemental composition.

EXPERIMENTAL DETAILS

Materials
Gold(III) chloride trihydrate (HAuCl4 3H2O, 99.9%), sodium
tetrachloropalladate(II) (Na2PdCl4, 98%), silver nitrate (AgNO3,
99%), cetyltrimethylammonium chloride (CTAC, 97%),
cetyltrimethylammonium bromide (CTAB, 99%) and ascorbic
acid (AA, 99.0%) were all obtained from Aladdin Chemical
(Shanghai, China) and used as received.
Docoscyltrimethylammonium chloride (DTAC, 85%) was
obtained from Degussa and used as received. Commercial Pd/C
(10 wt.% Pd loading, matrix activated carbon support) was obtained
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from Sigma-Aldrich and used as received. Conductive carbon black
was obtained from Cabot and used as received. In all experiments,
we used deionized water with a resistivity of 18.2MΩ cm, which was
prepared using an ultrapure water system (Ulupure, China).

Standard procedure for the Synthesis of
Au@PdAg Core-shell Nanocrystals With
concave Surface
Concave cubic Au seeds were generated according to the
standard procedure as described in our previous study
(Zhang et al., 2020). Typically, one batch of Au concave
nanocubes were purified and re-dispersed in 1 ml of water
for further use (mass concentration: ∼0.15 mgAu/mL). For the
synthesis of Au@PdAg concave nanocubes (Procedure P1),
aqueous solutions of DTAC (20 mM, 3 ml), as-prepared
concave Au cubic seeds (0.5 ml), Na2PdCl4 (20 mM, 5 μL),
AA (10 mM, 0.5 ml) were sequentially mixed in a 20-ml glass
vial and aged for 10 min at room temperature, followed by the

injection of AgNO3 (2 mM, 0.5 ml) solution. The reaction
proceeded for 2 h in a water bath set at 60°C and the products
were collected via centrifugation and washed with water once
prior to further use. See Table 1 for synthetic details for Au@
PdAg core-shell concave nanocubes with different PdAg shell
thickness (Procedure P1∼P5). For Au@Pd nanoparticles used
in electrocatalysis, they were produced via the procedure P5,
except that no AgNO3 was added.

Instrumentations and Characterizations
Transmission electron microscopy (TEM), high-resolution
TEM (HRTEM), selected-area electron diffraction (SAED),
high angle annular dark field-scanning transmission electron
microscopy (HAADF-STEM) and EDX (energy dispersive
X-ray)-STEM mapping images were obtained using a Talos
F200X (FEI, USA) microscope operated at 200 kV
accelerating voltage. Scanning electron microscopy (SEM)
images were obtained using a Zeiss Ultra60 microscope
operated at 12 kV. The crystalline structures were analyzed

TABLE 1 | Size information and synthetic parameters for Au@PdAg concave nanocubes with controlled thickness.

No Shell thickness DTAC (20 mM) AA (10 mM) Na2PdCl4 (20 mM) AgNO3 (2 mM) Au seeds

t (nm) σ (nm)

P1 5.8 1.9 3 ml 0.5 ml 5 ml 0.5 µL 0.5 ml
P2 7.8 3.0 3 ml 0.5 ml 10 ml 0.5 µL 0.5 ml
P3 8.8 3.4 3 ml 0.5 ml 20 ml 0.5 µL 0.5 ml
P4 9.9 4.6 3 ml 0.5 ml 50 ml 0.5 µL 0.5 ml
P5 12.5 4.9 3 ml 0.5 ml 100 ml 0.5 µL 0.5 ml

FIGURE 1 | (A) Schematic illustration showing the construction of Au@PdAg core-shell concave nanocubes by conducting sequential conformal growth of Pd and
Ag over concave Au cubic seeds. (B–D) TEM images: (B) concave cubic Au seeds; (C) Pd-coated concave Au nanocubes; (D) Au@PdAg core-shell concave
nanocubes.
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with a MiniFlex600 X-ray diffractometer (XRD, Rigaku). X-ray
photoelectron spectroscopy (XPS) measurements were
performed using a Thermo Fisher Scientific KALPHA XPS
with monochromatic Al Kα radiation (h] � 1,486.6 eV). All
extinction spectra were recorded using a T9 dual-beam UV-vis-
NIR spectrometer (PERSEE, China). Inductively coupled
plasma analysis was conducted on an ICAP-5000 inductively
coupled plasma optical emission spectrometer (Focused
Photonics Instrument, China). EOR measurement was
carried out in a standard three-electrode system controlled
by a CHI-760E potentiostat (CHInstruments, China). See
supporting information for operational details.

