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In order to get insight information of the band structure of acoustic metamaterials (AMMs)
in condensed matter, periodic lattice structures are analyzed using Bloch’s theorem.
Typical approaches of the band structure computation methods, topology optimization,
and tunable abilities cannot overcome the gap between the two-dimensional (2D) AMMs
theoretical and three-dimensional (3D) specimens’ experimental data yet. In this work, the
variation in the results of the band structure obtained from the 2D mathematical model
computed with respect to the 3D experimental models, and related cause of the variation is
explored. The band structures and mode shapes of the 2D AMMs, quasi-2D models, and
3D specimen models are followed to reveal the boundary conditions and source for the
observed differences in band structures. The cause for the discrepancies is verified by
using the finite element method (FEM) with corresponding boundary conditions. It is found
that outcomes from computational data of the 2D AMMsmodel are diverted significantly by
means of bandgap, band structure, and stress distribution in counterparts of the 3D
specimen model. This approach can provide assistance for computing the band structure
of 2D AMMs for practical applications.
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INTRODUCTION

Acoustic metamaterials (AMMs) are basically composite materials with a periodic structure
composed of two or more elastic media (Kushwaha et al., 1993). Lately, AMMs have been
attracted attention due to the distinctive characteristic of acoustic or elastic waves not being
propagated at the specific frequency. Different from single-negative AMMs are mainly used for
vibration isolation (An et al., 2020; Chen et al., 2021; Huang et al., 2021), AMMs with double-
negative characteristics can be used in unique device designing such as acoustic cloaking (Chen and
Chan, 2007; Munteanu and Chiroiu, 2011; Zheng et al., 2014), acoustic imaging (Deng et al., 2009;
Molerón and Daraio, 2015; Laureti et al., 2016), waveguiding (Casadei et al., 2012; Cao et al., 2018;
Ghasemi Baboly et al., 2018; Cao et al., 2019; Sirota et al., 2021), and acoustic focusing (Li et al., 2012;
Al Jahdali andWu, 2016; Chen et al., 2018). The tunable AMMs also be proposed to provide multiple
functions, such as active acoustic metalens (Zhang et al., 2021) and tunable acoustic metasurface
(Cao et al., 2021). and Exhibiting exclusive phenomena and feasibility to compute at ease in the
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counterpart of one- and three-dimensional (1D and 3D) AMMs,
the two-dimensional (2D) AMMs have been studied at theoretical
and experimental levels (Ding et al., 2010; Dorodnitsyn and Van
Damme, 2016; Yu et al., 2017; An et al., 2018; Sang and Sandgren,
2018; Guo et al., 2019; Cheng et al., 2020; Sun et al., 2020; Wang
et al., 2020). The general research is carried out the two steps,
namely calculation of the band structures of 2D AMMs and
experiment with the transmittance of corresponding specimens.
The band structure can be obtained by theoretical or numerical
methods under the applied 2D boundary conditions (Sigalas and
Soukoulis, 1995; Axmann and Kuchment, 1999; Kafesaki and
Economou, 1999; Cao et al., 2004a; b; Rabczuk et al., 2004; Ning
et al., 2020; Wang et al., 2021). However, the used specimens
during the experiments are actually 3D structures, which creates
differences with respect to the 2D AMMs model for computing
(Bertoldi et al., 2008; Mohammadi et al., 2008; Lv et al., 2013;
Shan et al., 2014; Wang et al., 2014; Billon et al., 2019; Gao et al.,
2019; Li et al., 2019; Faiz et al., 2020; Muhammad et al., 2020; Huo
et al., 2021). The specimens for the experiments are arrayed in 2D
periodically, while their physical structure scale is measured in
3D. Notably, the 2D AMMs model is a simplified ideal model,
though the comparison of band structure computed by a model
with experimental results can be devoid of some practical
vibration modes, which may cause inconsistent results. The
wave dispersion of the 2D AMMs model and its 3D specimens
are analyzed, and significant differences are found in previous
research (Krushynska et al., 2017). However, the height range of
3D cases in this research is limited to 0.1–0.5a, and the large
height specimen is not considered. Typically, epoxy is used as a
matrix material in AMMs, and such a relatively hard material can
reduce the influence of the variation in height.

