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Transformer neural networks have become widely used in a variety of AI applications,
enabling significant advances in Natural Language Processing (NLP) and computer vision.
Here we demonstrate the use of transformer neural networks in the de novo design of
architected materials using a unique approach based on text input that enables the design
to be directed by descriptive text, such as “a regular lattice of steel”. Since transformer
neural nets enable the conversion of data from distinct forms into one another, including
text into images, such methods have the potential to be used as a natural-language-driven
tool to develop complex materials designs. In this study we use the Contrastive Language-
Image Pre-Training (CLIP) and VQGAN neural networks in an iterative process to generate
images that reflect text prompt driven materials designs. We then use the resulting images
to generate three-dimensional models that can be realized using additive manufacturing,
resulting in physical samples of these text-basedmaterials. We present several such word-
to-matter examples, and analyze 3D printed material specimen through associated
additional finite element analysis, especially focused on mechanical properties including
mechanism design. As an emerging new field, such language-based design approaches
can have profound impact, including the use of transformer neural nets to generate
machine code for 3D printing, optimization of processing conditions, and other end-to-end
design environments that intersect directly with human language.

Keywords: transformer neural nets, deep learning, mechanics, architected materials, materiomics, de novo design,
hierarchical, additive manufacturing

INTRODUCTION

Materials design has been an endless Frontier for science and engineering, especially translating
insights and geometries from biology into engineering (Buehler, 2010; Qin et al., 2014; Wegst
et al., 2015; Palkovic et al., 2016; Buehler and Misra, 2019), and interacting with human design
input that often drives conceptualization and ideation. Indeed, de novo materials design can be
challenging, and complex geometric aspects as evolved in nature are difficult to realize in
engineering using rigorous methods, including the interface with human descriptions. With the
advent of deep learning, and advanced network architectures such as GANs, transformer/
attention models, a new era is beginning that is changing the way we model, characterize,
design and manufacture materials (Guo et al., 2021).
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Indeed, researchers have long sought novel approaches to
develop designs that can build on natural evolution and ideation
(Cranford Buehler and Markus, 2012). One such method is to use
bioinspired design; however, such translation can be challenging.
Recently, neural nets have been used to develop novel nature-
inspired materials, such as materials developed frommusic or fire
(Giesa et al., 2011; Yu et al., 2019a; Milazzo and Buehler, 2021). In
these approaches, neural nets provide a powerful and systematic
approach to translate information across manifestations, offering
a systematic and consistent approach for such traversions. This
can complement conventional approaches, either based on
traditional bio-inspired mimicking or category theoretic
approaches (Giesa et al., 2011), (Spivak et al., 2011; Brommer
et al., 2016; Milazzo et al., 2019). Neural networks have also been
used to predict complex stress and strain fields in hierarchical
composite materials, enabling the direct association of
mechanical fields from geometric or microstructural input
(Yang et al., 2021a), (Yang et al., 2021b). However, many if
not all of these examples rely on either an algorithmic input or a
direct mimicking approach to learn from nature, and is devoid of
providing human-readable natural language input into the design
process. Such human input remains, to date, largely in the realm
of the natural creative process, and interfacing with rigorous
computational algorithms is not yet well developed. We provide
an advance towards that goal in this paper.

Transformer Neural Nets
Transformer neural networks have become widely used in
various AI applications, enabling significant advances in
Natural Language Processing (NLP) and vision developments
(Guo et al., 2021). In fact, in recent years, inspired by the concept
that humans tends to pay greater attention to certain factors
when processing information, a mechanism referred to as
“attention” has been developed and applied that directs neural
networks to focus on important parts of the input data, as
opposed to consider all data equally (Bahdanau et al., 2015),
(Chaudhari et al., 2019). Based on this idea, Google first built a
model known as the “transformer” neural net based on such an
attention mechanisms, completely dispensing with recurrence
and convolution methods (Vaswani et al., 2017). It has been
found that such transformer neural nets can achieve great

success in various NLP settings including language
translation. With the capacity of facilitating greater
parallelization during training, transformers enable the
development of extremely large models including
“Bidirectional Encoder Representations from Transformers”
(BERT) (Devlin et al., 2019) and “Generative Pre-trained
Transformer” (GPT) (Brown et al., 2020). Given these early
successes of transformers in NLP, the networks can serve as
powerful tools for materials design problems, which under many
circumstances, are sequential tasks such as topology
optimization, electronic circuit design, or 3D printing
toolpath generation (Olivetti et al., 2020), (Liu et al., 2017).
We hypothesize that the use of transformers has the potential to
parallelize these tasks and make them computationally tractable,
which opens the door for many complex engineering challenges
that cannot yet be solved today using computational methods.

