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The identification of fatigue crack initiation sites (FCISs) is routinely performed in the field of
engineering failure analyses; this process is not only time-consuming but also knowledge-
intensive. The emergence of convolutional neural networks (CNNs) has inspired numerous
innovative solutions for image analysis problems in interdisciplinary fields. As an explorative
study, we trained models based on the principle of transfer learning using three state-of-
the-art CNNs, namely VGG-16, ResNet-101, and feature pyramid network (FPN), as
feature extractors, and a faster R-CNN as the backbone to establish models for FCISs
detection. The models showed application-level detection performance, with the highest
precision reaching up to 95.9% at a confidence threshold of 0.6. Among the three models,
the ResNet model exhibited the highest accuracy and lowest training cost. The
performance of the FPN model closely followed that of the ResNet model with an
advantage in terms of the recall.
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INTRODUCTION

Fatigue fracture often occurs in engineering structures, such as aircrafts (Cowles, 1996), bridge (Guo
et al., 2020), surgical implants (Huang et al., 2005), at variety scales. Fractographic studies via
different types of microscopy techniques are key to identifying the causes and crack growth behaviors
in fatigue-fractured components (Kushvaha and Tippur, 2014). However, fractographic analyses are
not only time-consuming but also knowledge-intensive. Even an experienced material scientist may
require a considerable amount of time in identifying the characteristics of new materials. Hence, it
would be beneficial to develop methods that can accurately interpret most of the information in
images without much human effort.

Convolutional neural networks (CNNs), which are inspired by the structure of actual visual
systems, are one of the major advancements in the field of computer vision (Hubel andWiesel, 1962;
Fukushima, 1980; Lecun et al., 1998). With the popularity of deep CNNs in computer vision, they
have been increasingly applied to the material science field, such as for predicting compounds (Xie
and Grossman, 2018) and material properties (Sharma et al., 2020; Sharma and Kushvaha, 2020),
analyzing X-ray diffraction patterns (Park et al., 2017), and classifying crystal structures (Ryan et al.,
2018; Ziletti et al., 2018). In the years to come, it is reasonable to believe that CNNs will significantly
accelerate the development of data-driven material science.

In a previous study (Wang et al., 2020), we employed machine learning approaches to
recognize fatigue crack initiation sites (FCISs) in fractographic images of metallic compounds.
The models were planned to be developed as an automatic FCIS detection module, which can be
embedded with the observation systems attached to microscopes for a quick and accurate
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detection of FCISs. Given the lack of data, we selected a deep
learning framework, namely the deeply supervised object
detector (DSOD) (Shen et al., 2017), a framework that can
train models of good performance from scratch. Although the
DSOD has shown comparable or even superior accuracy in
detecting objects in many domains compared with other state-
of-the-art detectors (Shen et al., 2017), our results were below
expectations. We explain some of the possible reasons for the
difficulties in extracting features from FCISs as: 1) FCISs do
not have clear boundaries for identification as in the case of
objects in other detection tasks (e.g., animal, cars, or plants); 2)
their features are typically blurry and nonobjective because of
the low contrast and poor resolution, especially at low
magnifications; 3) there is no distinction between
foreground and background in most cases (as seen in
Figure 1).

Owing to the rapid development in computer vision
algorithms, the above problem can be solved by transfer
learning. Transfer learning is a machine learning method
where the knowledge of an already trained model is reused as
the starting point of a different but related problem (Pan and
Yang, 2009; Weiss et al., 2016). In some problems where there is
limited supply of training data, transfer learning can be utilized to
develop efficient models. The transfer learning method has been
successfully employed in many different areas, such as text
mining (Pan et al., 2012), image classification (Quattoni et al.,
2008; Zhu et al., 2011), spam filtering (Meng et al., 2010), and
speech emotion recognition (Coutinho et al., 2014; Song et al.,
2014). There are many ways of transferring knowledge from one
task to another. Using pre-trained networks is a highly effective
transfer learning approach that can improve the detection
capacity of a new model when data are insufficient. State-of-
the-art deep architectures, such as VGG (named after the Visual
Geometry Group at University of Oxford) (Simonyan and
Zisserman, 2014), Residual Neural Network (ResNet) (He
et al., 2016), and Inception (Szegedy et al., 2016), exhibit a
good performance for classification and localization problems.

Most object detection and segmentation architectures, such as the
faster R-CNN (Ren et al., 2015), can be built based on previous
models through the concept of transfer learning.