In this work, the computing models for 2D AMMs are
defined to compute band structure and transmittance. The
results are compared with the corresponding outcomes
obtained by different 3D specimen models. In experiments,
the specimen of 2D AMMs are actually 3D and 2D is its
periodicity. In this case, there will be some difference
between the 2D numerical computation results and 2D
AMMs specimen experiments results. In this paper, we use
the numerical computation results of 3D specimen models to
investigate the discrepancies between its results and the 2D
numerical computation results. The observed differences
between them show the limitation of using computation
results of 2D AMMs model to compare with experimental
results. The two factors are analyzed to verify the variation
i.e., the mode shape displacement distribution of each section
along the z-axis and the mode shape stress distribution of each
section along the z-axis. These analyses can be applied in the
research on 2D periodic structures in solid-state physics,
especially those with experiments.

Initially, the basic calculation based on the theories of 2D
AMMs and corresponding specimens are briefly introduced.
Thereafter, the difference in the calculated results are
presented, and related reasons is verified. The final concluding
remarks is given for detailed analyses.

MATHEMATICAL MODEL OF ACOUSTIC
METAMATERIALS

Here, a 2D AMMs consists of an array of straight and infinite
cylinders arranged in a square matrix is considered. This kind of
structure is widely used since the AMMs were studied(Mead,
1996; Krushynska et al., 2017; Mazzotti et al., 2019). Figure 1
illustrates the lattice structure, where a denotes the lattice
constant, and r denotes the radius of the cylinder. The dash
line area represents a unit cell. The cylinders are set parallel to the
z-axis. By considering 2D AMMs, it is assumed that the elastic
waves are propagated in the transverse plane i.e., perpendicular to

FIGURE 1 | The lattice structure of the 2D AMMs.

FIGURE 2 | The specimen model of the corresponding 2D AMMs.
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the axis of the cylinder. The wave propagation mode in the x − y
plane and the related Eigen-modes are called as xy model.

Based on the considered structure of the 2D AMMs, the
corresponding specimen model is shown in Figure 2. It is
worth noting that the unit cell of the specimen is 2D periodic
array, while its physical structure model is appeared to be in 3D.
The distribution of medium in the x − y plane is the same as the
2D model. By expending 2D AMMs model in the z-direction, the
specimen model with a thickness of h is determined, as can be
seen in Figure 2.

The equation of motion of an elastic wave propagates in an
isotropic medium, can be expressed as

ρ
z2ui

zt2
� zσ ix

zx
+ zσ iy

zy
+ zσ iz

zz
(1)

where, ρ is the density, u is the displacement, and σ is the stress.
The higher-order terms with respect to small displacements are
neglected in calculation.

In the case of 2D in-plane mode (xymode) and 3D specimen
model, the stress σ can be expanded in terms of sub-coordinates,
respectively, as follows:

σ2D � (σx, σy, τxy)T (2)

σ3D � (σx, σy, σz, τxy, τyz, τzx)T (3)

The stress σ can be expressed in terms of strain and elastic
modulus by following relationships:

σ2D � D2Dε2D (4)

σ3D � D3Dε3D (5)

where,D is the elastic modulus, and ε is the strain. By substituting
these equations into Eq. 1 yields

ρω2u + (λ + μ)∇(∇ · u) + μ∇2u � 0 (6)

where, ω is the angular frequency, and u is the displacement.
In 2D periodic array, the structure dimension is expended up

to infinity in the x- and y-direction. Due to the periodicity of
AMMs, Bloch’s theory can be applied to the mentioned
relationships between the displacements u as (Mead, 1996)

uA2 � eikxauA1, uA3 � eikyauA1, uA4 � ei(kx+ky)auA1

uB2 � eikyauB1, uB4 � eikxauB3

(7)

where A1, A2, A3, and A4 denote the four corners of a unit cell,
and B1, B2, B3, and B4 denote the four connecting lines in a unit
cell, as shown in Figure 3.