Apart from NLP applications, recent research showed that
attention mechanisms and transformers can also be applied to
computer vision (CV), serving as an alternative to convolutional
approaches (Wang and Tax, 2016). The well-known pretrained
transformers for images include “DEtection TRansformer”
(DETR) (Carion et al., 2020) for object detection and “Vision
Transformer” (ViT) (Dosovitskiy et al., 2020) for image
classification.

In terms of current applications of transformer neural nets in
materials research, the “Molecular Transformer” model
accurately predicts the outcomes of organic chemical reactions
trained with about millions of data point (Schwaller et al., 2019).
In addition, Grechishnikova et al. considered target-specific drug
design as a translational problem and applied transformers to
generate de novo drugs (Grechishnikova, 2021). However,
because transformer models are relatively data greedy and
expensive to train, transfer learning has been shown to be a
useful tool to build off of trained models. For example, Pesciullesi
et al. (2020) used transfer learning to adapt the original Molecular
Transformer to predict carbohydrate reactions with a small set of
specialized data.

General Concepts in Materials Design
Design of materials has been conducted by humans through eras
of civilization, often conceptualizing an idea, then formulating it

FIGURE 1 | Flowchart of research reported here, translating words to 3D material designs, which can be realized using additive manufacturing, and further
analyzed using experimental testing and/or modeling (e.g., to compute stress and strain fields).
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either as a drawing or creating prototypes, or initiating the
process based on written text or collaborative artistic or
artisan work. The key to this human experience of materials
design is the intersection of language, and thought, and
materialization of these concepts. All material concepts are
typically developed through this text-to-material paradigm.
However, we have not yet had the opportunity to realize such
concepts using conventional computational approaches, even
using neural nets. Computational methods force us to
formulate our idea into a model, or to express it as a set of
numbers, constraints, and ultimately into an algorithmic
representation.

Here we propose that transformer neural nets can address this
gap and for the first time enable a text-to-material translation,
and open a very wide array of opportunities to develop human-AI
partnerships, and material design concepts. Some earlier work
has used NLP methods in various settings, including the mining
of literature to extract optimal processing steps for material
design (Jensen et al., 2019). However, this approach did not
use direct text input to drive the design process; rather, it mined
papers written by humans to extract recipe-type information to
create materials.

As transformer neural nets enable the conversion of text into
other data formats and representations including images, such
methods have the potential to be used as a novel interactive tool
to demonstrate the development of materials designs,
potentially in the future, relying on voice input and the
design of novel computer aided design software. In this work
we use the CLIP (Radford et al., 2021) and VQGAN (Esser et al.,
2020) neural networks to generate images that reflect materials
designs, based on an integration of CLIP and VQGAN
(Crowson, 2021) similar to the Big Sleep method (details see
Materials andMethods). There are wide ranges of artistic uses of
such methods (Crowson, 2021), but they have not been
employed in engineering design, nor in the creation of
physical objects or materials.

Outline of This Paper
In this study we demonstrate the use of a transformer neural
network in the design of materials. Figure 1 depicts a flowchart of
approach reported here, translating words—human readable
descriptive text—towards 3D physical material designs. We
proceed with various examples of the approach, describe how
we convert the predicted images into 3D models, use additive
manufacturing to print them. We then report experimental and
computational analysis of mechanical properties to assess the
viability of the designs generated.

RESULTS

Figure 2 shows a flowchart that illustrates how transformer
neural networks are used to facilitate text-to-image translation
at high resolution. This is achieved through the integrated use
of the VQGAN transformer neural net, employed here as the

FIGURE 2 | Introduction to transformer neural networks, enabling text-
to-image translation at high resolution, used here to develop microstructures
for de novo architected materials, following the pairing of generator-classifier
as suggested in (Crowson, 2021).

