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In order to enhance the corrosion resistance of AZ31magnesium alloy, graphene-modified
oily epoxy resin coating (G/OEP) were prepared on the surface of magnesium alloy. SEM
observations show that graphene has fewer surface defects, and can significantly improve
the surface quality of the coating and reduce defects. FI-TR testing shows that coating are
mainly composed of epoxy resin (polyurethane) and its corresponding curing agent.
Electrochemical testing shows that the coating can provide good corrosion protection
for magnesium alloy. Compared with the corrosion current density of magnesium alloy of
6.20 × 10−7 A/cm2, the G/OEP can significantly reduce the corrosion current density to
6.96 × 10−12 A/cm2. Analysis of the morphology of the coating after electrochemical
corrosion found that graphene can improve the shielding ability of the coating to corrosive
media, and reduce the damage of corrosion to the coating structure, and enhance the
corrosion resistance of the coating. The content of graphene for excellent corrosion
resistance of coating during this experiment is 0.6 wt%. The graphene can fill the defects
generally in the coating during the curing process to prevent substrate from penetration of
corrosive media caused by the density and hydrophobicity of coating are increased.
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INTRODUCTION

In recent decades, due to the increasingly serious environmental problems, magnesium alloy
materials are extremely suitable for material substitution standards for energy-saving and light-
weight design. Therefore, they have been widely used in many fields such as automobiles and
aerospace (Tekumalla et al., 2014; Dziubińska et al., 2016; Zeng et al., 2018; Ramalingam et al., 2019;
Song et al., 2020). However, magnesium is extremely reactive. The standard electrode potential of
magnesium is 2.37 V, which is very easy to corrode. The naturally formedMgO/Mg(OH)2 has a loose
and porous structure, resulting in a weak corrosion resistance of the magnesium alloy itself (Song and
Atrens, 2003; Song, 2005; Chu et al., 2019; Chen et al., 2019).

In response to this problem, epoxy resin organic coating is the most economical and effective
method from an industrial point of view (Shi et al., 2012; He et al., 2014; Guo et al., 2020). It’s easy to
operate, low cost, and has natural advantages in industrial applications (Jin et al., 2015; Ou et al.,
2020). At present, oily coatings have good film-forming properties, strong water resistance and
excellent corrosion resistance. Although epoxy resin has shown excellent anti-corrosion protection
for magnesium alloy matrix, it is affected by the cross-linking density of epoxy bonds, and the coating
will be affected in the later curing and cross-linking process.

Defects such as holes and cracks are generated, thereby reducing the corrosion protection ability
of the substrate. Therefore, in recent years, researchers have done a lot of research in this direction,
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the main method is to add corrosion inhibitor fillers to the
coating materials (Dong et al., 2013; Deyab et al., 2016; Xie
et al., 2019; Rahman et al., 2019). Graphene has excellent
corrosion inhibition performance among many corrosion
inhibitor fillers (Zhang et al., 2015; Hao et al., 2018; Xia et al.,
2018; Ziat et al., 2020). Graphene is a carbon material with a two-
dimensional structure, and has excellent physical properties and
stable chemical properties. The special structure can have
extremely high resistance to oxygen and water permeability
(Zhao et al., 2013; Wu et al., 2018; Zhou et al., 2018; Cui
et al., 2019; Ding et al., 2019). Compared with other methods,
the oily epoxy resin coating modified by the graphene is stable in
the corroded state for the substrate. Moreover, the inhibition
effect can be improved by the dispersion in oily epoxy resin and
the hydrophobicity is better than waterborne epoxy resin. As
soon as these advantages were discovered, they received
extremely high attention from research scholars. Chen et al.
modified graphene carbonitride nanosheets (g-C3N4) and
graphene through π-π bond interactions to increase the
dispersion performance of graphene in epoxy resin coatings,
and significantly improve the corrosion resistance of the
coating (Chen et al., 2020).

At present, there are few studies on using graphene modified
oily epoxy resin coatings to improve the corrosion resistance of
magnesium alloys. Therefore, this article explores the effect of the
coating on the corrosion resistance of AZ31 magnesium alloy by
modifying oily epoxy resin coatings with different contents of
graphene.