RESULTS AND DISCUSSION

Conformal Deposition of PdAg Over
Concave Au Nanocubes
Typical synthesis started with the preparation of concave Au
nanocubes in high purity according to the method described
in our previous study (Zhang et al., 2020), followed by
purification and the use as seeding material. The growth

process involved the use of DTAC and AA as the capping
agent and reductant, respectively, as well as the sequential
addition of Pd and Ag precursor, respectively (Figure 1A).
TEM image of the Au seeds showed that they had the concave
cubic shape in high uniformity, together with an average edge
length of 37 nm (Figure 1B). The Au@Pd and Au@PdAg
products obtained via the sequential addition, respectively,
maintained the concave cubic morphology as seeds,
indicating the successful conformal growth occurred
(Figures 1C,D). It is worth noting that the absence of Pd
precursor would lead to the formation of Au@Ag core-shell
nanocubes with the truncations on the corners
(Supplementary Figure S1A). The position of concave
cubic Au seeds was not located in the right center of the
resulting nanocube, which should be attributed to the fact
that heterogenous nucleation and growth of Ag initially
occurred to one or partial side faces of the concave cubic
Au seeds (Zhu et al., 2012). Corresponding UV-vis extinction
spectrum showed that the Au@Ag core-shell nanocubes
exhibited the major peak located at 501 nm, together with
a shoulder peak located at around 400 nm (Supplementary
Figure S1B).

FIGURE 2 |Morphology and structural characterizations of Au@PdAg core-shell concave nanocubes: (A) TEM; (B)HRTEM; (C, D) SAED; (E)HAADF-STEM; (F–I)
EDX-STEM elemental mapping: (F) overlap of Au, Pd, and Ag, (G) Ag, (H) Au, (I) Pd; (J–L) XPS spectra: (J) Au 4f; (K) Ag 3d; (L) Pd 3d. The insets in (C, D) shows the
corresponding particle, with a scale bar of 10 nm.
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Morphology and Structure
Characterizations
To further analyze their morphology and structure, a set of
characterizations, including HRTEM, SAED, HAADF-STEM,
EDX-STEM, and XPS, were conducted. As shown in
Figure 2A, the TEM image of an individual particle clearly
shows the concave feature on the particle surface. Curved
projections could be observed at several different facets,
projection angle was estimated to between 142o, 151o, 153o,
and 158o, respectively. Considering these projection angles are
the angles between the projection line of exposed facets, several
typical high-index facets, such as {730}, {830}, {920}, and {720}
facets, could be calculated and indexed (Yu et al., 2010; Zhang
et al., 2015; Kuo et al., 2018; Luo et al., 2019). The HRTEM image
(Figure 2B) shows lattice fringes at the corner region, where a
clear boundary could be observed to differentiate the Au and
PdAg part. The lattice spacing of 0.23 and 0.20 nm, can be

ascribed to the (111) crystal plane of Au and PdAg,
respectively. SAED patterns taken from two typical individual
particles showed only one set of diffraction spots, respectively,
suggesting their single-crystal nature (Figures 2C,D). HAADF-
STEM (Figure 2E) and EDX-STEM (Figures 2F–I) images, as
well as the line-scan profile (Supplementary Figure S2)
confirmed the core-shell structure and the shell thickness was
measured to 5.8 ± 1.9 nm. Despite the sequential addition of Pd
and Ag precursor, both Pd and Ag was homogeneously
distributed over the shell part, indicating the formation of
alloy phase. Instead of showing a multi-layered structure (i.e.,
Au@Pd@Ag), the ease alloying of Pd and Ag under ambient
condition could allow the shell to exhibit the homogenous
distribution of both metals. The molar ratio of Au:Pd:Ag was
determined by EDS as 81:13:6 (Supplementary Figure S3). XPS
spectra showed typical doublets for zero-valent Au, Ag and Pd
(Figures 2J–L). Taken together, we can conclude that the as-
obtained products had the Au@PdAg core-shell structure and

FIGURE 3 | Morphology and characterizations of Au@PdAg core-shell concave nanocubes with different thickness of PdAg shell: (A–E) 7.8 nm; (F–J) 8.8 nm;
(K–O) 9.9 nm; (P–T) 12.5 nm, respectively. The images in (A, F, K, andP)were HAADF-STEM and the rest were EDX-STEM: (B, G, L, andQ) overlap of Au, Pd, and Ag,
(C, H, M, and R) Au, (D, I, N, and S) Pd, (E, J, O, and T) Ag.
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concave cubic morphology, as well as the single-crystal nature
and curved surface.

