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Poly(butylene succinate) is one of the most promising biodegradable polymers, but its
applications are limited by poor flame retardancy. In this work, poly(butylene
succinate)/diethylphosphinate (PBS/AlPi) composites were fabricated to investigate
the effect of AlPi on their thermal stability, flame retardancy, and mechanical properties.
It was found that the high content of AlPi decreased the thermal stability of PBS, and
the decrease became stronger under the air atmosphere. When the content of AlPi
reached 25wt%, the flame retardancy was improved with limited oxygen index (LOI) of
29.5%, V0 rating in UL-94 vertical burning test, and 49.3% reduction on the peak of
heat release rate (PHRR) in cone calorimeter test. Meanwhile, the addition of AlPi could
improve the mechanical properties of PBS with high tensile strength and Young’s
modulus, which was ascribed to the compatible effect of maleic anhydride-grafted
poly(butylene succinate) (PBS-g-MA) with good filler dispersion and strong matrix-
particles interaction. Thus, the AlPi was an effective flame retardant to PBS, so that
PBS/AlPi composites displayed excellent flame retardancy without seriously sacrificing
other comprehensive performances.

Keywords: poly(butylene succinate), diethylphosphinate, flame retardancy, polymer composites, comprehensive
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INTRODUCTION

In the last decade, biodegradable polymers have drawn particular attention due to their advantages of
biodegradability, good mechanical properties, easy processing, and chemical resistance (Chen et al.,
2017; Chen Y. et al., 2019; Delamarche et al., 2020; HeW. et al., 2020; Li et al., 2018; Xiong et al., 2019;
Xu et al., 2019; Yang et al., 2020; Zhang et al., 2021; Zhang et al., 2020). As a typical representative,
poly(butylene succinate) (PBS) has wide applications in the fields of biomedical materials, transport,
construction, electrical industry, and packing materials (Bahrami et al., 2021; Hu et al., 2019; Li et al.,
2020; Xue et al., 2019; Zhao et al., 2020). Unfortunately, PBS is flammable as common thermoplastics
(Liu et al., 2016; Chen H. et al., 2019; Gu et al., 2019; Hu et al., 2019; He L. et al., 2020), which greatly
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limits its application in some special fields with high flame
retardancy requirements. Therefore, it is an urgent task to
improve the flame retardancy of PBS to meet various
applications.

To improve the flame retardancy of PBS, an easy and
convenient way is to directly add flame retardants for
preparing PBS composites (Wang et al., 2019; Yue et al., 2021)
because it could meet the current machining technology for
continuous production on a large scale. As typical flame
retardants, ammonium polyphosphate (APP) and Mg(OH)2
have been used in the PBS system. Hu et al. (Hu et al., 2020)
have reported that when 30 wt% APP was added to PBS, the peak
of heat release rate (PHRR) and total heat release (THR)
decreased by 19 and 25%, respectively. Our previous work
(Chen et al., 2016) has also confirmed that the least amount of
Mg(OH)2 was 40wt% in the PBS system to reach the V0 rating in
the UL-94 vertical burning test. These results indicated that both
of them are not high-efficiency flame retardants for PBS.
Meanwhile, the processability and mechanical properties of the
PBS matrix were seriously deteriorated due to the high addition
amount of flame retardants. Consequently, it is still a challenge to
improve the flame retardancy of PBS without seriously sacrificing
other comprehensive performances.

Dialkylphosphinate salt belongs to a new class of additive-type
phosphorus-containing flame retardants (Hou et al., 2021; Liu
et al., 2014; Wang et al., 2015). The most important advantage of
these salts is their high phosphorus content. Furthermore, they

are environmentally friendly flame retardants because no harmful
and toxic substances are released during combustion. Especially,
aluminum diethylphosphinate (AlPi) is one of the most
commonly used dialkylphosphinate salts, which has been
widely added to improve the flame retardancy of polyethylene
(PE), polyamide 6 (PA6), polyurethane (PU), polybutylece
terephthalate (PBT), and epoxy resin (EP) (Ma et al., 2019;
Oliwa et al., 2020; Pan et al., 2020; Hu et al., 2021; Liu et al.,
2021). It is acceptant that AlPi can not only play a flame retardant
role in the condensed phase to promote the formation of polymer
carbon but also remove high energy active free radicals in the
combustion zone (Liu et al., 2021). However, to the best of our
knowledge, the application of AlPi on biodegradable polymer
systems was rarely reported.