FIGURE 3 | Example images generated from various text input. As the
examples show, interesting material designs can result, which can be further
analyzed and used.
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image generator, and CLIP as an image classifier. These two
models work in tandem over iterations to generate images that
successively match a given text prompt as the solution

converges. Both CLIP and VQGAN models are pretrained
on huge datasets, thus providing great capacity of
generalization and high robustness. Therefore, we are able

FIGURE 4 | Text-based image generation (A), processing into a black-and-white mask using smoothing operations (B), and generation of periodic material design
using geometric operations (first: horizontal flip, then vertical flip of the original and initially flipped design, yielding a periodic structure—see inset on the right with letters
“ABC”) (C). Panel (D) shows a close-up view of the 3D printed material. More 3D printed structures are shown in Figure 6.
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to use those models directly to translate texts to images for
materials design.

We proceed to demonstrate the use of the CLIP-VQGAN
model employed here in realizing material designs. The design
process starts from text prompts that describe the desired
material design. Figure 3 shows various example images
generated from various text input. As the examples illustrate,
interesting material designs can result from given text prompts.
In the following sections we will systematically explore these and
propose ways to develop physical material samples from these
“written words” that act as drivers for the design process. The
examples related to spider web and silk indicate that the approach
can be used to design structures that resemble biomaterials.
Furthermore, when the text input is “a porous scaffold of
bone tissues,” the integrated approach provides an image with
combined features of bones, porosity and matrix-like shape. The
outcome implies potential applications in the field of tissue
engineering. As these examples show, the method opens new
creative approaches to identify radical new material concepts.

As can be seen from the examples in Figure 3, while the
material designs generated by the algorithm provide a wealth of
structural details, they typically require further processing and
selection, for the purpose of physically manufacturing a material
or selecting specific functions. We use tools from image
processing to achieve this goal. Figure 4 summarizes results of
image generation (Figure 4A) based on the text prompt “a regular
lattice of steel”, processing the resulting image into a black-and-
white mask using smoothing operations (Figure 4B), and
generation of periodic material designs using geometric

operations (first: horizontal flip, then vertical flip of the
original and initially flipped design, yielding a periodic
structure—as seen in the inset on the right exemplified with
letters “ABC”) (Figure 4C). Figure 4D shows a close-up view of
the resulting SLA 3D printed material, where one can see the
capacity of the additive method to reproduce fine details of the
design.

The resulting materials can be further analyzed using other
computational methods, for instance to extract stress-strain
distribution or to predict certain functional properties.
Figure 5 shows stress field predictions based on a cGAN
method developed by the authors that enables us to predict
mechanical tensor field data directly from microstructural
designs (Yang et al., 2021a). Uniaxial tensile tests in different
directions are tested considering the anisotropy of the structure.
In the tensile test along the x direction, the long and slim islands
in themiddle show relatively high stress concentration as the local
material density is low and the islands are aligned with the
loading direction. By contrast, when the structure is stretched
along the y direction, the high stress region is witnessed more at
the left and right edge. Such an integrated use of neural nets to
generate material designs, and using another model to assess
mechanical features, can form the basis for systematic
optimization and adaptation of designs over multiple iterations.

Figure 6 depicts realizations of the architected material shown
in Figure 4 (panel A: resin based printing using SLA, panel B,
Fused Deposition Modeling (FDM) based printing). The design
in the top row of Figure 4A (is generated without a covering layer,
whereas the design on the bottom reflects a sandwich design (a

FIGURE 5 | Stress fields predictions (in MPa) of the proposed architected material shown in Figure 4 predicted by cGAN approach (Yang et al., 2021a). Two
different loading conditions are tested (uniaxial tension test in x and y directions, respectively). In the tensile test along x direction, the predicted stress field is σxx while in
the test along y direction, the stress is σyy When the structure is loaded along the x direction, the high stressed regions are mainly the long and slim islands in the middle,
while the stress concentrations are more pronounced at the edges for tension along the y direction. The regions in the structure that are aligned with the loading
direction or with higher axial density are more likely to take large loads, as suggested by the results. Both unit cell and the larger periodic panel are investigated to
demonstrate the idea of hierarchical design.
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flat top/bottom layer is added). These examples demonstrate how
the design concepts can be adapted further to generate
meaningful engineering structures.