Control Over Shell Thickness
As a major advantage of seeded growth, the PdAg shell
thickness could be readily controlled by simply varying
the amount of Pd precursor while maintaining other
parameters unchanged. As shown in Figure 3, the
HAADF-STEM and EDX-STEM images clearly showed
that PdAg shell noticeably became thicker as more Pd
precursor was added, while the overall particle kept the
concave cubic morphology despite the change in PdAg
shell thickness. In particular, the PdAg shell thickness was
measured to be 7.8 ± 3.0, 8.8 ± 3.4, 9.9 ± 4.6, and 12.5 ±
4.9 nm, respectively, when Pd precursor with the amount
of 0.2, 0.4, 1, and 2 μmol, respectively, was involved in the
growth solution. Line-scan profiles of these products
confirmed the core-shell structure and the concave cubic
shape, where the Au signal was relatively stronger in the
center of the particle and the signal of Pd and Ag mainly
emerged at corner/edge regions (Supplementary Figures
S4–S7). The molar ratio of Au:Pd:Ag for these products were
determined using EDS, which were 75:16:9, 74:18:8, 55:30:15, and
40:44:16, respectively (Supplementary Figures S8–S11). It is
worth noting that the amount of Ag precursor was not varied
for all these procedures but the molar ratio of Pd to Ag was
roughly maintained at 2:1 in all these products (Supplementary
Figure S12). It suggested that not all the Ag precursor was
reduced and grew on the Au seeds under current synthetic
condition and the presence of more Pd precursor would
facilitate the seed growth of Ag.

To confirm the presence of PdAg alloy phase, we also took
these products with different shell thickness for XRD analyses. As
shown in Figure 4, the products with the PdAg shell thickness of
5.8 ± 1.9, 7.8 ± 3.0, 8.8 ± 3.4 nm, mainly showed the diffraction
peaks of face-centered cubic (fcc)-Au phase. The missing of PdAg
diffraction peaks for these samples should be attributed to the
limited amount of PdAg. As the PdAg shell thickness increased to
9.9 ± 4.6 nm, several diffraction peaks that were located at 39.5o,
46.1o, 67.6o, and 81.4o emerged, right between corresponding
(111), (200), (220), and (311) diffraction peaks of Pd and Ag,
suggested the formation of PdAg alloy phase. The diffraction
peaks of PdAg turned dominant as the shell thickness reached
12.5 ± 4.9 nm, where the diffraction peak intensity of Au became
dampened.

Supplementary Figure S13 shows the UV-vis extinction
spectra of Au@PdAg concave nanocubes with different shell
thickness. For the product with PdAg shell thickness of
5.8 nm, it showed major peak located at 396 nm and a
shoulder peak at 508 nm. As the shell became thicker (i.e., 7.8
and 8.8 nm), the major peak shifted to between 500 and 600 nm.
Further increase in PdAg shell (i.e., 9.9 and 12.5 nm) caused a
broad absorption centered at 616 nm. These results suggested that
the plasmonic properties of Au@PdAg core-shell nanocrystals
can be tuned by varying the shell thickness and the major
absorbance peak can still be observed in the UV-vis extinction
spectrum if the thickness was controlled to sub-10 nm range.

Effect of Capping Effect and Reaction
Kinetics on Product Morphology
To the elucidate the formation mechanism of PdAg shell with a
unique morphology of concave cube, control experiments were
conducted to investigated the effect of capping agent and reaction
kinetics on product morphology. As shown in Figures 5A,B, when
the capping agent was replaced by CTAC, the resultant products still
exhibited the concave feature but the cubic shape largely lost. It
showed that alkyl chain length of quateryammonium surfactant
played amore crucial role in determining the shape of final products.
Contrarily, the use of CTAB led to the formation of products
anchored with lots of tiny particles on the surface. Such variation
could be attributed to the stronger affinity of the Br− ions to the Au
seeds surface (Zhu et al., 2013), which made it difficult for PdAg
atoms to deposit via the layer-by-layer mode (Frank-van de Merwe
mode). Considering the lattice mismatch between Au and PdAg, the
PdAg atoms may tend to form tiny particles on the seed surface to
minimize the interfacial energy (Vollmer-Weber mode) (Peng and
Hong, 2009).

