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Pitting corrosion seriously harms the service life of oil field gathering and transportation
pipelines, which is an important subject of corrosion prevention. In this study, we collected
the corrosion data of pipeline steel immersion experiment and established a pitting
judgment model based on machine learning algorithm. Feature reduction methods,
including feature importance calculation and pearson correlation analysis, were first
adopted to find the important factors affecting pitting. Then, the best input feature set
for pitting judgment was constructed by combining feature combination and feature
creation. Through receiver operating characteristic (ROC) curve and area under curve
(AUC) calculation, random forest algorithm was selected as the modeling algorithm. As a
result, the pitting judgment model based onmachine learning and high dimensional feature
parameters (i.e., material factors, solution factors, environment factors) showed good
prediction accuracy. This study provided an effective means for processing high-
dimensional and complex corrosion data, and proved the feasibility of machine learning
in solving material corrosion problems.
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INTRODUCTION

Corrosion damage seriously reduces the strength and service life of pipelines in oil and gas fields,
which makes the problem of pipeline corrosion increasingly serious (Soares et al., 2009; Jiménez-
Come et al., 2012). Among all corrosion types, pitting corrosion is one of the most destructive and
dangerous corrosion forms (Bhandari et al., 2015; Kolawole et al., 2016). After oil and gas pipeline
corrosion and perforation, the leaked oil and gas will seriously pollute the environment and have the
possibility of explosion, which directly and indirectly leads to serious economic losses and restricts
the development of oil and gas industries (Ghidini and Donne, 2009).

Reliable corrosion warning method and advanced anti-corrosion measures are the key to ensure
the safe operation of pipelines and prevent corrosion and leakage accidents. Therefore, it is of great
practical significance to better judge the pitting corrosion of pipeline steel for the research and
development of anti-corrosion technology and the prediction of structural integrity (Balekelayi and
Tesfamariam, 2020). Pitting, however, is a complex process that includes many complicated
phenomena, such as mass transfer, metal dissolution and passivation, etc.), the influencing
factors of pitting corrosion are also many, such as metal components, medium temperature,
pressure, pH, the type and concentration of ions (Choi et al., 2005; Li et al., 2012), which makes
the modeling of pitting on more difficult.
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The corrosion rate of a specific location sensitively dependent
on many local micro materials and environmental conditions.
therefore, at the macro level, pitting often occurs in the form of
random and probability, which makes the statistical method was
used to quantify and simulation of local corrosion, especially the
theory of extreme value analysis Vajo et al. (2003) has been
successfully applied to pitting corrosion of steel. Melchers (2008)
showed that the Frechet extreme value distribution was more
appropriate than Gumbel to represent the maximum pit depth.
Kasai, et al. (2016) proposed a method combining extreme value
analysis with Bayesian inference, which accurately predicted the
actual maximum corrosion depth by using the maximum
corrosion depth detected.

Due to its advantages in dealing with multi-dimensional,
nonlinear and uncertain characteristics, machine learning
(ML) methods have been gradually applied in the field of
corrosion science in recent years (Hu et al., 2014; Bi et al.,
2015), and have been successfully applied in some pitting
corrosion related simulations. The pitting corrosion prediction
model based on ML can not only describe the nonlinear
relationship between the influencing factors and the target
parameters, so as to realize the accurate prediction of the
pitting information, but also can effectively extract the
important feature information that reflects the health state of
steel in the corrosion data (Diao et al., 2021). Valor, et al. (2010)
established a stochastic model using Markov chains, which has
been successfully applied to reproduce the time evolution of
extreme pitting corrosion depths in low-carbon steel.
Mohammad, et al. (2013) proposed a model using artificial
neural network (ANN) to predict the characteristics of pitting
corrosion, and further pointed out that by increasing the
corrosion concentration and prolonging the immersion time,
the pitting density and depth could be increased. However, the
value of judgement of pitting initiation in pipeline steel
anticorrosion work has rarely been reported.