We move on to other examples, especially focused on
architected materials that feature mechanical mechanisms.
Figure 7A shows an analysis of the effect of slight variations
of input text, yielding small changes in the material design. The
use of the phrase “black and white” in the text input yields a
grayscale image, whereas the inclusion of terms such as
“periodic,” “lattice” and “high contrast” generates designs that
have clear distinct phases that are important for further
processing. To demonstrate that process, Figure 7B shows
how the design can be used to extract small sections of the
large image that show interesting material features. These can be
utilized in further analysis.

Figure 8 shows an analysis in which we exploit one of the
material designs shown in Figure 7 and focus specifically on the
extraction of a structure with a continuous geometry and material
islands (i.e., microstructural features that are not connected to
others) removed. The final design is then printed using
polyurethane, and used for mechanical testing. Notably, the
resulting design represents a simple topological gripper
mechanism (e.g., for soft robotics applications), as shown in
Figure 9 from both a computational and experimental perspective.

Figures 9A,C show a series of Finite Element simulations to
assess the mechanisms, including a direct comparison with
experiment as shown in Figures 9B,D, providing a
quantitative analysis of the deformation. We find that when
one handle is twisted clockwise and the other counter-
clockwise, the upper domain of the structure opens up and the
lower domain closes down shown in Figures 9A,B. For the
diagonal compression in Figures 9C,D, the loading not only
leads to shrinkage of the main body along the diagonal, but also a
twisting or rotation of the two handles, showing an interesting
deformation mechanism. Movies M1-M2 show the complete
process of the deformation given two different loading
conditions based on the FEM results, and Movies M3-4 show
results for the same loading condition as observed in experiment.
There is good agreement between the computational prediction
and the experiment result. Supplementary Figure S1 shows
snapshots of various other material architectures extracted
from the source images shown in Figure 7B, offering insights
into the diversity of designs one can achieve.

Figure 10 shows stress field predictions. Similarly, as reported
in Figure 5, two different loading conditions are investigated for
the anisotropic structure. As the stress fields show, in the uniaxial
tension test along x direction, the two symmetric horizontal lines
feature higher stress levels. By contrast, when the loading is along
y direction, the vertical X-shape regions bear the most load.
Similar as in Figure 5, the stress concentration mechanism
suggests that the continuous regions aligned with the loading
direction are most essential parts in resisting deformation.

Supplementary Figure S1 shows the results of SLA based
resin 3D printing process (slicing, top; printing, bottom).
Supplementary Figure S2 shows the results of FDM based 3D
printing process, showing that the materials can be constructed
using a variety of methods.

DISCUSSION AND CONCLUSION

In this paper we demonstrated the use of transformer neural nets
to enable the conversion of text input to “describe” a material into
models and 3D printed physical specimen. Such methods have
the potential to be used as a natural-language-driven tool to
develop complex materials designs, with broad implications as a
novel design approach.

Indeed, future research may build on this work in numerous
ways. For instance, the capabilities of vision transformer neural
nets to generate 3D image renderings could be used to output
realistic geometry (e.g., STL) files directly, based on perspective
changes already realized for conventional imagery, and even offer
automatic rendering into 2D images or for virtual reality
applications. Future work could direct text input into other
forms of representations, such as 3D geometries (e.g., volume
meshes, or surface meshes (Brommer et al., 2015)), or even
directly into 3D printing instructions. The diverse
transformations that can be achieved by transformer neural
nets opens many pathways for future developments.

Another important development will be to develop novel
training sets, perhaps based on transfer learning in case of

FIGURE 6 | SLA resin (A) and Fused Deposition Modeling (FDM) (B)
based realizations of the architected material shown in Figure 4. The design in
the top row of panel A is generated without a covering layer, whereas the
design on the bottom reflects a sandwich design (a flat top/bottom layer
is added to mimic a sandwich material design). The results in panel B show
both a single material print (left) and a multimaterial print (orange � soft
material, white � rigid material).
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data scarcity, to offer a directed way to generate novel
microstructures, more specifically targeting microstructural
material aspects and sources for structural information such as
naturally occurring patterns. Transfer learning may reduce the
need for significant datasets, and could be a viable approach to
realize successful material renderings. However, there remain
significant research challenges such as the need for large and
adequate datasets, or the development of proper transfer learning
methods.