The region-based CNN (R-CNNs) family, namely the
R-CNN, fast R-CNN, and faster R-CNN, was developed by
Girshick and Ren (Girshick et al., 2014; Girshick, 2015; Ren
et al., 2015) for object localization and recognition. The
R-CNN algorithm is faster and more accurate than
conventional object detectors (e.g., Histogram of Oriented
Gradient, HOG), as the sliding windows are replaced by
“selective search” to extract CNN features from each
candidate region. However, the training phase is
computationally slow because of the multi-stage pipeline
training process (Girshick, 2015). In the fast R-CNN, the
training process is accelerated by employing three different
models instead of a single model to extract features and by
exploiting a region of interest (RoI) pooling layer to share the
computation. The faster R-CNN (Ren et al., 2015) was
developed from the fast R-CNN, exhibiting improved
training and detection speeds. The architecture comprises
a region proposal network (RPN) and fast R-CNN network
with shared convolutional (conv.) feature layers in a single
unified model design.

The fast R-CNN and faster R-CNN are both initialized by taking
the output of a pre-trained deep CNN, such as VGG-16, on large-
scale datasets (Girshick, 2015; Ren et al., 2015). The fine-tuning conv.
layers in the pre-trained VGG-16 model improved the mAP (mean
average precision) of both algorithms (Girshick, 2015; Ren et al.,
2015). Similarly, Oquab et al. (2014) transferred mid-level image
features from a source task, for which a CNN was trained on the
ImageNet (Deng et al., 2009) with a large number of labeled images,
to target tasks by immigrating the pre-trained conv. layers (C1-C5).
The results showed that the features transferred from the pre-trained
CNNs could significantly improve the classification performance of
the target task with limited training data. Through a survey, Weiss
et al. (2016) reported that this type of fine-tuning process can be
classified under feature-based transfer learning.

FIGURE 1 | Examples of fatigue crack initiation sites (FCISs) of different types, morphologies, and locations. The red boxes indicate the FCISs.
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Apart from the VGG-based faster R-CNN and ZF net-based
faster R-CNN, He et al. tested the performance of a ResNet-based
faster R-CNN (He et al., 2016). As VGG-16 was replaced by
ResNet-101, the faster R-CNN system improved the mAP (@
[0.5,95]) by 6.0% on the COCO validation set (He et al., 2016).
Lin et al. (2017) further updated the ResNet-based faster R-CNN
by modifying the backbone with a feature pyramid network
(FPN), achieving even better results on the COCO minimal
set over several strong baselines. Shared features were found to
be beneficial for marginally improved accuracy and reduced
testing time.

Focusing on the detection of FCISs, we constructed three
transfer learning models using the faster R-CNN as the backbone
and three CNN architectures, namely VGG-16, ResNet-101, and
FPN, as feature extractors. The datasets were composed of
fractographic images containing various types of FCISs of
metallic compounds. This interdisciplinary study aimed to
propose effective transfer learning methods that can accurately
detect FCISs with a limited amount of data. The purpose of this
study was to explore the possibilities of employing machine
learning approaches in identifying nonobjective features seen
in material science images and inspire researchers to solve
similar image-driven material problems.

The rest of this article is organized as follows: Extended
Introduction of Related Work reviews the definition of transfer
learning and its correlations with the computer vision approaches
exploited in this study. Subsequently, a brief introduction to the
development of faster R-CNN and relevant deep architectures
(VGG-16, ResNet-101, and FPN) is given to help researchers
from areas other than computer science, such as material
scientists, to understand the salient features of the faster
R-CNN-based object detectors. Experimental Works introduces
the databases and training implementations of the three models
in detail. In Results and Discussion, the performances of the
models for FCIS detection are evaluated in terms of the detection
accuracy, training ability, calculation efficiency, and calculation
cost. Conclusion presents the conclusions drawn from the study
results.

EXTENDED INTRODUCTION OF RELATED
WORK

Since this is an interdisciplinary study, we reviewed related
concepts to help researchers from a non-computer-science
background to understand the approaches used.

Transfer Learning
Transfer learning in general refers to machine learning
approaches where knowledge gained in one task is reused to
improve the learning of a related task. The reasons for using
transfer learning are based on the fact that the successful
application of a deep neural network depends on a
tremendous amount of training or pre-training data. Such data
are sometimes expensive or difficult to obtain, such as in the case
of FCISs. Many examples have shown that transfer learning can
be beneficial for problems where training and testing data are in