In this study, AlPi was employed to modify biodegradable
PBS, and maleic anhydride-grafted poly(butylene succinate)
(PBS-g-MA) was used as their compatibilizer (Chen et al.,
2015). The current research aimed to investigate the effect of
AlPi on thermal stability, flame retardancy and mechanical
properties of PBS composites. The thermal stability was
investigated by thermogravimetric analysis (TGA) in nitrogen
and air atmospheres, respectively. Furthermore, flame retardancy
was evaluated by LOI, Ul-94, and cone calorimeter tests.
Meanwhile, the flame retardant mechanism was discussed by
analyzing the action of AlPi on the gas phase and condensed
phase. Finally, their mechanical properties were studied by tensile
and impact tests.

EXPERIMENTAL SECTION

Materials
PBS (trade name GS PLA, Japan) was bought from Mitsubishi
Chemical Corp. (Toyota, Japan). The melt flow index was 4.5 g/
10 min at 190°C under 2.16 kg of weight. Aluminum
diethylphosphinate (AlPi) was provided by Qingdao Fuslin
Chemical Technology Co., Ltd. Maleic anhydride-grafted
poly(butylene succinate) (PBS-g-MA) was synthesized via
reactive melt-grafting process according to previous literature

FIGURE 1 | TGA (A) and DTG (B) curves of neat PBS and PBS/AlPi composites in nitrogen at 10°C min−1 heating rate.

TABLE 1 | Thermal decomposition properties of neat PBS and PBS/AlPi
composites in nitrogen.

Samples T5wt% ( C) T10wt% ( C) Tmax1 ( C) Tmax2 ( C)

PBS 343.5 358.1 403.2 −

PBS5AlPi 342.8 357.2 401.1 472.4
PBS10AlPi 338.8 354.1 392.6 472.2
PBS15AlPi 336.2 350.6 389.1 472.5
PBS20AlPi 333.1 347.9 388.5 472.4
PBS25AlPi 327.7 343.2 386.1 472.4
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(Phua et al., 2013b). The ratio of PBS, maleic anhydride, and
dicumyl peroxide (DCP) was 100/10/1.5 by weight, and the
grafting degree of MA onto PBS (Gd) was 4.2 wt%.

Preparation of PBS/AlPi Composites
PBS/AlPi composites were prepared by melt compounding in a
HAAKE batch intensive mixer (HAAKE Rheomix 600,
Karlsruhe, Germany) at 135°C with a rotor speed of 80 rpm;
the mixing time was 6 min for each sample. The content of PBS-g-
MA (as a compatibilizer) was kept as 15 wt% in all PBS
composites, and the content of AlPi was changed from 5 to
25 wt%. For convenience, the obtained samples were designated
as PBSxAlPi. Here, x denotes the weight percentage of AlPi in the
PBS composites.

Characterization
Thermogravimetric analysis (TGA) was performed on a TA STD
Q600 thermal analyzer. The PBS samples with mass 8.0 ± 0.2 mg
were heated from room temperature to 600°C at 10°C min−1

under nitrogen and air atmosphere, respectively. The limited
oxygen index (LOI) was tested on a JF-3 oxygen index meter
(Jiangning, China) with sheet dimensions of 130 × 6.5 × 3.2 mm3,
according to ISO4589-1984. The vertical burning testing was
carried out according to the UL-94 (ANSI/ASTMD635-77) with
sheet dimensions of 125 × 12.7 × 3.2 mm3. Cone calorimeter
testing (icone, FTT, United Kingdom) was conducted according
to ISO 5660-1. The sample dimension was 100 × 100 × 6 mm3; it
was backed by aluminum foil and irradiated at a heat flux of
50 kWm−2. The photographs of residual chars after cone
calorimeter testing were collected by a digital camera. The
dispersion of AlPi in PBS matrix was examined with the
scanning electron microscope (XL30 FESEM FEG, FEI Co.).
The samples were fractured in liquid nitrogen, and the
fracture surfaces were coated with gold before SEM
observation. Uniaxial tensile tests were performed at room
temperature with an Instron 1,121 testing machine (Canton,
MA). Specimens were compression-molded into sheets with
1 mm thickness, then cut into a dumbbell shape with gauge
dimensions of 20 mm × 4 mm × 1 mm. The measurements
were conducted at a crosshead speed of 20 mm min−1. At least
five runs for each sample were measured and averaged.

FIGURE 2 | TGA (A) and DTG (B) curves of neat PBS and PBS/AlPi composites in air at 10°C min−1 heating rate.

TABLE 2 | Thermal decomposition properties of neat PBS and PBS/AlPi
composites in air.