The work reported here explored the use of text-driven
architected material design as an explorative tool, without
deliberate optimization. Future work can address that
limitation of the present work. Indeed, building on the work
reported here, the use of adequate objective functions can be a
powerful way to direct design to meet certain design demands. It
can either be complemented to the text input (i.e., the generative
process will be informed by additional constraints), or use a
systematic variation of the text input itself. The use of genetic
algorithms (Yu et al., 2019b), for instance, can be a good way to
offer directed evolution realized in a simulated environment, and
allow the rapid exploration of a wide design space, including
natural language prompts and variations.

In this work we relied solely on existing trained models. In
spite of the use of an already trained model, the results show that
intriguingmaterials designs can be generated using this approach,
and that the generative tool is capable of producing abstract

microstructural designs that can form either regular architected
lattice-like materials (see Figures 4–6, for instance), or yield
mechanisms (see Figures 7–9). The various demonstrations
developed within this study shed light onto the fact that the
learned word associations, and realizations into material designs,
can form the basis for a generic framework that works with pre-
trained models that can be further improved, and adapted,
towards specific material applications and constraints.
However, we still need to be careful when using those large
pretrained base model since many academic terminologies are
not common words or the design may not be easy to describe. In
other words, the existing trained models may lack knowledge for
more delicate materials design purposes which need complex
texts input or rare words input. In this case, we could also use
transfer learning techniques to further tune the pretrained model
with additional data that include necessary information about
materials or designs. Given a well-trained model like the CLIP or
VQGAN model, a small amount of data should readily enable us
to handle more specific design problems.

The contributions of this work to materials research, and
future opportunities, are:

• The work enables a conversion from text input to
microstructure images directly, which can be leveraged to
design materials and further manufacture the generated
design using 3D printing.

FIGURE 7 | Analysis of the effect of slight variations of input text, yielding small changes in the material design (panel A). The lower panel B shows how the design
can be used to extract small sections of the large image that show interesting material features. These can be utilized in further analysis.
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• In future work, the input text can be tuned to contain design
protocol such as constraints (e.g., component material) and
design objectives (e.g., desirable properties). As a result,
designing materials with desirable properties given certain
constraints can be realized, including through the use of
genetic algorithms, or Bayesian optimization (Bock et al.,
2019).

• More generally, the text input can be any sequential data
and the image output can be more than generated
structures. For example, materials represented by
sequential data such as SMILES strings and protein
sequences can be inputted to the neural networks for
predicting 2D energy landscapes or physical properties
(e.g., charge density) that will then be shown as images
or stacks of images (for volume data).

• In addition, the sequential input can not only be the material
itself, but also the design process of materials (such as
machine specific CNC code, e.g., RS-274/G-code) for 3D
printing and layout strategy of a material manufacturing
process. The corresponding output include yield geometries
or physical fields under certain loading conditions (e.g.,
strain and stress).

• Apart from the several examples mentioned above, there are
more potential applications of the idea converting sequences
to images with transformer neural networks and additive
methods.

In conclusion, this study opened a first perspective into
the novel approach of designing materials via text prompts,
and engaging into a genuine human-computer partnership.

FIGURE 8 | Exploiting one of the material designs shown in Figure 7 and extraction of a periodic structure with a continuous geometry and any material islands
removed. The resulting design is slightly compressed in the horizontal direction to achieve a more square-like final design. Moreover, one alteration from the original
design is implemented, where the very thin section at the left/right is thickened slightly for better printability and mechanical stability. The final design is then printed using
polyurethane, and used for mechanical testing. The resulting design represents a simple topological mechanism. Movies M1-4 show results of Finite Element
simulations and experimental analysis, following the analysis depicted in Figure 9. The lower left panel shows the original (bottom) and final design (top), after the
symmetry operations defined in Figure 4C have been applied.
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Such a promise pushes us beyond existing uses of AI
primarily for information gathering and interacting with
computers (e.g., Alexa, Cortana, or Google Assistant) into
materialization of text. It may realize a new “magical”
Frontier where spoken words are materialized through the

integrated use of language, AI, and novel manufacturing
techniques. This partnership between human intelligence,
creativity and knowledge with deep learning tools can form
the basis for exciting new discoveries in science, technology,
and artistic expression.