MATERIALS AND METHODS

Materials
This experiment used a deformed AZ31Bmagnesium alloy sheet
as the substate material, and its composition is shown in
Table 1.

The sample preparation process is as follows: the
magnesium alloy sheet was cut into many samples of
20 mm × 20 mm × 10 mm with a wire cutting machine, and
then the cutting fluid on the sample surface was removed with
acetone solution in the ultrasonic cleaner, and then the surface
was polished step by step using 500, 800, 1200, 2000 and 3,000
mesh alumina abrasive sandpapers, respectively. After there
are no obvious scratches on the surface of the samples, clean
them with alcohol, dry them with hot air, and put them in a
drying dish for use.

The graphene used in this experiment was purchased from
Changzhou Sixth Element Material Technology Co., Ltd. Oily
bisphenol A epoxy resin paint and phenolic amine oily epoxy
resin curing agent were purchased from Guangzhou Tuan Anti-
corrosion Technology Co., Ltd.

Coating Preparation
The oil-based epoxy resin coating was modified with four
different contents of graphene, and the weight ratio of
graphene to the epoxy resin coating was 0 wt%, 0.1 wt%,
0.3 wt%, and 0.6 wt%, respectively. The specific operation
method of coating preparation is as follows: according to the
corresponding ratio, the graphene of different weights and 50 g
oily epoxy resin paint were stirred with a mechanical stirrer at a
high speed for 30 min. After stirring until the mixture is uniform,
mix the mixed paint and the curing agent according to the ratio of
3:1. Then continued to mechanically stir the mixed paint until the
mixing was uniform, and finally used a wool brush to coat the
mixed paint on the surface of the AZ31 magnesium alloy, and
cured at room temperature for 14 days to obtain a coating with a
dry film thickness of 600 ± 20 μm. For the convenience of
analysis, the graphene modified oily epoxy resin coating is
marked as G/OEP-0 wt%, G/OEP-0.1 wt%, G/OEP-0.3 wt%,
G/OEP-0.6 wt%.

Test Method
JSM-6610 scanning electron microscope was used to observe the
surface morphology of graphene and coating. FTIR analysis was
used to characterize the structure and composition of graphene
and the coating, the specific working parameters were the
detection range of 4,000 cm−1– 400 cm−1 and the resolution of
4 cm−1. The CHI660E series electrochemical workstation was
used to test the anti-corrosion performance, and the classic
three-electrode test system was used; the magnesium alloy
substrate and the coating sample were used as the working
electrode, and the working area was 1 cm2, the counter
electrode was a platinum electrode, the reference electrode was
a saturated glycerin mercury electrode, the test solution was 3.5
wt% NaCl solution, e tests were performed at room temperature.
All samples were tested for open circuit potential (OCP) multiple
times until the potential stabilized, and then the potentiodynamic
polarization curve was tested. The specific test parameters were:
voltage sweep interval of −3 to 1 V and sweep speed of 1 mV/s.

RESULTS AND DISCUSSION

Characterization of Graphene and Coatings
Figure 1 is a picture of the microscopic morphology of graphene.
From Figure 1A, it can be seen that graphene has small flakes that
exist in a single-layer structure, and there are also large flakes that
agglomerate into a multilayer structure. These agglomerations are
caused by the interaction of π-π bonds between graphene, which
will also have a certain impact on the dispersion properties of
graphene in coatings. It can also be seen from the figure that the
size of single-layer and multi-layer graphene generally does not
exceed 20 μm, and the size of single-layer graphene can reach
10 μm or less. In addition, as shown in Figure 1B, the sheet-like
structure of graphene can be further clearly seen, and the surface
is slightly wrinkled, indicating that the surface structure of
graphene has low defects.

Figure 2 shows the test results of graphene Fourier infrared
spectroscopy. It can be seen from the figure that graphene mainly

TABLE 1 | Main components of AZ31B magnesium alloy/wt%.

Element Al Zn Mn Cu Ni Fe Mg

Content 3.007 1.054 0.488 0.001 0.002 0.004 Bal
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contains four peaks in the spectrum, of which the peak at
1,523 cm−1 corresponds to the tensile vibration of the C-O
bond in the epoxy group. The peak corresponding to
1678 cm−1 is related to the vibration of the C�C bond of the
benzene ring. The peak at 2349 cm−1 is due to the symmetrical
vibration of CO2 in the air inside the Fourier test space. The
absorption peak at 3,506 cm−1 is caused by the C-OH bond (Ye
et al., 2020).

