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Strain solitons have been observed statically in several 2D materials and dynamically in
substrate materials using ultrafast laser pulses. The latter case relies on lattice relaxation in
response to ultrafast heating in a light-absorbing transducer material, a process which is
sensitive to the thermal expansion coefficient. Here we consider an unusual case where the
sign of the thermal expansion coefficient is negative, a scenario which is experimentally
feasible in light of rapid and recent advances in the discovery of negative thermal expansion
materials. We present numerical solutions to a nonlinear differential equation which has
been repeatedly demonstrated to quantitatively model experimental data and discuss the
salient results using realistic parameters for material linear and nonlinear elasticity. The
solitons that emerge from the initial value problem with negative and positive thermal
expansion are qualitatively different in several ways. The new case of negative thermal
expansion gives rise to a nearly-periodic soliton train with chirped profile and free of an
isolated shock front. We suggest this unanticipated result may be realized experimentally
and assess the potential for certain applications of this generic effect.
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1 INTRODUCTION

The propagation of strain waves through materials originating from an initial disturbance is of high
interest to a variety of theoretical, experimental, and technological efforts. A practical method of
realizing this context involves use of a laser light pulse incident on an opaque material surface. The
resultant energy absorption, heating, and subsequent thermal expansion can generate a dynamic
strain profile capable of propagating over macroscopic distances. Early ultrafast laser experiments at
low laser fluence (energy density) generated and subsequently detected acoustic strain pulses and
related this observed sound propagation to the linear elastic properties of the propagation medium
(Thomsen et al., 1984; Eesley et al., 1987; Wright, 1992). As experimentation with ultrafast lasers
advanced, experiments were developed which are sensitive to the nonlinear elastic properties as well
(Hao and Maris, 2001; Muskens, 2004). In particular, strongly pumped materials are observed to
generate solitary solutions called solitons which move at supersonic speeds and do not disperse in
contrast to the weakly-pumped experimental regime. To our knowledge, all such experiments have
been performed on materials with positive thermal expansion (PTE).

For many years, mention of negative thermal expansion (NTE), a materials tendency to shrink
when heated, evoked discussion of liquid water ice expansion responsible for icebergs and the 4 K
temperature window above the ice water phase boundary where phase fluctuations occur. However,
since the late 1990s, many materials have been identified and discovered which have strong NTE
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(Sleight, 1998; Goodwin et al., 2008; Miller et al., 2009; Azuma
et al., 2011; Lind, 2012; Takenaka, 2012; Dove and Fang, 2016; Qu
et al., 2017; Attfield, 2018; Takenaka et al., 2019) over a large
range of temperatures and material compositions. NTE materials
hold promising application potential in stabilizing fiber Bragg
gratings for high-speed telecommunication (Fleming et al., 1997;
Kowach and Ramirez, 2002), substrates for devices which benefit
from controllable stresses, and rigid composite materials with
engineered thermal characteristics through combinations of PTE
and NTE components (Balch and Dunand, 2004; De Buysser
et al., 2004; Lommens et al., 2005; Sullivan and Lukehart, 2005;
Lind et al., 2011). Here we explore the potential use of NTE
materials as strain pulse transducers.

2 STRAIN PULSE PRODUCTION AND
DETECTION IN SOLIDS

Figure 1 shows a typical scheme capable of demonstrating
the development of strain solitons. An ultrafast laser pulse
(∼10–200 fs) delivers energy Q over an area A of a light-
absorbing transducer film (reflectivity R, volumetric specific
heat C) deposited on a substrate. The deposited energy per
unit area (1-R)Q/A is absorbed by the transducer film, first
heating electrons which thermalize with the lattice degrees of
freedom within a few picoseconds. Immediately following
electron-lattice thermalization, heat distributed within the
optical absorption depth ζ drives a depth-dependent
temperature profile ΔT(z), where z is the direction of
propagation into the sample (Matsuda et al., 2015). The
resultant ultrafast heating introduces a sudden thermal stress
within the illuminated volume σT � −3BαLΔT where B is the bulk
modulus and αL is the linear coefficient of thermal expansion
(CTE) (Hao and Maris, 2001; Matsuda et al., 2015). This thermal
stress induces a thermal strain η0 � 3BαL(1−R)Q

ACζρc20
, which depends on

the equilibrium mass density ρ and the sound speed c0 in the
direction normal to the surface, but is also proportional to the
linear CTE αL in a direction perpendicular to the plane of the film.