FIGURE 9 |Mechanism realized through the design, computational (FEM) and experimental validation. FEM results to are shown in panels A and C to simulate the
mechanism under two distinct loading conditions (indicated in image). Experimental results are shown in panels B andD, respectively. Panels A andC snows twisting of
two handles. Panels B and D shows results under compression along the diagonal axis. The von Mises stress (MPa) is visualized in panels A and C to provide a
quantitative analysis of the deformation process. Movies M1-2 show animations of the deformations based on FEM results, and Movies M3-4 shows the
experimental analysis of the same deformation.
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MATERIALS AND METHODS

The methods used in this paper include various deep neural nets,
additive manufacturing, and image-based analysis. We also
perform mechanical analyses using both cGAN approach and
finite element method (FEM), to realize the overall flowchart
depicted in Figure 1.

Contrastive Language-Image Pre-Training
Model
CLIP (Radford et al., 2021) (Contrastive Language-Image Pre-
Training) is a neural network trained on a variety of (image, text)
pairing, to carry out complex image classification tasks. The CLIP
model serves as a classifier to assess whether or not a produced
image meets the target text prompt provided by the user. The
model is designed to perform a great variety of classification
benchmarks with similar “zero-shot” capacity like GPT models.
In other words, there is no need for direct optimization given the
model’s generalization performance and robustness. The model
consists of two encoders to encode images and texts separately
and further predict the correct pairing of the batches. To train the
model, 400 million (image, text) pairs are collected from the
internet in the original work (Radford et al., 2021).

Being tested on more than 30 different benchmark datasets,
the model shows the power of transferring non-trivially to those
tasks and even being competitive compared to existing baseline
models. Thanks to the universality and robustness of the
approach, we here use pretrained CLIP model to evaluate the
generated images from VQGAN given the text inputs, providing
better match between the images and texts. More specifically, the
pretrained CLIP model used in this work is based on one specific
version of VIT named “VIT-B/32”(Dosovitskiy et al., 2020) which
contains 12 neural layers with hidden size of 768. The size of the
multilayer perceptron (MLP) in the model is 3,072 and the
number of attention heads is 12. The total number of
parameters is around 86 million. The “32” in the name of the

model refers to the input patch size and the “B” is in short of
“base” given other variants such as “VIT-L” (“L” for “Large”) or
“VIT-H” (“H” for “Huge”).

VQGAN Model
CNNs can efficiently extract local correlation in an image while
transformers are designed to obtain long-range interactions on
sequential data. The VQGAN model (Esser et al., 2020) aims at
combining the effectiveness of CNNs with the expressivity of
transformers to generate high-resolution images. To link two
different model architectures (CNNs and transformers), the
VQGAN model uses a convolutional encoder to learn a
codebook (similar as the latent vectors) of context-rich visual
parts which is then input to the transformer to extract long-range
interaction within the compositions. The codebook is further
passed to the CNN decoder which serves as the generator in the
GAN to generate the desired image. Like any other GAN models,
a discriminator is finally used to compare the generated image to
the original image. The VQGAN model used in this study has
been trained on the ImageNet (Deng et al., 2010) dataset and used
for generating image candidates given the text description. In
terms of the hyperparameters, the pretrained VQGAN used in
this work has a codebook size of 16 × 16 and the factor of first-
stage encoding is 16.

Integrated Contrastive Language-Image
Pre-Training and VQGAN Model
The integrated model as reported in (Crowson, 2021) is based on
the BigSleep (Komatsuzaki, 2021), (lucidrains/big-sleep, 2021)
algorithm that takes a text prompt and visualizes an image to fit
the text provided. Here, VQGAN is used as an image generator
guided by the CLIP model. It works as follows, whereby VQGAN
is used as the image generator method, and CLIP used as the
scoring method to classify the images produced. Over the
iterations, the algorithm searches for images that match the
provided text prompt increasingly well by tweaking the input

FIGURE 10 | Stress fields (in MPa) of the structure proposed in Figure 8 predicted by cGAN approach (Yang et al., 2021a). Two different loading conditions
(uniaxial tension test in x and y directions, respectively, are shown). In the tensile test along x direction, the predicted stress field is σxx while in the test along y direction, the
stress is σyy . As shown by the stress fields, the anisotropy of the structure lies in different load-bearing parts when the loading is exerted in different directions. In the
uniaxial tension test along the x direction, the two continuous horizontal lines take the most load while loading along the y direction, the vertical X-shape parts have
higher stress concentration. The mechanisms are similar to the that in Figure 5 as the continuous regions aligned with the loading direction are most significant in terms
of load-bearing.
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provided to the VQGAN algorithm. A schematic of the method is
depicted in Figure 2. The input image size is 480 × 480 pixels with
the number of cutouts at 64. The integrated model is trained
around 4,000 iterations for each text input to obtain the
relevant image.