different feature spaces or data distributions (Weiss et al., 2016).
Transfer learning can be broadly categorized into inductive
transfer learning, unsupervised transfer learning, and
transductive transfer learning. Each category contains various
sub-approaches (Pan and Yang, 2009; Weiss et al., 2016). The
approaches most closely related to our work in computer vision
are transfer learning methods with a pre-trained model/ConvNet
(Convolutional Network) (Oquab et al., 2014; Schwarz et al.,
2015). A pre-trained model is typically trained on large
benchmark image datasets, such as the ImageNet, which
contains rich feature representations from a low level to a
high level (Zeiler and Fergus, 2014). These feature
representations can be partly or entirely reused in other tasks
simply by integrating the activated conv. layers in a new deep
neural network as a feature extractor and then fine-tuning the
layers of the pre-trained model via continuous backpropagation.
Many applications (Oquab et al., 2014; Schwarz et al., 2015; Huh
et al., 2016; Qian et al., 2016; Lucena et al., 2017) have shown that
state-of-the-art object detectors can be built via this approach.

Faster R-CNN-Based Object Detectors
Faster R-CNN Baseline
As previously highlighted, the faster R-CNN was developed along
the lines of R-CNN, fast R-CNN, and its previous versions (Du,
2018; Khan et al., 2019). The R-CNN marks one of the most
important milestones in object detection. It is the first neural
network that uses an object proposal algorithm called “selective
search” to extract a manageable number of independent regions
for classification and bounding-box regression. However, training
an R-CNN model is expensive and slow because of the multiple
steps involved in the process (Girshick et al., 2014). In contrast to
using the R-CNN to extract CNN feature vectors independently
for each region proposal, the fast R-CNN passes the entire image
to the deeper VGG-16 network to generate a conv. feature map
for sharing the computation among the region proposals
(Girshick, 2015). For each object proposal, an RoI pooling
layer is used to replace the last max-pooling layer in the pre-
trained CNN for extracting a fixed-length feature vector. The fast
R-CNN has two heads, namely a classification head and a
bounding-box regression head, which are jointly trained using
a multi-task loss L (Softmax Loss + SmoothL1 Loss) on each
labeled RoI. Thus, the precision of the algorithm is improved. All
the above steps are executed simultaneously, making this method
faster than the R-CNN (Girshick, 2015).

Although the selective search approach in the R-CNN and fast
R-CNN is a more efficient method for localizing objects than
using the sliding window in CNN methods, the process is slow
because of the large number of separate regional proposals (Du,
2018). The faster R-CNN replaces the selective search with an
RPN to obtain an object proposal by sliding it on the last shared
conv. layer of the pre-trained CNNs (VGG-16 or ZF-net) (Ren
et al., 2015). To solve the shape variations of the objects in the
RPN, anchor boxes are introduced in the faster R-CNN. At each
sliding position, there are nine candidate anchors (3 scales × 3
aspect ratios), the probabilities of which being foreground
(positive sample) or background (negative sample) are
predicted by the RPN. For a positive sample, the intersection-
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over-union (IoU) ratio is greater than 0.7, whereas the IoU ratio
of a negative sample is less than 0.3. For each region proposal, the
RPN uses two fully connected (FC) layers to judge and select
anchors according to the above rules. Thus, the RPN generates
bounding boxes of various sizes and their probabilities of each
class. The first-round proposal generated by the RPN is used to
train the fast R-CNN and then initialize the RPN training process.
Such an alternating process of training the fast R-CNN and then
fine-tuning the RPN-specific layers is repeated until the result
converges well (Ren et al., 2015).

Although the correlation between sharing features from pre-
trained CNN layers and transfer learning is less emphasized for
the fast R-CNN (Girshick, 2015), this point is highlighted in the
case of the faster R-CNN as it has the advantage of sharing
computation from the pre-trained conv. layers (Ren et al., 2015).
As mentioned above, there is consensus that training an object
detector on a small dataset using the already learned features from
a CNN trained on large datasets can be categorized under transfer
learning (Oquab et al., 2014; Akcay et al., 2016; Weiss et al., 2016;
Khan et al., 2019). Based on the features of four different transfer
learning approaches specified by Pan and Yang (2009), and
examples given by Weiss et al. (2016), it can be deduced that
using a pre-trained model for feature extraction represents a
feature-based transfer learning approach.

ResNet-Based and FPN-Based Faster R-CNN
The integration of ResNet in the faster R-CNN was first proposed
as an implementation of ResNet (He et al., 2016). He et al. (2016)
employed the faster R-CNN as the baseline and replaced VGG-16
with ResNet-101 (101-layer residual net); the modified detector
showed remarkable improvement in terms of the mAP, which
was 6.9% [@.5] and 6.0% [@.5.95] higher than those of the
original version on the COCO validation set. Lin et al. (2017)
further modified the ResNet-based faster R-CNN with an FPN
architecture. Instead of sharing the features of the last conv. layer
in the pre-trained models, the FPN generates a feature pyramid
from the ResNet backbone and multi-scale feature proposals in
the RPN. Thus, the high-resolution features from the lower
convolution layers and high-level semantic features could be
used for prediction, thus improving the detection accuracy.
The architecture details of the ResNet and FPN are introduced
in the next section.