However, in the 3D specimen model, the unit cell has
periodicity and finiteness in x − y plane and z-axis direction,
respectively. By applying Bloch’s theory, the relationship of
displacement u can be described as

uA4 � eikxauA1, uA2 � eikyauA1, uA3 � ei(kx+ky)auA1

uB4 � eikxauB2, uB12 � eikxauB10

uB3 � eikyauB1, uB11 � eikyauB9

uB8 � eikxauB5, uB6 � eikyauB5, uB7 � ei(kx+ky)auB5

uC4 � eikxauC2, uC3 � eikyauC5

(8)

where, A1 − A8 denote the eight corners of a unit cell, B1 − B12
denote the twelve lines of a unit cell, and C1 − C6 denote the six
surfaces of a unit cell, as shown in Figure 4.

In order to apply the finite element method (FEM), the
continuous systems need to be segmented into discrete one.
The Eq. 6 can be expressed as the following equation

FIGURE 3 | The schematic diagram of 2D unit cell and boundary
conditions.

FIGURE 4 | The schematic diagram of a unit cell in the 3D specimen
model and its boundary conditions. The A, B, and C denote the points, lines,
and surfaces nodes of the unit cell.
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(K − ω2M)u � 0 (9)

Here, K and M are the structure stiffness and global mass
matrices, respectively.

For a given value of the wave vector k � (kx, ky), the
eigenvalues of the Eq. 9 can give the resolution of the Eigen
frequencies in terms of ω. Since the 2D AMMs’ Bravais lattice is a
square lattice, the first Brillouin zone has a shape of square. By
taking the different wave vectors along the contours of irreducible
Brillouin zone (M − Γ −X −M) as the Bloch wave vectors
(Maurin et al., 2018), as shown in Figure 5A, the relationship
between Eigen frequencies and Bloch wave vectors can be
obtained, and the band structure of the 2D AMMs is
determined. For the 3D specimen model, the physical
structure scale is 3D, though the periodicity of the unit cell is
considered in 2D. Therefore, the first Brillouin zone of the
specimen model can be obtained. The first Brillouin zone and
the contours of an irreducible Brillouin zone of the specimen
model are similar to 2D AMMs’, as shown in Figure 5B.

NUMERICAL ANALYSES

The band structure of the 2D AMMs model and corresponding
3D specimen model with different heights are computed to prove
that there are the reasonable differences between them. The clear
logic behind the differences is confirmed by computing the band
structure of 2D AMMs’ specimens model i.e., 3D specimenmodel
with modified physical conditions. The transmittance is also
calculated to verify the accuracy of the band structure.

Differences Between the 2D Acoustic
Metamaterials and 3D Specimens Model
In this example, a 2D AMMs, which consisted of straight and infinite
cylinders arranged in the square matrix, as shown in Figure 1, with
the lattice constant a � 15.5 mm and radius r � 5 mm, is computed
for its band structure. Thematerials of the cylinders and squarematrix

are lead and silicone rubber, respectively. The silicone rubber is a kind
of viscoelastic material, and its viscous/damping effect is usually
considered(Guo et al., 2019; Li et al., 2019). However, the effect of
viscous/damping is neglected during the displacement tendency of the
modes’ shape. The physical parameters of the lead and silicone rubber
are listed in Table 1. The corresponding 3D specimen models with
different heights(h) are computed for their band structure. These
specimen models can be considered as extending forms of the 2D
AMMmodel in z-axis, as shown in Figure 2. The height parameter h
is set as a × 10−1, a × 10−0.5, a × 100, a × 100.5, and a × 101,
respectively. The boundary conditions are set as described in the
aforementioned mathematical models of AMMs.