Image Processing and Preparation for
Additive Manufacturing
The primary objective for image processing is to transform a
complex image with multi-channel (or grayscale) data into a
printable geometry. To that end we use colormap operations,
smoothing functions and image processing methods to remove
small image parcels, and/or islands, to generate printable
mechanically functional designs. The target objective is to
yield image data with distinct colors at each pixel that refer to
the material type (e.g., white � void/no material, black �material,
or white � soft material, black � rigid material in Multimaterial
3D printing). All image operations are done using the OpenCV
computer vision package implemented in Python (Bradski, 2000).
Once the basic parameters are set, the model makes automatic
predictions which are generally printable using suitable methods.

Mechanical Analysis Using conditional GAN
To predict the stress field, we use a conditional GAN (cGAN)
approach reported in earlier work (Yang et al., 2021a). As the
original work is aimed at dealing with composites that contain
more than one material, we fill the designs proposed in this work
with an extremely soft materials to serve as models for voids.

This setup enables us to simulate the mechanical behaviors of
those complex and sometimes discontinuous structures which could
be a nightmare for normal FEM simulations. To simplify, both the
stiff (black color) and softmaterial (white color which is the void) are
modeled as linear elastic material since the deformation in the
mechanical test is not large and no hysteresis is taken into
consideration. To model the voids, we set the Young’s modulus
of soft material (1MPa) to be 1% of the stiff material (100MPa). The
data generation and training follow the same strategy proposed in
the author’s previous work (Yang et al., 2021a). The stress fields
under both uniaxial tensile tests can be predicted by 1 ML model
through rotating the geometries by 90°.

Mechanical Analysis Using Finite Element
Method
We use FEM to reproduce and prove the deformation mechanism
shown in the experiment. The simulations are performed using a
commercial Abaqus/Standard code (Dassault Systems Simulia
Corp., 2010). To keep consistence with the ML predictions on the
mechanical fields, a linear elastic material with Young’s modulus
being 100 MPa is used for the material. The design geometry in
STL format is first transferred to SAT format which converts a
mesh body to a solid body using SolidWorks (Dassault Systems).
The transferred SAT file is then imported as a part to the Abaqus
for simulation.

Once the material properties and the geometry are defined, the
structure is meshed with tetrahedral elements (C3D10) using the

default algorithm of Abaqus for 3D stress analysis. In the loading
condition shown in Figure 9A, the displacement amplitudes are
10 and 4 mm along the x direction and y direction, respectively. In
the loading condition shown in Figure 9C, the displacement
amplitudes are 3 and 1.2 mm along the x direction and y direction
respectively. The von Mises stresses are plotted using Abaqus
Visualization. The contour style used is “CONTINUOUS” and
the “FEATURE” option is applied to visible edges. Any legend,
title, state, annotation, compass and reference point are turned off
to exclude useless information but turned on in the
Supplementary Movies.

Additive Manufacturing
We employ additive manufacturing to generate 3D models of the
materials designed from words. 3D files are sliced using Cura 4.9.1
and printed using a Ultimaker S3 multi-material printer and a QIDI
X-Pro printer. Material samples are printed using Ultimaker TPU
and Ultimaker PLA filaments, as well as generic PLA and TPU
filaments in theQIDI X-Pro printer. SLA resin printing is performed
using a Anycubic Photon X printer, whereby STL files are sliced
using Chitubox, and printed using black and transparent resins. The
use of transparent resins, as shown in Figure 6, enables one to assess
the internal microstructure of the architected material.
Supplementary Figure S2 shows snapshots of the SLA resin
printing approach. Supplementary Figure S3 shows snapshots of
the FDM printing approach, including multimaterial printing. Some
complex geometries may require multimaterial printing for support
material, such as PVA.
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