VGG, ResNet, and FPN
VGG
The VGG networks, introduced by Simonyan and Zisserman
(2014), are known for their simplicity, homogenous topology, and
relatively good network depth. In the ImageNet Large-Scale
Visual Recognition Challenge (ILSVRC) held in 2013, it was
found that small filters can improve the performance of CNNs
(Zeiler and Fergus, 2014); therefore, only 3 × 3 conv. filters were
used in all the layers of the VGG to increase the network depth.
VGG-16 contains a total of 16 layers, including 13 conv. and three
FC layers. The 13 conv. layers are segregated into five conv. blocks
(2–3 conv. layer + ReLU) by max pooling. Max pooling layers are
applied to obtain features at the end of each block. VGG networks
show good performance in image classification (Simonyan and

Zisserman, 2014). However, the training process is slow because
of the large number of parameters [138 million parameters
(Simonyan and Zisserman, 2014)].

ResNet
In conventional sequential architectures, the networks are
constructed by stacking a set of “building blocks.” Therefore,
they have drawbacks, such as gradient vanishing and network
degradation, as the networks get deeper. The ResNet architecture
proposed by He et al. (2016) exhibits an excellent performance in
constructing deep networks without the above problems, using
batch normalization and residual learning framework. Besides the
common features in a CNN, such as convolution, pooling,
activation, and FC layers, residual blocks are created in the
residual learning framework by adopting identity/shortcut
connections between every few stacked layers. A residual block
is defined as in Eq. 1.

H(x) � F(x) + x (1)

where x and H(x) are respectively the input and output vectors of a
residual block whose dimensions are assumed to be identical.
Therefore, the residual function F(x) � H(x) − x represents the
difference between the input and output. If the dimensions of x and F
are unequal, x is multiplied by a linear projection Ws to match the
dimensions (He et al., 2016). It can be deduced from Eq. 1 that if there
is nothing to learn (F(x) � 0), i.e., when the identity mappings are
optimal, the residual blocks make the network to preserve the pre-
learnt features by applying identity mapping, and thus, the input will
be equal to the output (H(x) � x). If the layer learns something,
i.e., F(x)≠ 0, it will be added to the network. Therefore, ResNet is
always able to produce an optimal feature map for precise image
classification, as evidenced by its (ResNet-152) first-place performance
in the ILSVRC-2015 competition (He et al., 2016).

FPN
Low-level features extracted from lower layers, such as edges,
curves, and dots, have high resolution and localization ability, but
are less semantic. By contrast, the features generated at higher
layers have high semantic value but have low resolution and
localization accuracy (Zeiler and Fergus, 2014). With the
introduction of a pyramid architecture composed of a
bottom–up pathway, top–down pathway, and lateral
connection, the FPN can combine low-resolution, semantically
strong features with high-resolution, semantically weak features.
In the original version of the FPN proposed by Lin et al. (2017),
the ResNet is used as the backbone in the bottom–up pathway,
and the features are extracted from the last layer in each residual
block (denoted by C1, C2, . . ., C5). A 1 × 1 convolution filter is
applied to the last feature map layer of the bottom–up pathway to
reduce the dimension and is used as the starting layer (denoted by
P5) of the top–down pathway. The top–down pathway creates
new layers (P2, P3, and P4) by upsampling the previous layers with
a factor of two using the nearest neighbors. A lateral connection is
used at each pyramid level to merge the feature maps of the same
spatial size (d � 256) from the bottom–up pathway and top–down
pathway by element-wise addition. Since the FPN is not an object
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detector in itself, it should be integrated with other object
detectors, e.g., the faster R-CNN. Unlike the VGG and ResNet
in the faster R-CNN, which only transfer a single-scale feature
map to create RoIs, the FPN generates a pyramid of feature maps.
Thus, the RoIs are assigned to each pyramid level (Pk) of different
scales (k � Pk0 + (log2(

���

wh
√

/224)R, where k0 is set to 4, and w
and h are the width and height, respectively). The predictor heads
are attached to all levels with shared parameters (Lin et al., 2017).