Here, we consider only transducer films of cubic crystal
symmetry. As observed in many experiments (Hao and Maris,
2001; Wright et al., 2001; Muskens et al., 2004; Péronne and
Perrin, 2006; Schmidt et al., 2008; Wang et al., 2010; Péronne
et al., 2017), this initial strain profile enters the underlying
substrate and evolves as a propagating strain wave which can
be detected after propagation over macroscopic mm-lengths
scales typical of sample dimensions.

For small amplitude of the initial strain η0, evolution of the
propagating strain pulse η(z, t) moves at the speed of sound with
subtle shape changes which can be described by the dispersion
ωLA( k⃗ ) of the longitudinal acoustic wave appropriate in the
regime of linear (Hooke’s law) elasticity. For larger amplitude
of the initial strain pulse, where nonlinear elastic properties of the
substrate material govern strain evolution, solitons can be
observed after propagation through the substrate. These
phenomena are sensitive to the nonlinear elasticity, sound
wave dispersion, and density and can be described
quantitatively in this context using a one-dimensional
Korteweg-deVries equation (Korteweg and de Vries, 1895;
Gardner et al., 1974; Whitham, 1999; Debnath, 2007):

zη

zt
+ C3

2c0ρ
η
zη

zy
+ c

z3η

zy3
� 0 (1)

Here, C3 is the appropriate nonlinear elastic parameter, c
quantifies the curvature of the acoustic dispersion
ωLA( k⃗ ) � c0k − ck3 + . . ., and y is a co-moving spatial
coordinate which moves at the sound speed c0: y � z − c0t.
A key feature of the solutions of Eq. 1 is the emergence of
solitons, which are local regions of high density which move at
supersonic speeds and propagate without distortion. Below we
present numerical solutions (Landau and Pez, 2018) of
Equation 1 using various initial strain profiles
corresponding to a transducer with conventional positive
(PTE) or negative (NTE) thermal expansion and substrate
parameters corresponding to sapphire with strain wave
propagation along the 100 direction, a specific case where
much experimental work has been done (Hao and Maris, 2001;
Wright et al., 2001; Muskens et al., 2004; Péronne et al., 2017).
For the case of conventional CTE in the transducer film, the
initial pulse front is compressive but the detailed shape
depends upon a number of factors. Naively, the
exponentially extinguished profile of the incident laser light
pulse sets up an exponential temperature profile and therefore
an exponential strain profile. However, known effects of
electronic diffusion affect the electron-lattice thermalization
(Tas and Maris, 1994; Wright, 1994) on a similar time scale to
the light absorption in typical laser systems. A recent direct
measurement using ultrafast Sagnac interferometry and a
propagation analysis accounting for acoustic dispersion has
been observed to have a Gaussian-derivative profile (Péronne
et al., 2017):

η(y, t � 0) � −η0
y
σ
e−

y2

2σ2 . (2)

FIGURE 1 | (A) Schematic of PTE film on substrate with laser pulse
incident, then propagating strain pulse through PTE bulk sample, forming a
shock front trailing a set of well-separated solitons. (B) Schematic of NTE film
on substrate with laser pulse incident, then propagating strain pulse
through PTE bulk sample.
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We use this initial strain profile in the simulations presented
here. In real experiments, the transducer film is typically aluminum,
gold, palladium alloys, or other opaque materials with conventional
thermal expansion αL > 0 (Wang et al., 2010). The primary
consequence of a transducer with positive thermal expansion is a
compressive front and η0 > 0, corresponding to negative strain
followed by a dilatational trailing edge. After discussing these PTE
results, we will compare the evolution for the NTE case with η0 < 0.
Numerical solutions toEquation 1with the initial strain profile inEq.
2were performed using a finite difference scheme following (Landau
and Pez, 2018). Here, the first-time step is solved using a forward
difference scheme while the remaining time steps use a central
difference scheme, following other analyses of experimental data
(Muskens, 2004; Mogunov et al., 2020).