Samples T5wt% ( C) T10wt% ( C) Tmax1 ( C) Tmax2 ( C)

PBS 340.9 356.6 394.6 −

PBS5AlPi 334.8 353.7 392.1 427.0
PBS10AlPi 333.5 349.4 391.6 427.2
PBS15AlPi 329.6 345.8 387.3 427.2
PBS20AlPi 326.8 341.1 382.2 427.2
PBS25AlPi 322.3 337.9 379.4 427.3

TABLE 3 | Combustion parameters of PBS samples from LOI, UL-94 and cone calorimeter tests.

Samples LOI (%) UL-94
(3.2 mm)

Dripping
(Yes
or No)

tign
(s)

PHRR
(kW m−2)

THR
(MJ
m−2)

Residual
char
(wt%)

TSP (m2)

PBS 21.0 ± 0.3 NR Yes 48 ± 1 765 ± 11 170 ± 4 0.1 ± 0.1 5.2 ± 0.2
PBS5AlPi 22.8 ± 0.2 NR No 47 ± 1 606 ± 16 166 ± 3 0.9 ± 0.1 6.0 ± 0.3
PBS10AlPi 23.7 ± 0.3 NR No 44 ± 2 591 ± 15 163 ± 9 3.0 ± 0.2 7.9 ± 0.3
PBS15AlPi 24.9 ± 0.3 NR No 42 ± 2 478 ± 16 149 ± 5 4.9 ± 0.1 9.1 ± 0.5
PBS20AlPi 27.1 ± 0.4 V1 No 41 ± 2 423 ± 12 139 ± 3 7.1 ± 0.3 9.8 ± 0.5
PBS25AlPi 29.5 ± 0.4 V0 No 41 ± 2 388 ± 10 131 ± 7 11.7 ± 0.2 10.5 ± 0.6
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RESULTS AND DISCUSSION

Thermal Stability of PBS/AlPi Composites
The influence of AlPi on the thermal stability of PBS under
nitrogen was investigated by TGA, which reflects the thermal
degradation behavior of materials with the increase of
temperature (Wang et al., 2020b; Xu D. et al., 2021). As
shown in Figure 1A, with the increase of AlPi content, the
TGA curves slowly shifted to a low-temperature range. The
temperatures corresponding to 5 and 10 wt% weight loss (T5wt
% and T10wt%) are essential to evaluate the thermal decomposition
of polymers on the onset stage. For PBS5AlPi, T5wt% and T10wt%
decreased less than 1°C in comparison with that of neat PBS,
indicating that the addition of AlPi with low content has a small
impact on the thermal stability of PBS. However, the reduction in
thermal stability gradually became larger with high content fillers
(Table 1). For example, T5wt% and T10wt% of PBS25AlPi decreased
to 15.8 and 14.9°C, respectively. Meanwhile, with the increase of
the AlPi loading, Figure 1B exhibited a gradual decrease for
Tmax1, corresponding to the maximum weight loss rate of the
polymer. Herein, the decrease on T5wt%, T10wt%, and Tmax1 was
ascribed to the thermal degradation of PBS during melt

compounding because the increase in viscosity with high
content of inorganic fillers could result in the sharp rise of
temperature under high shear force, promoting the thermal
degradation polymer (Fong et al., 2021). In addition, another
characteristic peak was present at approximately 472°C (denoted
as Tmax2 in Table 1), which should be assigned to the thermal
decomposition of AlPi.

The thermal stability of PBS/AlPi composites under air was
also evaluated, which is more important because the melt
processing of polymer materials is usually performed in an air
atmosphere. As shown in Figure 2A and Table 2, T5wt%, T10wt%,

and Tmax1 exhibited a similar trend to the situation of nitrogen,
but the values were relatively smaller owing to the oxidation
degradation (Wen et al., 2011). Furthermore, as shown in
Figure 2B, Tmax2 appeared at approximately 427°C (45°C
lower than that in nitrogen), and the intensity of peaks
became much weaker. It is suggested that part of AlPi
gradually degraded before Tmax2, which is accompanied by the
degradation of PBS chains. Based on these results, the content of
AlPi could influence the thermal stability of PBS/AlPi composites,
and the decrease in thermal stability became stronger under air
atmosphere at higher AlPi loadings.

FIGURE 3 | PBS samples measured by cone calorimeter test at an external radiant flux of 50 kW m−2: (A) heat release rate curves (HRR); (B) total heat release
curves (THR); (C) mass loss curves (ML); (D) total smoke production curves (TSP).
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Flammability Properties of PBS Composites
The effect of AlPi on the flame retardancy of PBS matrix was
investigated by LOI and UL-94 tests. As listed in Table 3, the LOI
values gradually increased with the addition of AlPi content, of
which the highest value corresponding to PBS25AlPi could
achieve 29.5. Moreover, only when the content of AlPi was
20wt%, the UL-94 rating reached V1. With further increasing
the AlPi to 25wt%, the UL-94 rating could pass V0. Besides the
flame retardant effect, AlPi displayed a positive effect on the
inhibition of dripping. For all PBS/AlPi composites, there was no
melt dripping, indicating that AlPi was an effective dropping
inhibitor for PBS matrix.