In addition to the band structure, the transmittance along the
Γ −X direction is calculated by FEM to verify the accuracy of results
of band structure. Mathematically, transmittance can be defined by

TL � 10 log10
Wout

Win
(10)

Here, Win and Wout are the power of the incident wave and
transmitted wave though the structure, respectively, and can be
obtained by

Win � ∭
Ωin

1
2
ρinv

2
indV (11)

Wout � ∭
Ωout

1
2
ρoutv

2
outdV (12)

where, Ωin and Ωout are the integration domains of the incident
wave and transmitted wave, ρin and ρout are the density of these

FIGURE 5 | The Brillouin zone of (A) 2D AMMs and (B) 3D specimen model. The grey areas indicate the irreducible Brillouin zone and the red lines indicate their
contours. kx and ky indicate the wave vectors in x- and y-direction, respectively.

TABLE 1 | Physical parameters of lead and silicone rubber (Kittel et al., 1996).

Physical parameters Material

Lead Silicone rubber

Density (kg/m3) ρ 11.6 × 103 1.30 × 103

Lame constants (N/m2) λ 4.23 × 1010 6.00 × 105

— μ 1.49 × 1010 4.00 × 104
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two domains, vin and vout are wave velocity of these two domains,
respectively. The finite structure with 5 unit cells of 2D AMMs is
constructed for the transmittance computation in Γ −X
direction, as shown in Figure 6. The incident wave is a plane
wave propagating in the x-direction (from left to right in
Figure 6). In order to avoid the effect of wave reflection
interference, the periodic boundary condition and the perfect
matched layers are set in the 2D AMMs finite structure. The right
domain is set to calculate the power of transmitted waves passing
through 5 unit cells. For the 3D specimenmodel, the exactitude of
their band structures is also substantiated by calculating the
transmittance from the similar finite structure of 5 unit cells.

Based on the aforementioned structure, the band structure and
the transmittance are computed. The dynamic responses of the
system are investigated via FEM using the commercial software
COMSOL Multiphysics. For wave propagation problems, using
12 degrees of freedom can generally obtain a solution with an
error rate of less than 1%. With the quadratic elements used in
FEM models, 6 second-order elements are sufficient for each
wave period. Therefore, in order to determine the mesh size, the
wavelength can be obtained by

λl � Cl

f
(13)

λt � Ct

f
(14)

where, λl and λt are wavelength of longitudinal waves and
transverse waves, respectively, and f is wave frequency. To
ensure the accuracy of the results in the entire frequency
range, f should choose the maximum frequency 1200 Hz. The
Cl and Ct are longitudinal speed of elastic wave and transverse
speed of elastic wave, respectively, and can be expressed as

Cl �
�����
λ + 2μ

ρ

√
(15)

Ct �
��
μ

ρ

√
(16)

In order to get clarification for the difference in values, the
quasi-2D AMMs model is considered. The ideal 2D AMMs
models have no displacement along the z-axis direction. For
specimen models, they are completely free and can have
displacement in any direction. In order to make the
connection between the two cases more clearly, a quasi-2D
AMMs model as a midpoint is created. The quasi-2D AMMs

model is based on the 3D specimen model and is restricted in the
displacement along the z-axis direction. Thus, the additional
boundary condition is

uz � 0 (17)

where, uz is the medium displacement along the z-axis direction.
By sweeping the Bloch wave vector along the contour of an

irreducible Brillouin zone (Figure 5), the corresponding band
structure is obtained. By using different frequencies of the
incident wave in the finite structure, the transmittance can be
obtained. Figure 7 shows the band structure of the 2D AMMs
model, quasi-2D model, and 3D specimen models with the given
height of a × 10−1, a × 10−0.5, a × 100, a × 100.5, and a × 101,
respectively. The band structure of the quasi-2D model and
specimen model are shown on the left and right sides of each
subfigure, respectively. The orange bars are used to show clearly
the bandgap, as shown in Figure 7.