The material dependent dispersion and nonlinear parameters used
in the numerical calculation were those for a z-cut (1,000) sapphire
(Al2O3) substrate. In all calculations we used the known parameters
(Hao and Maris, 2001) C3 � −18.3 × 1011 g/(mm s2), c0 � 11.23 ×
106mm/s, ρ � 3.98 × 10–3 g/mm3, and c � 3.50 × 10–8mm3/s.

Figure 2A shows that with η0 � + 3.0 × 10–4 the initial profile
shown for 0 ns evolves dynamically according to Equation 1 into
a linear-sloped shock front near y � 0. In addition, several well-
separated compressive solitons emerge on the supersonic side of
the shock front y > 0. The leading solitons are strongest and the
strength decreases linearly with soliton number as the shock front
is approached around y � 100 nm. Under these conditions,
numerical solution of Eq. 1 comports with experiments and

describes well the evolution of an initial strain pulse into a
shock front and a set of supersonic solitons followed by a
dispersive tail - an oscillatory strain profile traveling at
subsonic speeds. These phenomena are labeled in Figure 1
and have been demonstrated in a host of materials (e.g. MgO
(Hao andMaris, 2001), Sapphire (Hao andMaris, 2001; Muskens,
2004), GaAs (Péronne et al., 2017)).

Figure 2B shows that increasing the initial strain amplitude to
η0 � 5.75 × 10–4 increases the number of solitons produced,
steepens the shock front, and extends the dispersive tail. The
increase in the number of solitons is expected from theoretical
grounds where the number of solitons can be related to the
number of bound states of a Schrodinger equation whose
potential shape is set by the initial strain profile (Gardner
et al., 1974; Debnath, 2007). Since increasing the initial strain
profile effectively deepens the potential, more bound states and
therefore solitons are expected. The initial strain profiles
considered here are shown as the t � 0 ns traces in Figures
2A,B, 3A,B.

3 RESULTS: STRAINWAVES PRODUCED IN
MATERIALS WITH NEGATIVE THERMAL
EXPANSION
Recent discoveries in synthesis of materials with low and negative
thermal expansion in awide variety ofmaterial contexts hasmotivated

FIGURE 2 | Evolution of strain pulses generated in materials with conventional thermal expansion for initial strain amplitudes (A) η0 � +3.0×10–4 and (B)
η0 � +5.75 ×10–4.
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us to explore how the production of solitons would be impacted by the
case αL < 0. There is much interest in systems which exhibit this
remarkable material behavior, particularly because strong NTE has
been observed in the vicinity of low-temperature phase transitions. For
example, insulating perovskite ScF3 appears to have an incipient
structural instability (Handunkanda et al., 2015; Wendt et al., 2019;
Bird et al., 2020) while semiconducting Sm1−xYxS (Takenaka et al.,
2019; Mazzone et al., 2020) shows an unusual magnetic transition at
low temperature. Experiments of the type proposed here are
nondestructive and sensitive to other lattice-related materials
properties and may benefit NTE research in certain contexts.

Specific candidates of opaque NTE films include metallic
perovskite ReO3 (Chatterji et al., 2009a; Chatterji et al., 2009b;
Rodriguez et al., 2009), semiconducting Sm0.8Y0.2S (Takenaka
et al., 2019; Mazzone et al., 2020), and insulating Si (Shah and
Straumanis, 1972) or CdTe (Greenough and Palmer, 1973;
Jovanovic et al., 2014) at low temperature at pump photon
energies exceeding their band gap (1 and 1.51 eV at 300 K
respectively (Bludau et al., 1974; Jovanovic et al., 2014)). Given
recent advances in high-harmonic generation of laser sources,
any NTE material could be considered if the photon energy
exceeds the candidate material band gap. For the sake of
exploring the physics of soliton evolution from NTE
transducers, we assume the substrate would again be sapphire
oriented along the 100 direction and we repeat the calculations of
Figure 2 with η0 < 0 describing the initial strain pulse. Physically

this means the initial pulse has a dilatational/low density front
and compressive/high density tail.