In addition to the capping agent, the effect of reaction kinetics
was also investigated by increasing the amount of reductant in the
growth solution. As shown in Figures 5C,D, as the amount of AA
increased from 5 to 20 μmol and 100 μmol, respectively, the quantity
of self-nucleated particles increased in the final products. It could be
attributed to the competition between heterogenous and
homogeneous nucleation and growth. It is more likely for
heterogenous nucleation and growth to occur when the
concentration of metallic atoms was controlled to a low level.
This is because for homogeneous nucleation, the concentration of

FIGURE 4 | XRD patterns of Au@PdAg core-shell concave nanocubes
with different thickness of PdAg shell. Data of Au@Ag core-shell nanocubes
and fcc-Pd/Ag/Au in JCPDS databased are provided for comparison.
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the Pd/Ag atoms should go beyond the supersaturation point (e.g.,
critical nucleation concentration) to cross the energy barrier (Hsia
et al., 2018; Gamler et al., 2020; Liu and Zhang, 2020). Typically, the
use of excessive reductant can cause the significant increase in the
concentration of newly-formed zero-valent atoms in the growth
solution (Zhang et al., 2018). To this end, the generation of Pd/Ag
atoms in large quantity within a short time period would make the
nucleation and growth dominated by the homogenous route
considering the lattice mismatch existed. Without the regulation
of seeds, the resulting products would take random shapes and
crystallinities. In short, the use of adequate reductant and Br−-free
quateryammonium surfactant contributed to the conformal growth
of PdAg over concave cubic Au seeds in the current study.

Electrochemical Measurement
Due to the combined advantage in both structure and elemental
composition, the current Au@PdAg core-shell concave
nanocubes are expected to find important use as
electrocatalysts for EOR in alkaline media. In particular, the

product with the 12.5-nm shell thickness was chosen for the
dominant phase of PdAg. They were collected via centrifugation
and loaded on carbon black to construct Au@PdAg/C
electrocatalysts. Prior to EOR measurements, the catalysts
were washed with water once to remove the residual
surfactant for surface purification. For comparison, carbon-
supported Au@Pd core-shell nanoparticles and commercial
Pd/C electrocatalysts were employed as the reference materials.

As shown in Supplementary Figure S14, CV curves collected
in 1 M KOH exhibited a pronounced cathode peak between −0.5
and −0.1 V during the backward sweep corresponding to the
reduction of surface PdO to metallic Pd. Based on the integrated
charge associated with this cathodic peak, we estimated that the
electrochemically active surface area (ECSA) of Au@PdAg/C,
Au@Pd/C, and Pd/C was 28.50, 30.67, and 161.7 m2 gPd

−1,
respectively. Compared to the commercial Pd/C, the relatively
small ECSA values of Au@PdAg/C and Au@Pd/C electrocatalysts
could be attributed to the large overall particle size. With the
presence of ethanol, all CV curves were drastically changed to

FIGURE 5 | Effect of (A, B) capping effect and (C, D) reaction kinetics over the product morphology and structure. TEM images of products obtained via the
synthetic procedure P5, except that (A, B) the capping agent DTAC was replaced by (A) CTAC and (B) CTAB; (C, D) the amount of AA was varied from 5 μmol to (C)
20 μmol and (D) 100 μmol, respectively.
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have a strong peak in the forward scan due to EOR
electrocatalysis (Figure 6A). The mass activity and specific
activity of Au@PdAg/C was calculated to be 600.21 mA
mgPd

−1 and 19.57 A m−2, which were both larger than that of
Au@Pd/C (317.49 mA mgPd

−1 and 11.32 A m−2), and Pd/C
(367.67 mA mgPd

−1 and 2.27 A m−2). Furthermore, the onset
potential (Es) for the EOR over Au@PdAg/C was −768 mV,
which were more negative than that of the Au@Pd/C
(−734 mV) and Pd/C (−678 mV) electrocatalyst. It indicated
that the electroxidation of ethanol can occur more easily on
the Au@PdAg electrocatalyst.

The electrocatalytic kinetics of EOR were also compared to
further explore the oxidation process on the surface of the
different catalysts. As shown in Figures 6A,B linear
relationship between the square root of the scan rate (v1/2)

(30–200 mV s−1) and the forward peak current density could
be observed in all three nanomaterials (Supplementary
Figure S15), indicating a diffusion-controlled process for
the EOR (Sun et al., 2012). In addition, the Au@PdAg/C
exhibited the enhanced electrocatalytic kinetics as can be
concluded from the larger slope value when compared to the
Au@Pd/C and Pd/C. All these values imply that the current
Au@PdAg/C electrocatalysts have a higher intrinsic
electrocatalytic activity for the EOR as compared to Au@
Pd/C and Pd/C. In addition, the long-term durability was
evaluated via three successive cycles of current-time (i-t)
chronoamperometry measurements at a potential of −0.2 V
vs. SCE for 3,000 s. The Au@PdAg/C electrocatalysts
manifested a larger residual activity for each cycle as
compared to the other two electrocatalysts (Figure 6C).