EXPERIMENTAL WORKS

Datasets
As a comparatively new machine learning domain, there is no “off-
the-shelf” library for FCIS images. Therefore, we acquired data from
the Internet by meticulous selection and from our in-house research
works related to fatigue in metallic materials. The images were
normalized for their format and size based on the standards used

in the faster R-CNN (Ren et al., 2015). The datasets in the target task
contain 291 images in total, with various FCIS details (such as
location, morphology, size, and type) and image magnifications
(×18∼×600) to ensure the generalization of the datasets. Following
an existing data portioning ratio of 65% (training data):35% (testing
data), the data were split into a training set (212 images) and a testing
set (79 images). Instead of arbitrary selection, most of the testing data
were chosen to maintain consistency in the distributions of the
training and testing datasets (examples are shown in Figure 2).
Several images of unusual FCIS types (Figure 3) were also added to
the testing dataset to evaluate the generalization ability of the models.
Although the unusual FCISs did contain some features of common
FCISs, they also contained some patterns that were rare or absent in
the training dataset. It should be emphasized that all the images in the
training and testing datasets contained at least one FCIS.

The training data were annotated using LabelImg by a
professional in the fatigue research field. LabelImg is an image
annotation tool written in Python that can generate object

FIGURE 2 | Examples of images in the training and testing datasets.

FIGURE 3 | Unusual FCIS types used for testing the generalization of models.
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bounding boxes. The Annotations were saved as XML files in the
PASCAL VOC format.

Training on VGG-16 and ResNet-101-Based
Faster R-CNN
The two deep neural networks (VGG-16 and ResNet-101) were
pre-trained on the ImageNet dataset following the procedure
provided in previous studies (Simonyan and Zisserman, 2014; He
et al., 2016), thus attaining a robust hierarchy of features. For the
pre-training, we implemented VGG-16 and ResNet-101 in the
Caffe formats as done by Simonyan and Zisserman (2014) and
Kaiming et al. (2015), respectively. Table 1 lists the details of the
pre-training on VGG-16 and ResNet-101.

We used the frozen conv. layers of the pre-trained VGG-16/
ResNet-101 (the weights were unchanged during model training)
as feature extractors to train the RPN and detection network in
the faster R-CNN (as shown in Figure 4). The training was
carried out using the open-source faster R-CNN framework
shared by Yang. (2017). The input images were resized and
then cropped to dimensions of 224 × 224 following the
method reported in (Simonyan and Zisserman, 2014; Ren
et al., 2015; He et al., 2016). Each mini-batch contained only
two images, thus avoiding overfitting on small datasets (Talo
et al., 2019). All the training processes were terminated in 5,000
epochs, and the checkpoint was saved every 500 epochs. The
initial learning rate was set to 0.01, and the rest of the

optimization parameters were set as the default values in the
torch. optim.SGD() function in Pytorch library; the weight decay
and dampening were set to 0, and Nesterov was not applied. The
experiments were performed on a single GeForce GTX 1060 GPU
with 6 GB of memory.

Training on FPN-Based Faster R-CNN
As shown in Figure 5, the architecture of the FPN-based faster
R-CNN was modified from that of the ResNet-based version.
Hence, we only pre-trained the ResNet-101 baseline. The model
was trained using the open-source Pytorch code, which was
shared by Yang (2018). For comparison, we kept the training
parameters consistent with the above experiments on VGG-16
and ResNet-101 based on the faster R-CNN. The model was
trained for 5,000 epochs using stochastic gradient descent (SGD)
iterative method, with an initial learning rate of 0.001 and a mini-
batch size of 2.

Evaluation of Results
Typically, the IoU is often used for judging whether the predicted
bounding box makes a good detection of the objects. The IoU is
the ratio of the intersection area of the prediction bounding box
and the ground truth box to their union area. However, it is
difficult to use the IoU as an index for evaluating the results in this
study because of the following two reasons: 1) The ground-truth
bounding boxes were drawn based on manual estimation, which
brings a high degree of arbitrariness; 2) It is difficult to set

TABLE 1 | Details of the pre-training processes for VGG-16 and ResNet-101 on ImageNet.