The band structure of the 2D AMMs (Figure 7A) and quasi-
2D model with smaller heights [Figure 7 (b1, c1, d1, e1, f1)] are
similar. To evaluate band structure difference between 2D AMMs
model and quasi-2D model quantitatively, the error rate of the
energy band can be obtained by

ϵi �
∣∣∣∣∣fquasi−2D − f2D

∣∣∣∣∣
fquasi−2D

(18)

where, ϵ is the error rates, the subscript i represents ith energy
band, and f represents the Eigen frequency. The Eigen frequency
of the 2D AMMs and quasi-2D model are denoted by subscript
2D and quasi-2D, respectively. When the height of quasi-2D
model is a × 10−1, the average error rate of the first 20 band
structure is ϵave � ∑20

i�1 ϵi/20 � 0.0062. According to the average
error rate, there is nearly no difference between the 2D AMMs
model and quasi-2D model with smaller heights. Figure 7 shows
that with the height increases, band structure have greater
differences. At the higher frequency, the variation in height is
more sensitive. Though the change in band structure is
significantly large, but the bandgap showed almost no change.

The band structure of the quasi-2D model [Figure 7 (b1, c1,
d1, e1, f1)] and 3D specimen model [Figure 7 (b2, c2, d2, e2, f2)]
with different heights showed a significant difference. Even at
smaller heights [Figure 7 (b1, b2)], the band structure is
significantly different. At a height of a × 10−1, the quasi-2D
model has one bandgap while the specimen model has three
bandgaps under 1200 Hz. The band structure of the specimen
model is more complicated. With increasing height, the quasi-2D

FIGURE 6 | The finite structure for transmittance computation.
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model exhibited only one bandgap, however, the bandgap of the
3D specimen model is reduced from three to one. For the 3D
specimen model, the high frequency of the band structure is more
sensitive to create a variation in the height. This is similar to the
quasi-2D model. In the frequency range below 300 Hz, the band
structures are indeed different, however, subtle variation is
observed. In the frequency range from 300 Hz to 1200 Hz, all
the 3D specimen models with different heights showed more
energy bands as compared to the 2D AMMs model. In this
frequency range, the higher height of the 3D specimen model
resulted in a large number of energy bands. With increasing
height in the 3D specimen model, the range of the complete

bandgap becomes smaller. The overall bandgap edge frequency of
the 3D specimen model is lower than the 2D AMMs’.

In order to understand the physical mechanism due to the
variation in the band structure, the mode shapes at the edges of
the first bandgap are presented in Figure 8. By comparing the 2D
AMMs and quasi-2D models, the obtained mode shape at the
edges of the first bandgap are similar [Figure 8 (a1–f1), (a2–f2)].
The mode shapes of both upper edges and lower edges are
observed as the translational motion mode. The movement of
scatterer is dominant at the lower edges. At the upper edges, the
movement of the matrix becomes dominant. This is a typical local
resonance phenomenon. Further, by comparing the quasi-2D

FIGURE 7 | The band structure and corresponding transmittance of (A) 2D AMMs model and (b1, c1, d1, e1, f1) the quasi-2D models and (b2, c2, d2, e2, f2)
specimen models with the height set as a × 10−1, a × 10−0.5, a × 100, a × 100.5, and a × 101 respectively.
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model and 3D specimen model, the observed mode shapes of
both upper and lower edges showed a significant variation. The
displacement fields of the quasi-2D model at the high-symmetry
point X are a translational motion mode [Figure 8 (b1–f1),
(b2–f2)]. However, the corresponding bandgap at the lower
edge mode shape is a torsional mode, as can be seen in
[Figure 8 (b3, c3, d3)]. At the large height, the corresponding
mode shape even becomes out-of-plane mode, as shown in
[Figure 8 (e3, f3)]. These different mode shapes are caused by
different heights of the 3D specimen model with respect to the
different Eigen frequencies. The similarity between the quasi-2D
model and 2D AMMs model creates an almost unchanged
bandgap. Specifically, a noticeable large change in mode
shapes of specimen models leads significant difference in the
bandgap.