Further, the flame retardancy of PBS/AlPi composites was
investigated by cone calorimeter testing, which is useful to
provide various important information about fire risk during
combustion (Zanetti et al., 2002; Wang et al., 2020a; Xue et al.,
2020b; Xu et al., 2020), such as time to ignition (TTI), heat and
smoke release, and mass loss. First, heat release rates (HRR) and
combustion time curves for PBS samples are shown in Figure 3A,
and detailed parameters are listed in Table 3. With the increase of
AlPi loading in the PBS system, the ignition time (tign) became
shorter, implying that the PBS/AlPi composites were easier to be
ignited than neat PBS. However, a gradual decrease for the peaks
of HRR (PHRRs) was present. For instance, the PHRR for

PBS25AlPi was reduced to 388 kW/m2, which was reduced by
49.3% compared to that for neat PBS (765 kWm−2). Further,
Figure 3B shows the curves of total heat release (THR). It is
significant that the slope flattened out at the latter half of
combustion time, and the final THR value became smaller to
a certain extent. These results suggest that AlPi is an effective
flame retardant for reducing PHRR and THR.

Figure 3C shows the normalized mass loss (ML) curves of PBS
samples with combustion time. All PBS/AlPi composites
exhibited similar curves, but the slope became smaller with
more AlPi fillers, indicating that AlPi as flame retardant could
delay the combustion of PBS. Meanwhile, the residual char
gradually increased with the increase of AlPi content.
Furthermore, the total smoke production (TSP) was evaluated.
As shown in Figure 3D, the TSP increased with the addition of
AlPi (detailed data are listed in Table 3). The increase in TSP
should be related to the radical trapping effect in the gas phase.
The decomposition of AlPi could produce P• and PO• radicals
(Tang et al., 2020), which could quench H• and HO• radicals so
that some derived products were generated as smoke particles.

Besides the trapping radicals in the gas phase, AlPi also
contributed to the condensed phase through char formation.
As shown in Figure 4A, neat PBS was typical no-char polymers
(burned completely without residual char). With the increase of

FIGURE 4 | Photographs of the residues after the cone calorimeter test from (A) neat PBS, (B) PBS5AlPi, (C) PBS10AlPi, (D) PBS15AlPi, (E) PBS20AlPi, and (F)
PBS25AlPi.

Frontiers in Materials | www.frontiersin.org August 2021 | Volume 8 | Article 7377495

Wang et al. PBS/AlPi Composites

https://www.frontiersin.org/journals/materials
www.frontiersin.org
https://www.frontiersin.org/journals/materials#articles


AlPi concentration, the char amount increased and the carbon
layer became thicker. It is clear that the cracks gradually became
smaller until they disappeared (Figures 4B–F). To further

evaluate the microstructure, SEM observation was carried out
for the char from PBS25AlPi. Interestingly, the char
morphologies from the outer surface and inner surface were

FIGURE 5 | SEM images for the reside char of PBS25AlPi: (A,B) outer surface; (C,D) inner surface.

FIGURE 6 | Possible flame retardant mechanism of AlPi in PBS system.
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different. As shown in Figures 5A,B, the outer surface was
covered by flocculent porous carbon, which may come from
the deposition of P•/PO•-derived solid products. However, the
inner surface was compact and cohesive with high supporting
strength (Figures 5C,D). It was a whole bulk with some cavities,
which may result from the release of flammable gases into the gas
phase zone.

Based on the above analysis, a possible enhancement
mechanism of AlPi in the PBS system was proposed in
Figure 6. It is reported that AlPi could be thermally
decomposed to oligomers of phosphinates, diethylphosphinic
acid, and aluminum phosphate (Kaya and Hacaloglu, 2014;
Vothi et al., 2020). On the one hand, oligomers of
phosphinates and diethylphosphinic acid can further be
decomposed to P• and PO• radicals in the gas phase, which
could quench H• and HO• radicals in the combustion zone, and
some derived solid products were generated as the char of outer
layer. On the other hand, aluminum phosphate could construct
continuous and compact char as the inner layer. The combined
char layer can effectively reduce the heat and mass transfer rate
and protect the underlying material from burning (Xu Y.-J. et al.,
2021). As a result, the improvements on flame retardancy with
LOI of 29.5%, V0 in UL-94, and 49.3% reduction on PHRR were
presented. In brief, the enhanced flame retardancy of PBS was
attributed to the gas–solid flame retardancy mechanism of AlPi.