Model Dataset Batch
size

Learning rate Optimizer Weight decay Momentum Dropout
ratio

VGG-16 1.3 million training images, 50 k
validation, 100 k testing images

256 Starts from 0.01→ divided by 10
when validation accuracy stops
increasing

Mini-batch
gradient descent

L2 penalty
multiplier 0.0005

0.9 FC layer 0.5

ResNet-
101

1.3 million training images, 50 k
validation, 100 k test images

256 starts from 0.1→ divided by 10 when
error plateaus

Mini-batch SGD L2 penalty
multiplier 0.0001

0.9 N/A

FIGURE 4 | Schematic of fine-tuning the faster R-CNN with pre-trained parameters transferred from VGG-16 and ResNet-101.
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standards for drawing standardized ground-truth bounding
boxes, because FCISs are varied in terms of the shape and
size, and have no exact boundaries. Hence, the results were
judged by the same material scientist who drew the ground-
truth bounding boxes for a consistent judgment. We classified the
prediction bounding boxes into three types in adherence to strict
standards: true positive (TP), false positive (FP), and false
negative (FN). The following are the definitions of the three
types of results:

TP Results: The prediction boxes can accurately detect the
FCISs or miss a marginally small part of FCISs but still cover most
areas of the FCISs (as shown in Figure 6).

FP Results: The prediction boxes are at an incorrect part in the
image or further away from the vicinity of fatigue crack initiation
areas (as shown in Figure 6).

FN Results: No FCISs are detected in the images.

The statistical numbers of TP, FP, and FN are used for
calculating the accuracy (A), precision (P), recall (R), and
F1 score.

The accuracy represents the number of prediction boxes that
are correct among the sample numbers. It is a quick index to
determine the general performance of models.

A � TP

TP + FP + FN
(2)

The precision is the proportion of correct positive
identifications among all the prediction boxes.

P � TP

TP + FP
(3)

Recall is the proportion of correct positive predictions made
from all the FCISs in the testing dataset. It can be considered as
the sensitivity of the models in detecting FCISs, i.e., a higher R

FIGURE 5 | Schematic of the overall architecture of FPN-based faster R-CNN.

FIGURE 6 | Examples of TP (green boxes) and FP results (yellow boxes).
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value indicates a stronger ability to detect FCISs under all
conditions.

R � TP

TP + FN
(4)

The F1 score is the harmonic mean of the combined precision
and recall. A good F1 score (approaching 1) means that the model
is less affected by false results.

F1 � 2 × R × P

R + P
(5)

All the above evaluation metrics vary with the changes in the
confidence threshold set. The confidence threshold is the lower
boundary of the confidence score of an object bounding box
below which the results are removed. To obtain high recall values,
which means that the TP predictions should be as accurate as
possible, a low confidence threshold of 0.1 should be set to ensure
that we would not miss any TP results that have low confidence
values. A high threshold of 0.6 was used for comparison.

RESULTS AND DISCUSSION

Model Accuracy
Table 2 gives a comparison of the performances of the three models
at thresholds of 0.1 and 0.6. The three models are namely the VGG,
ResNet, and FPN models. Remarkable improvements in the
detection performance can be seen compared with our previous
study on training a similar model from scratch using the DSOD
algorithm (Wang et al., 2020). In the previous study, our best result
was 22.1% in accurately detecting FCISs with just one bounding box
and 24.0% for no valid results (i.e., FN results). Comparatively, even
theVGGmodel, which exhibited a lower performance, could achieve
ratios of 81.0 and 84.8% in accurately detecting FCISs with one
bounding box at thresholds of 0.1 and 0.6, respectively.

At both the thresholds, we see that the ResNet model presents
the best performance in terms of both the accuracy (0.839 and
0.959) and precision (0.757 and 0.835). The accuracy of the
models is very close to the advanced studies on the
applications of using artificial intelligence to solve material
problems (Hemath et al., 2020; Kushvaha et al., 2020). Since
there are no true negative results, higher accuracy values mean

that the ResNet model has a lower portion of false results (FP and
FN) among the observations, and higher precision values hint
that the portions of FP were lower for the ResNet model.

The FPNmodel is slightly superior in terms of the recall (0.917
and 0.900) among the three methods, indicating that it can detect
more accurate FCISs from existing FCISs in the testing dataset.
The F1 score helps evaluate which model has a better overall
performance in terms of both the precision and recall. Although
the ResNet model achieves the highest F1 scores (0.862 and
0.910), which are just marginally higher than those of the FPN
model (by 0.006) at both threshold values, the overall
performances of the ResNet and FPNmodels are nearly identical.

The superiorities of the two models in terms of the precision
and recall can help determine their application scenarios. If
applications require a model that can recognize more FCISs in
the images, the FPN model with higher recall values will be
preferable; if the applications require highly certain results, the
priority selection is the ResNet model. The VGG model is less
competitive as all the evaluation metrics were the lowest.

The variations in the metrics between thresholds of 0.1 and 0.6
are compared in Figure 7. As the threshold increased from 0.1 to 0.6,
the evaluation metrics of the three models improved except for the
recall. The VGGmodel shows more distinct improvements in terms
of the accuracy, precision, and F1 score, but a more significant drop
in the recall value compared to the other twomodels. There is always
a tradeoff between the precision and recall as the confidence
threshold varies. Thus, the threshold values should be chosen
depending on the application requirement.