According to the band structure and mode shapes of the
different models above, a method to reduce the discrepancies
between 2D AMMs and corresponding 3D specimen model is
proposed. It is clear that at the lower height (a × 10−1 and
a × 10−0.5), the band structure of quasi-2D model [Figure 7
(b1, c1)] and 2D AMMs model (Figure 7A) are almost the
same. Compared with the 3D specimen model, the quasi-2D
model displacement along z-axis is constrained. Thus, it is
possible to use a lower height specimen and add roller
constraint at upper and lower surfaces, which is perpendicular
to the z-axis, to reduce the discrepancies. Even in a higher height,
although the band structure of quasi-2D model [Figure 7(d1, e1,
f1)] are different from 2D AMMs’, their bandgaps are almost the
same. In the experiments, the transmittance usually be measured
to verify the bandgaps. In this way, the experiments result from

quasi-2D model will match the 2D AMMs’ well. Therefore, with
the roller constraint at upper and lower surfaces, even at a higher
height the discrepancies between 2D AMMs and 3D specimen
model can be reduced.

The transmittance along Γ −X direction is compared to the
band structure in Figure 9. For 2D AMMs model (Figure 9A),
quasi-2D model at lower height [Figure 9 (b1, b2)] and 3D
specimen model [Figure 9 (c1–c5)], it is seen that two different
kinds of results match well. This outcome makes two
computation results mutually verify their correctness. While
for quasi-2D model with higher height [Figure 9 (b3–b5)], the
transmittance cannot match the Γ −X bandgap. However, the

FIGURE 8 | Mode shapes of the first bandgap edges in Figure 7.

FIGURE 9 | The Γ X̵ band structure and corresponding transmittance of
(A) 2D AMMs model, (b1–b5) the quasi-2D model and (c1–c5) the specimen
models with the height set as a × 10−1, a × 10−0.5, a × 100, a × 100.5, and a ×
101 respectively.
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transmittance of quasi-2D model consistent with the 2D AMMs’
at any height. This is reasonable because the mode shapes of 2D
AMMs and quasi-2D model are similar. So their characteristics
should be consistent. This phenomenon further validates
feasibility of the method mentioned proposed above to reduce
the discrepancies between 2D AMMs and 3D specimen model.
This can also be verified from the analysis of the cause of the
difference below.

The Γ −X bandgap frequency range of the 3D specimen
models with respect to the different heights is illustrated in
Figure 10. It is clearly seen that with variable height, the
bandgap of the specimen models demonstrated an obvious
different frequency range. It confirms a significant divergence
in physical properties by means of the 3D specimen models with
different heights.

The Bandgaps of Four-point Star and Cross
Ligament Acoustic Metamaterials
In order to verify the prevalence of differences in the 3D specimen
models with different heights, the investigations by considering

two AMMs’ specimen models are carried out. Figure 11 shows the
structures of two AMMs. The physical parameters of the matrix
and scatterer are the same as the previousmodel i.e., silicone rubber
and the lead, respectively, as listed in Table 1. The Γ −X bandgap
frequency range of these two specimen models with different
heights is illustrated in Figure 12. It is similar to the previously
mentioned results (Figure 10) that the bandgap frequency range is
notably disparate with different heights.