Mechanical Properties of PBS Composites
The effect of AlPi on the mechanical properties of PBS was
investigated by tensile testing. Figure 7 shows the stress-strain
curves of neat PBS and PBS/AlPi composites. The detailed data
for Young’s modulus, tensile strength, and elongation at break are
listed in Table 4. With the increase of AlPi loading, Young’s
modulus gradually increased due to the reinforcing effect of AlPi
as rigid inorganic particles. The tensile strength firstly increased
and then decreased with the increase of AlPi content. For
PBS15AlPi, it exhibited the highest value of tensile strength of
35.8 MPa. However, the tensile strengths for all PBS composites
were higher than that of neat PBS, which should be ascribed to
good compatibility between PBS matrix and AlPi particles. In
addition, the elongation at break showed a decreased trend with
the addition of AlPi loading, indicating a decreased ductility of
the PBSmatrix. Similarly, the impact strengths of PBS composites
also decreased gradually with the increase of AlPi content
(Table 4).

In polymer/filler composites, the dispersion of fillers and
interfacial interaction between two components are the most
important factors to determine the final mechanical properties
(Sun et al., 2017; Wen et al., 2020b; Xue et al., 2020a; Yang et al.,
2019). As shown in Figures 8A–F, the fracture surface
morphologies of PBS samples were investigated by SEM. It
was apparent that AlPi particles were uniformly distributed in
the PBS matrix, and no big aggregates were detected. Further,
AlPi particles were firmly adhered to the PBS matrix, indicating
their strong interfacial interaction (Wen et al., 2020a; Wen et al.,
2012). Even for PBS25AlPi with the highest AlPi content, most
AlPi particles still exhibited good dispersion without big
aggregates, and no debonding cavities were present (blue
circles in Figure 8F). In our PBS/AlPi system, 15 wt% PBS-g-
MA was added as a compatibilizer, which was helpful to improve
the dispersion of fillers and the matrix-particles interaction (Phua
et al., 2013a; Chen et al., 2015). As a result, our PBS/AlPi
composites exhibited good mechanical properties with high
tensile strength and Young’s modulus.

CONCLUSION

PBS/AlPi composites were prepared by melt compounding with
PBS-g-MA as a compatibilizer, and the effect of AlPi content on
thermal stability, flame retardancy, and mechanical properties
was investigated. The TGA results indicated high content of AlPi

FIGURE 7 | Tensile stress-strain curves of PBS and its composites.

TABLE 4 | Mechanical properties of PBS samples from tensile and impact tests.

Samples Young’s modulus (MPa) Tensile strength (MPa) Elongation
at break (%)

Impact
strength (kJ m−2)

PBS 325 ± 26 33.2 ± 0.9 403 ± 22 8.7 ± 0.7
PBS5AlPi 340 ± 34 34.2 ± 0.8 122 ± 12 8.0 ± 0.5
PBS10AlPi 396 ± 45 34.9 ± 0.8 104 ± 10 7.5 ± 0.6
PBS15AlPi 450 ± 68 35.8 ± 1.1 83 ± 10 7.2 ± 0.5
PBS20AlPi 494 ± 58 35.4 ± 1.2 65 ± 9 6.4 ± 0.6
PBS25AlPi 560 ± 84 34.4 ± 1.0 41 ± 6 5.6 ± 0.5
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decreased the thermal stability of PBS, and the decrease became
stronger under air atmosphere. Further, the flame retardancy of
PBS/AlPi composites was also determined by the AlPi content.
For PBS25AlPi, the improved flame retardancy with LOI of
29.5%, V0 rating in UL-94 test, and 49.3% reduction on
PHRR was presented. The enhancement was attributed to the
gas–solid flame retardancy mechanism of AlPi. In addition, the

PBS/AlPi composites displayed good mechanical properties with
high tensile strength and Young’s modulus, which was
contributed to the compatible effect of PBS-g-MA. This work
indicates that AlPi was an effective flame retardant to PBS, but
more work is still necessary to decrease the amount of AlPi
addition and further balance the comprehensive performances of
PBS composites.

FIGURE 8 | SEMmicrographs of the brittle-fractured surface of PBS samples: (A) neat PBS, (B) PBS5AlPi, (C) PBS10AlPi, (D) PBS15AlPi, (E) PBS20AlPi, and (F)
PBS25AlPi.
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