None of the three models are excellent for all types of FCISs,
i.e., they perform well at detecting some FCISs but not so at
detecting others; examples are given in Figure 8. Hence, it would
be helpful to try different models when no TP results can be
obtained using the employed model. Comparing Figure 3 with
Figure 8, we find that some of the unusual FCISs (Figures 8B,C)
can still be correctly detected by at least one of the three models,
indicating that the models can detect features that are rare but
relevant in the training dataset.

TABLE 2 | Summary of elevation metrics of three different models at thresholds of
0.1 and 0.6 (The highest values are boldfaced).

Threshold value Evaluation metrics Model

VGG ResNet FPN

0.1 A 0.612 0.757 0.740
P 0.679 0.839 0.802
R 0.860 0.886 0.917
F1 0.759 0.862 0.856

0.6 A 0.733 0.835 0.809
P 0.917 0.959 0.889
R 0.786 0.866 0.900
F1 0.846 0.910 0.894

FIGURE 7 | Changes in the accuracy, precision, recall, and F1 score of
the three models for thresholds ranging from 0.1 to 0.6.
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Training Loss
As it has been known, the loss function can extract all aspects of
a model down into a single number, which allows the models to
be evaluated and compared. Thus, loss value is an indicator for
evaluating the performance of a model. For a perfect model, the
loss is zero. As shown in Figure 9, if we plot the loss curves as a

function of the entire training cycle (5,000 epochs), the
variation tendency is compressed and hidden. Thus, the loss
was replotted against only 50 epochs for each model (as shown
in the small windows) to amplify the changes. The loss values
can be used to describe how closely the values predicted by a
model match the true values of the problem (Goodfellow et al.,

FIGURE 8 | Examples of undetected cases: (A) only undetected by the VGG model; (B) only undetected by the ResNet model; (C) only undetected by the FPN
model; (D) only correctly detected by the FPN model; (E) only correctly detected by the ResNet model; and (F) only correctly detected by the VGG model.
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2016). For an ideal model, we can expect a reduction in the loss
after each, or several, iteration(s)/epoch(s). For all the models, a
sharp drop was found at the first epoch, followed by a gradual
decline, eventually leading to stable oscillations. The stable
oscillations started between 10 and 20 epochs within small
amplitudes and are likely due to the small batch size.
Although the small batch size leads to noise in the gradient
estimation, the noise is crucial to avoid sharp minima, which
could lead to poor generalization for deep learning (Keskar
et al., 2016). A lower loss indicates that the model made fewer
errors on the data. Thus, the training process finally gives a
lower loss, indicating a better model. The lowest average value
of the loss, approximately 0.106, in the stably fluctuating region
was for the FPN model (as shown in Figure 9).

Calculation Efficiency and Cost
From the perspective of practical applications, the calculation
efficiency and cost should be considered, since high requirements
in terms of the time consumption, memory cost, and space
occupancy would restrict a model when it comes to real-time
applications or in the case of devices with a lower calculation
capacity.

The calculation efficiency is evaluated using the total training
time for 5,000 epochs and the average detection time per image
(Table 3); the former reflects the time required for training a new
model with a new dataset, and the latter can be used to evaluate
whether a model can be implemented for instant scenarios, such
as on-site detection of FCISs, when using microscopy techniques.
The ResNet model required the least amount of training time,
approximately 118 h less than that required for training the FPN
model. With the GeForce GTX 1060 GPU (6 GB of memory), all
the three models could instantaneously make detections within
0.15 s per image, and the VGG model was the fastest in terms of
the detection speed. The subtle difference between the average
detection time cannot be used as a decisive index for model
selection unless a considerable number of images need to be
processed.

Table 4 summarizes the memory space and model size required
for the training models, pre-trained model sizes, and video memory
consumption during detection. The pre-trained model size of the

FIGURE 9 | Comparison of loss during training.

TABLE 3 | Average training time and average detection time per image required by
the three models.

Model Training time (5,000
epochs)/h

Average detection time
per imagea/s

VGG 194.9 0.11
ResNet 171.2 0.15
FPN 289.7 0.14

aThis time includes the time used for detection and annotation, but does not include the
time required for loading the model and configuring the parameters.
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VGG-16 model was nearly three times those of the other twomodels,
leading to a larger final VGG model. Typically, for the same input
data, a larger model size means a higher number of parameters in the
deep neural network. Canziani et al. (2016) reported that VGG-16
requires more parameters [138M parameters (Simonyan and
Zisserman, 2014)] than ResNet-101 [44.5M parameters (Yu et al.,
2017)] trained on ImageNet and uses larger feature sizes in many
layers, making it computationally costly.