Verification of the Existed Causes of
Difference
To investigate the exact cause for the difference, the displacement
along the z-axis of the 2DAMMsmodel and 3D specimenmodel are
shown in Figure 13, and the stress distribution of the different
sections along z-direction is illustrated in Figure 14. Firstly, as per
the 2D AMMs model, it can be assumed as infinite in the z-axis
direction. Therefore, there will be no displacement along the z-axis
direction, as shown in Figure 13A. However, as per the 3D specimen
model, the elastic waves not only propagate in the x − y plane but
also in z-direction. The propagation of elastic waves caused medium

FIGURE 10 | The Γ X̵ bandgap frequency range of specimen models with the different heights.
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displacement in the different sections along the z-axis. The variation
in medium caused different motion modes that yield displacement
along the z-axis direction, as shown in Figure 13B.

On the other hand, in the 2D AMMsmodel, stress distribution
of each section along the z-axis is uniform due to the expended
z-direction to the infinity, as shown in Figure 14A. However, in
the 3D specimen model case, when the elastic waves propagate
through the 3D specimen, which has finite height along
z-direction, the stress distribution of the different sections
along the z-axis is observed with variations, as shown in

Figure 14B. This phenomenon can be verified by the model
shapes of the mentioned two different cases. For an ideal 2D
AMMs model, the model shape is devoid of bending along the
z-direction owing to an infinite direction (Figure 14C). However,
in counterparts of the case of 3D specimen models, the bending
along z-direction exists in the model shape (Figure 14D). These
different shapes cause the varied stress distribution and
eventually resulted in the divergence in band structures.

As revealed above, the 2D AMMs and quasi-2D models showed
quite similarities in results up to a certain extent. While the 2D

FIGURE 11 | The structure of twoAMMs. Red and blue represent thematrix and scatterer, respectively. (A) The four-point star AMMswith lattice constant a � 1.55 cm,
side length l � 0.35a, and vertex θ � 0.186 rad. (B) The cross ligament AMMs with radius R1 � 0.16a, radius R2 � 0.33a, and ligament thickness t0 � 0.036a.

FIGURE 12 | The Γ − X bandgap frequency range of (A) the four-point star and (B) the cross ligament specimen models with different heights.

FIGURE 13 | The displacement along the z-direction via (A) 2D AMMs model and (B) 3D specimen model.
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AMMs and corresponding 3D specimen models showed a
significant difference in the physical properties, and 3D specimen
models with different heights have significant divergence in physical
properties of materials. Therefore, the computation results of the 2D
AMMs can be useful to get insight information from experimental
results, meanwhile, data computed with 3D specimen models with
different heights can provide reliability in terms of theoretical and
experiments study. After noticeable differences between the 2D and
3D cases, 3D specimen models are indispensable especially for the
larger heights and softer materials.

CONCLUSION

In this study, the difference in band structures between 2D AMMs
and 3D specimen models are demonstrated and analyzed. The
mathematical models of 2D AMMs and specimen models are
reviewed to identify computation conditions in the band structure.
The band structures are obtained by FEM and verified by
transmittance behavior. The difference between the structure of
the energy bands can prove that there are dissimilarities in the
physical characteristics of 2D AMMs and 3D specimen models. It
is noteworthy that variation in the height of unit cell can cause
significant variation in band structures. The quasi-2D models’
band structures are also computed to investigate the true reason
for variation in band structure. The changes of the mode shapes
cause the variation, and these are revealed below. The mode shapes
at the edges of the first bandgap are investigated. The other two 2D
AMMs’ specimen models, namely four-point star and cross
ligament AMMs with different heights are computed to verify
divergent physical properties. The difference in the displacement

along z-direction between 2D AMMs model and specimen model
by means of the difference in the band structure is further verified
by another crucial reason of the dissimilarity in stress distribution
of different sections along the z-direction. These two reasons are
clarified by modifying the boundary conditions to get the band
structures of the specimenmodel. This can be a notification that to
be cautious when using the computation results of 2D AMMs such
as band structure to compare with the experimental results, which
are represented by the specimen model in this paper.
Consequently, for more accurate and rigorous results, especially
which can be compared with experiments, the specimenmodel can
provide better results with larger height and softer materials.
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