Figure 3 shows results of KdV evolution of a strain pulses
produced from a NTE transducer with the same magnitudes as in
Figure 2. Both PTE and NTE cases produce a similar extended
dispersive tail for y < -300 nm and clearly produce solitons. An
exact correspondence is expected between the number of solitons
in the NTE and PTE cases because the number of Schrodinger
bound states of the initial strain profiles, which are related by a
simple mirror reflection around y � 0, are exactly the same.
However, strong differences in both the form of the shock front
and distribution of solitons are apparent. For example, the soliton
train in the PTE case emerges from the leading edge of the shock
front discontinuity while for the NTE case solitons emerge from
the back of the shock front. As for the case of a PTE transducer,
several isolated supersonic solitons are produced within a few 10 s
of ns. However, unlike the PTE case, they appear to merge
continuously with the oscillatory tail and appear without a
clearly isolated shock front.

4 SECTION: FITTING SOLITONS FOR PTE
AND NTE CASES

The KdV equation permits analytic expressions describing
isolated solitons and in this section we apply these to our

FIGURE 3 | Evolution of strain pulses generated in materials with negative thermal expansion for initial strain amplitudes (A) η0 � −3.0×10–4 and (B)
η0 � −5.75 ×10–4.
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numerical solutions to determine and compare the distribution of
solitons produced by NTE and PTE transducer films.

The KdV Eq. 1 has as solutions

η(y, t) � ηssech
2

��
ηs

√ (y − ys)
w

( ) (3)

where ηs is a measure of the strength of the soliton, ys is
the co-moving coordinate position where the soliton peaks,
and w � ���������

24ρc0c/C3
√

is a material-dependent length which
quantifies the soliton width. Specifically, the half-width-half
maximum of the free soliton in Eq. 3 is
δ � warccosh

�
2

√
/

��
ηs

√ ≃ 0.881w/
��
ηs

√
. We model the shock

front as a linear background with slope s which terminates at
a critical value of the co-moving coordinate yc. We sum each
soliton contribution and the shock front in a nonlinear fit at late
times and in the y range where solitons appear. Each soliton is
parametrized by its strain ηs and the global material-dependentw �
0.143 nm was fixed in both fits. The shock slope and intercept yc
was allowed to adjust between the NTE and PTE cases.

Figure 4 shows the result of the fitting procedure and
particularly Figure 4C compares the strain parameter ηs versus
soliton number as labelled in Figures 4A,B. Interestingly, the
leading soliton (labelled 1) has similar strength in the PTE and
NTE cases, but for the PTE case, the strength linearly decreases to
zero as a function of soliton number, a phenomenon pointed out
long ago (Zabusky and Kruskal, 1965). In contrast, the NTE
transducer case shows that ηs is more uniform and so the
soliton speed U � c0 + C3ηs/6ρc0 is also more uniform within
the experimentally-accessible range considered here. This reveals a
potential advantage of NTE transducers in retaining a periodic
strain texture capable of propagating over long distances in
functional acousto-optic devices.

5 DISCUSSION

Our simulations reveal qualitative differences in soliton trains
generated from NTE and PTE transducer films. The phenomena
are expected to be found for any NTE film on any substrate or

within a single crystal of NTE material. Here we address
possibilities for applications.