The FTIR spectrum of the oily epoxy resin coating is shown in
Figure 3. Among them, the absorption peaks of methyl and
methylene on the molecular chain of epoxy resin appear near
2,900 cm−1 and 2,800 cm−1, respectively. The absorption peak
near 1,250 cm−1 corresponds to the vibration of the C�C bond in

the benzene ring. The absorption peaks at 1,510 cm−1 and
1,480 cm−1 correspond to the vibration of the N-H and C-N
bonds in the phenalkamine curing agent, respectively. The
absorption peak at 1,010 cm−1 is derived from the epoxy
group in epoxy resin. The absorption peak at 1,640 cm−1 is the
carbonyl group (Siva et al., 2014; Wang et al., 2018).

Figure 4 is a picture of the micro morphology of modified oily
epoxy resin coatings with different contents of graphene. It can be
seen from Figure 4A that when the graphene corrosion inhibitor
filler is not added, the microstructure shows that the coating
surface has more defects and larger roughness, which may be
caused by the rupture of bubbles generated during the curing
process. Figure 4B shows that when 0.1 wt% graphene is added,

FIGURE 1 | Graphene micro-topography under different magnifications: (A) 2,400 times, (B) 40,000 times.

FIGURE 2 | Graphene FI-TR test spectrum.
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FIGURE 3 | Graphene FI-TR test spectrum.

FIGURE 4 |Micro morphology of graphene modified oily epoxy resin coating: (A) G/OEP-0 wt%, (B) G/OEP-0.1 wt%, (C) G/OEP-0.3 wt%, (D) G/OEP-0.6 wt%.
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the surface defects and roughness of the coating are significantly
reduced, and the holes and pits are also significantly reduced. This
is because with the addition of graphene, the two-dimensional
flaky structure can well fill the holes and pits caused by the bubble
burst during the coating curing, which greatly improves the
surface defects of the coating. As the graphene content
continues to increase, when it reaches 0.3 wt%, Figure 4C
shows that the coating surface is relatively smooth, with
almost no obvious holes visible, and the coating has a higher
surface quality, which is because as the graphene content
continues to increase, the graphene filler has reached a better
dispersion state inside the coating. Using its own structural
characteristics, it almost covers the entire coating surface,
which can well fill the coating surface defects. However,
Figure 4D shows that when the content of graphene filler
reaches 0.6 wt%, the surface quality of the coating decreases,
but no obvious defects appear. Analysis believes that this is due to
the fact that as the content of graphene increases, the mutual
attraction between π-π bonds leads to a decrease in the dispersion
quality of graphene inside the coating, and agglomeration begins
to occur during the curing process of the coating. The

agglomerated graphene has been exposed on the surface of the
coating, which will prevent the graphene from being well
dispersed on the entire coating surface to fill the defects, and
the agglomerated graphene will increase the surface roughness of
the coating.

Coating Electrochemical Performance
Figure 5 shows the potentiodynamic polarization curves of
magnesium alloys and coatings. Table 2 lists the
electrochemical parameters, including specific values of
corrosion current density and corrosion potential. Since the
corrosion potential is greatly affected by environmental
factors, the corrosion current density is generally used to judge
the corrosion resistance of the test sample. The smaller the
corrosion current density, the better the corrosion resistance.
It can be seen from Table 2 that the corrosion current density of
the magnesium alloy matrix is 6.20×10–7 A/cm2, and the
corrosion current density of the oily epoxy resin coating is
lower than that of the magnesium alloy. It shows that the
coating can significantly improve the corrosion resistance of
magnesium alloys. The corrosion current density of G/OEP-
0.6 wt% is the lowest, reaching 6.96 × 10–12 A/cm2, which is 5
orders of magnitude lower than that of the magnesium alloy
matrix.

In order to facilitate the analysis of the influence of different
contents of graphene on the corrosion resistance of the
coating. Figure 6 shows the changing trend of the
corrosion current density of the oily epoxy resin coating
with different graphene content. It can be seen from the
figure that with the addition of graphene, the corrosion
resistance of the coating has been significantly improved.
The corrosion current density of the coating is reduced by

FIGURE 5 | Potential polarization curve of magnesium alloy and coating.