FIGURE 6 | Electrochemical measurements of carbon-supported Au@PdAg concave nanocubes (shell thickness: 12.5 nm, molar ratio: Au:Pd:Ag � 40:44:16)
electrocatalysts for EOR: (A)CV curves in 1 M ethanol containing 1 MKOH; (B) EOR kinetics based on specific activity and scan rates; (C)Chronoamperometric stability
curves measured at −0.2 V vs. SCE. Data of carbon-supported Au@Pd nanoparticles and commercial Pd/C was provided as reference.

TABLE 2 | Summary of EOR performance of electrocatalysts in the present study.

Electrocatalyst Es
a Ep

a ECSA (m2 gPd
−1) jr/jf MA (mA mgPd

−1) SA (A m−2) j(t = 3000s) (A m−2)

1st 2nd 3rd

Au@Pd −734 mV −135 mV 28.50 1.31 317.49 11.32 5.66 4.28 2.25
Au@PdAg −768 mV −110 mV 30.67 1.02 600.21 19.68 4.62 3.34 2.84
Pd/C −678 mV −1 mV 161.7 0.72 367.67 2.27 0.64 0.57 0.54

aEs, onset potential vs. SCE; Ep, peak potential vs. SCE; MA, mass activity; SA, specific activity.
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All the as-mentioned data was summarized in Table 2 for
comparison.

The morphology and structure of Au@PdAg/C
electrocatalyst after the CA measurements were
characterized using electron microscope. As shown in
Supplementary Figure S16, the electrocatalyst particles were
still isolated from each other and no significant agglomeration
was noticed (Supplementary Figure S16A). The morphology of
the PdAg shell over the Au seed varied with some branching
feature. Some of the PdAg shells became disengaged from the Au
seed surface but their curved surface maintained (Supplementary
Figure S16B). By conducting analysis using HAADF-STEM
(Supplementary Figure S16C) and EDX-STEM
(Supplementary Figure S16D), despite of the reservation of
core-shell structure, the alloying between Au and PdAg was
observed. The change in morphology and structure of Au@
PdAg/C electrocatalysts should be caused by the long-term
cycling test, which also explained the decline in ending-point
specific activity for each test.

To evaluate the reusability of catalysts, we also conducted
three consecutive CA measurements of EOR using Au@PdAg/C
electrocatalyst, where the fresh aqueous solution of 1MKOH+1M
ethanol was used as the electrolyte for each cycle. As shown in S
upplementary Figure S17, the specific activity maintained at 3.1,
2.5, and 2.1 A m−2 for the consecutive three cycles, respectively,
demonstrating the acceptable reusability of the current product
for EOR electrocatalysis. In short, owing to the synergistic
structural (i.e., stepped facets on the surface) and
compositional advantages (i.e., containing both Pd and Ag),
the current Au@PdAg nanocrystals exhibited remarkable
specific activity, long-term stability, and enhanced
electrocatalytic kinetics for EOR in alkaline media.

Compared to commercial Pd/C electrocatalyst, the principal
drawbacks of the current products could be mainly attributed
to the relatively higher jr/jf value (e.g., 0.72 for Pd/C and 1.02
for Au@PdAg/C, Table 2), suggesting their weaker ability to
poisoning-resistance of the electrodes for ethanol oxidation. It
should be caused by its elemental composition, where the
doping of Pd with Ag changed the electronic state and the
surface affinity towards reaction intermediates. This
disadvantage has also been noted in previous studies on
PdAg-based EOR electrocatalysts (Li et al., 2014; Fu et al.,
2015).

CONCLUSION

In summary, we have successfully prepared Au@PdAg core-
shell nanocrystals in the form of concave nanocube by
conducting sequential conformal deposition of Pd and Ag
over concave cubic Au seeds via seeded growth. The
thickness of PdAg shell could be tuned in the range of
5–13 nm by simply varying the metallic precursor in growth
solution without causing noticeable morphology change to the
whole particle. The carbon-supported Au@PdAg core-shell
concave nanocubes exhibited superb electrochemical activity
(e.g., 600.21 mA mgPd

−1 in mass activity and 19.57 A m−2 in

specific activity), together with improved EOR kinetics and
long-term durability, as compared to carbon-supported Au@
Pd nanoparticles and commercial Pd/C. The current work
offers a feasible strategy to producing bimetallic nanocrystals
with concave surface, which could be extended to morphology
engineering of other noble-metal nanocrystals for a broad
range of applications. It also contributes to the rational
design of advanced EOR electrocatalysts with controlled
shapes and the current products could find the important
practical use for fuel cells and other related energy
conversion devices.
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