Although the FPN and ResNet models have similar sizes, the
FPN model required more memory for training, indicating a
greater number of computations because of the additional
intermediate variables involved. On the other hand, the
ResNet model is at a disadvantage in terms of the memory
usage for detection, particularly compared with the VGG model.

SUMMARY

The three models were compared in terms of the accuracy,
training process, calculation efficiency, and memory cost.
The following are their features for FCIS detection:

VGG Model
It was the most expensive model for training and exhibited the
lowest performance in terms of the detection accuracy among the
three models. It was advantageous in terms of the detection time
and memory cost.

ResNet Model
It showed the best performance in terms of the detection accuracy
with the minimum model size and training memory cost. The
only drawbacks were the relatively high detection memory cost
and slightly longer detection time.

FPN Model
Its detection performance was largely similar to that of the ResNet
model. However, the model outperformed in terms of the recall. Its
calculation cost was quite similar to the ResNetmodel as well. Thus, if
the application requires a higher performance in terms of the recall,
this model is superior to the ResNet model. It also performed best for
training, as the average loss value was the lowest among the three.
However, it was time-consuming for training a new dataset.

The results show that all the three models can be trained
thoroughly to obtain good or even desired accuracies for real-time
FCIS detection. The relatively complex architecture of the faster

R-CNN demands more memory for detection, leading to certain but
not extremely high requirements on the processors. In applications
for which high-capacity computers are available, e.g., computers
attached to microscope for imaging, they can be developed as
modules and embedded into the microscope software packages for
a quick FCIS detection.

Currently, the fast R-CNN-based models cannot be employed for
small devices, such as smartphones, because of the relatively large
model size and memory requirement. However, solutions could be
developed using simpler algorithms as the backbone and feature
extractor, or simply by using a single state-of-the-art algorithm, albeit
with a lower detection accuracy, which has been proven in some
studies (Canziani et al., 2016; Sehgal and Kehtarnavaz, 2019; Zhang
and Deng, 2019; Zhu and Spachos, 2019).

This work has two limitations. The first one is that our training
dataset was not general enough to cover all types of fatigue surfaces of
metallic compounds. The possible solution to this problem is to
collect more annotated data during the implementation of the FCIS
detection module and then update the module for improved
generalization with the added data. The other limitation is that
the number of transfer learning algorithms evaluated was low,
hindering the discovery of more possibilities.

CONCLUSION

This paper presented a comparative work on three transfer learning
algorithms using the faster R-CNN as the backbone for detecting
FCISs. The three faster R-CNN-based algorithms, namely VGG-16,
ResNet-101, and FPN, were used as feature extractors to share the
features extracted from ImageNet. All the three models showed
remarkable improvements in the detection accuracy compared with
our previous study on training a similar model from scratch,
indicating the underlying benefits of transferring different
semantic features for detecting abstract features such as FCISs. A
comparison between the three models in terms of the accuracy,
precision, recall, and F1 score showed that the feature extractor with
a deeper architecture (ResNet-101) was more efficient in improving
the accuracy of the transfer learning models. The overall detection
performances of the ResNet and FPN models were similar, with
subtle advantages in terms of the precision and recall, respectively.
The ResNet model exhibited a better performance in terms of the
training time and memory cost compared to the FPN model,
whereas the FPN model was better trained because of the lower
average loss. Although the VGG model exhibited a lower
performance in terms of the detection accuracy among the three,
it outperformed the others in terms of the detection time and
memory requirement.

TABLE 4 | Memory size, model size and pre-trained model size of three models.

Model Pre-trained
model size (MB)

Final
model size (GB)

Training memory (GB) Detection memory per
image (GB)

VGG model 528 1.10 4.82 2.89
ResNet model 171 0.36 3.67 4.00
FPN model 171 0.46 4.63 3.90

Frontiers in Materials | www.frontiersin.org November 2021 | Volume 8 | Article 75679811

Wang and Guo AI-Driven Fatigue Crack Detection

https://www.frontiersin.org/journals/materials
www.frontiersin.org
https://www.frontiersin.org/journals/materials#articles


Moreover, there was always a tradeoff between the precision
and recall. Increasing the confidence threshold value increased
the accuracy, precision, and F1 score but reduced the recall.
Therefore, the threshold value should be carefully selected
depending on the application requirement.
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