TABLE 2 | Related parameters of potentiodynamic polarity curve.

Sample Corrosion current density
(A/cm2)

Corrosion potential(V)

Magnesium alloy 6.20 × 10–7 −1.47
G/OEP-0 wt% 3.98 × 10–10 −1.49
G/OEP-0.1 wt% 6.47 × 10–11 −1.16
G/OEP-0.3 wt% 7.22 × 10–12 −0.75
G/OEP-0.6 wt% 6.96 × 10–12 −0.60
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FIGURE 6 | Variation trend of corrosion current density of oily epoxy resin coating with different graphene content.

FIGURE 7 |Corrosion morphology of modified oily epoxy resin coating with different graphene content: (A)G/OEP-0 wt%, (B)G/OEP-0.1 wt%, (C)G/OEP-0.3 wt
%, (D) G/OEP-0.6 wt%.
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two orders of magnitude, from 3.98×10–10 A/cm2 to 6.96 ×
10–12 A/cm2. Based on the analysis of Figure 4, it is believed
that the addition of graphene reduces the pores of the coating,
increases the diffusion resistance of the corrosive medium to
the surface of the substrate, and improves the corrosion
resistance of the coating. In addition, graphene will
preferentially agglomerate inside the coating as the content
increases. Although it still plays a shielding role for corrosive
media, it reduces the corrosion inhibition effect. Therefore,
the decline trend of the corrosion current density of G/OEP-
0.6 wt% tends to be gentle.

Analysis of Coating Corrosion Mechanism
Figure 7 shows the morphology of modified oily epoxy resin
coatings with different graphene content after corrosion. As
shown in Figure 7A, before graphene is added, the corrosion
of the coating is more serious and there are more holes. With the
addition of graphene, it can be seen from Figure 7B that 0.1 wt%
of graphene has improved the corrosion resistance of the coating,
and the holes caused by corrosion are significantly reduced.
When the graphene content in the coating reaches 0.3 wt%
and 0.6 wt%, Figures 7C,D show that after a period of
electrochemical corrosion, there are almost no related holes
caused by corrosion on the surface of the coating. And the
coating surface is smoother, showing excellent anti-corrosion
performance. This is also mutually corroborating the results of
the potential polarization curve of the coating, indicating that the
epoxy resin coating modified by graphene can provide good
corrosion resistance for the substrate and avoid damage to the
coating surface by corrosive media. And after adding the
graphene content to 0.6 wt%, the coating is least affected by
corrosion and has good corrosion resistance.

Based on the analysis of relevant literature reports (Liao et al.,
2017; Lu et al., 2018;Wu et al., 2018). If graphene is not added, the
coating has relatively porous holes, which cannot well shield the
penetration of corrosive media to the coating, so that the coating
is greatly affected by corrosion. When a small amount of
graphene is added for modification, the graphene is dispersed
and arranged inside the coating, increasing the length of the
corrosive medium penetration path. However, the coating and
the substrate are affected by corrosion caused by H2O and O2

molecules and Cl− ions will still penetrate the coating during
diffusion. When the content of graphene increases to 0.3%–0.6%
wt, because the number of pores on the surface of the coating is
reduced, not only the density of the graphene coating can be
increased, but also the hydrophobicity of the coating will be
enhanced, which make it difficult for the corrosive media to

penetrate the interface between the coating and the substate, so
that the corrosion resistance of the coating can be greatly
improved.

CONCLUSION

The G/OEP coating was prepared on the surface of AZ31
magnesium alloy by brush coating technology. Graphene has
fewer surface defects and is successfully doped into the coating.
The G/OEP coating significantly improves the corrosion
resistance of magnesium alloys. With the graphene content
increases, the corrosion resistance of the coating is gradually
improved. The corrosion current density of the G/OEP coating is
reduced by two orders of magnitude, from 3.98×10–10 A/cm2 to
6.96 × 10–12 A/cm2. The graphene can fill the defects generally in
the coating during the curing process to prevent substrate from
penetration of corrosive medium caused by the density and
hydrophobicity of coating are increased.
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