The ability to create well-defined propagating strain textures on
nanometer length scales and nanosecond time scales portends
functionality in novel electronic and acoustic device construction.
Recent work analyzing the transient spectral response of excitons in
GaAs to incident solitons (Scherbakov et al., 2007) has shown
definitively an electronic-soliton coupling is present in this
common device material. Recent investigations in 2D materials
(Alden et al., 2013; Edelberg et al., 2020) have shown that static
strain solitons form under certain conditions related to twisted van der
Waals stacking patterns. These static solitons could be used to confine
electronic states and one can consider dynamic soliton trains and the
interaction between static and dynamic solitons may be sufficient to
manipulate the charge states in novel device schemes.

Another clear feature of NTE-generated pulse trains is that they
are more periodic than their PTE-generated counterparts. Figure 5
compares the spatial Fourier transforms of the pulse trains at
different times and reveals that at early times, the NTE-generated
pulse train is comprised of spatial frequencies much higher than in
the PTE case, with significant spectral weight at Fourier wavevectors
as large as k ≃ 0.4 nm−1, corresponding to fine periodic textures with
space of order 2π/k ≃15 nm. This length scale corresponds to
industry-leading features in integrated circuits and may present
an inroad to novel devices. Furthermore, one may consider use of
the fine periodic strain texture in potential applications related to
transient diffraction gratings appropriate to photons in the vacuum
ultraviolet and soft X-ray regimes. Currently, static diffraction
gratings are constructed from conventional photolithography or
novel contact-mode lithography methods (Gleason et al., 2017). If
an appropriately conditioned periodic train of strain solitons can be
produced simultaneously with arrival of an X-ray pulse, one may be
able to produce a transient grating with configurable characteristics
from an atomically smooth surface.

Importantly, the evolution of strain is related to the linear
and nonlinear elasticity of the propagation medium. Here we
have presented results for an opaque transducer film and
compare the results of propagation through sapphire.
However, similar considerations could model the case of an
opaque single crystal specimen with unusual NTE. In the

FIGURE 4 | Fits of the simulated strain profile at t � 80 ns and |η0| � 5.75×10–4 to isolated solitons on a linear background for the case of (A) a PTE transducer and
(B) a NTE transducer. The material-specific parameter w was held fixed according to the parameters of the simulation at 0.14324 nm appropriate to sapphire 100
longitudinal propagation. (C) shows the distribution of strain over the solitons for each case.
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pursuit of mechanistic descriptions of NTE capable of leading
materials discovery efforts, anomalous behavior of such elastic
parameters is of interest. In cases such as ScF3 and Hg2I2, the low-
temperature behavior has been difficult to study due to proximity
of a ferroelastic instability and a competing structural phase.
Some methods of studying elasticity such as resonant ultrasound
spectroscopy may be too invasive to be effective and the relatively
weak perturbations of ultrasonic pulses are promising at
addressing this experimental challenge.

6 SUMMARY AND CONCLUSION

In summary, we have provided the first assessment of the use
of NTE materials as acousto-optic transducers for strain
wave generation. In the case of strong, nonlinear acoustic
response, unconventional strain textures are anticipated
when the strain is generated from a NTE transducer film in
comparison to the conventional PTE type where many
experiments have been performed. In particular, while both
the NTE and PTE cases ultimately produce the same number of
solitons as anticipated, the NTE case delivers a soliton
train with more uniform distribution of strain over the
solitons present and significantly higher spatial frequencies
at early times. Furthermore, while nonlinear strain profiles
generated from conventional PTE transducer films have
always been observed with clear separation of the shock
front and solitons, in the NTE case the shock front and
soliton train interacts strongly over the entire
experimentally accessible time scale for the case we

have considered. We have suggested several technologically
relevant applications for the effects observed. However,
while we have considered a prevalent case of a thin
transducer film on a z-cut sapphire substrate, solitons have
been observed in many other applicable materials, suggesting
more diverse phenomena beyond the scope of this work.
Future efforts are needed to experimentally observe NTE
solitons as well as understand their interactions and
variability across materials classes.
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FIGURE 5 | Fourier transform of strain pulses generated in materials with (A) positive thermal expansion for initial strain amplitude 5.75 ×10–4 and (B) negative
thermal expansion for initial strain amplitude -5.75 ×10–4.
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