In this study, we collected corrosion data of pipeline steels
during immersion experiments, and established a machine
learning model to judge the occurrence of pitting corrosion
based on steel composition, environmental parameters and
solution parameters. The method of processing high-
dimensional and complex corrosion data by reduction,
combination and creation of features was studied, which
improved the generalization ability of the model, and the key
corrosion factors for judging the occurrence of pitting corrosion
were extracted. The feasibility and advantages of machine
learning model in solving the corrosion problem of materials
were also discussed.

DATASET AND METHODS

Establishing the Dataset
This section describes the details of collecting corrosion dataset
that were used to train and test the prediction performance of the
machine learning models developed. In the corrosion dataset, a
total of 100 valid data were collected. Among them, 40 data are
from literature (Yin et al., 2007; Liu et al., 2014a; Li et al., 2012; Liu

et al., 2017; Santos et al., 2021), and the other 60 data are from
corrosion simulation experiments accumulated in our laboratory
over the years. As shown in Table 1, all the materials in the
statistics are pipeline steels with a small amount of alloying
elements,and each complete data sample is composed of 13
material features (i.e., C, Si, Mn, P, S, Cr, Ni, Cu, Mo, Ti, Nb,
Al, V), eight solution features (i.e., Vs, Sal., Cl−, Ca2+, Mg2+, Na+,
SO4

2-), four environmental features (i.e., T, H2S, CO2, CO2/H2S),
immersion time (i.e., t) and pitting information. Detailed data sets
are shown in Supplementary Table S1.

Features Selection
The purpose of feature selection is to simplify the feature set as
much as possible and reduce the adverse effects caused by noise
and redundant features while maintaining the description ability
of feature set. This improves the accuracy, interpretability and
operational efficiency of the model (Zhang et al., 2020).

In this section, feature variables are screened by combining
feature importance calculation and Pearson correlation analysis.
The former is based on the random forest model (RF model),
which is composed of several simple classification and regression
tree (CART) models. During the bootstrap sampling process,
each CART model produces some data samples that are not
selected for training. These data samples termed the out-of-bag
(OOB) samples can be used to calculate feature importance (Zhi
et al., 2019). For each CART, a disturbance is added to each input
of OOB data and then calculate the variation amplitude of the
predicted results. By comparing the amplitude of the variation,
the importance of different inputs to the predicted target can be
obtained. Finally, RF model obtains the average value of all
CARTs’ results and calculating the importance of each feature
is completed. Pearson correlation coefficient is a statistic used to
reflect the linear correlation degree of two random feature
variables (Waldmann, 2019). The coefficient obtained by
estimating sample covariance and standard deviation ranges
from −1 to 1. The greater the absolute value is, the stronger
the correlation between feature variables is. For some machine
learning models, the correlation between different feature
variables has an important impact on the prediction results.
Based on the above two methods, some redundant
information can be removed from the original feature set, so
as to achieve the purpose of feature reduction.

Feature combination is also a common method in feature
engineering. Using the traditional theoretical calculation formula
or model, several original features are combined into a new
feature with practical significance. In this study, on the one
hand, pitting resistance equivalent numbers (PREN) is
calculated based on Chen et al. (2021a). PREN is a value
calculated on the basis of the mass fraction of certain elements
in the metal, and is usually used as a method to compare the
pitting corrosion resistance of alloys. A common PREN
expression is expressed as following:

PREN � 1 × wt%Cr + 3.3 × wt%Mo + 16 × wt%N (1)

On the other hand, the in-situ pH (pHIS) of the solution is
calculated using environmental and solution factors based on the
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electronic corrosion engineer (ECE) software (Jasim, 2019).
Therefore, two feature parameters, PREN and pHIS, are added
by the method of the above feature combination.

In the aspect of feature creation, we explore a feature
parameter that can contain the information of each element of
steel and reflect the uniqueness of different steels. In this study,
two different feature creation methods are proposed for each
material. The feature creation method Ⅰ is defined by Eq. 2,

Ya � Ma1Xa1 +Ma2Xa2 + . . . +ManXan (2)

where Ya represents the element mass index of a material;
Ma1,Ma2,。。。Man are the atomic mass of elements a1,a2,. . .an;
Xa1,Xa2,。。。。。。Xan represent the mass fractions of element
a1,a2,. . .. . .an. Method Ⅱ is defined by Eq. 3,

Yb

Yc
� Mb1Xb1 +Mb2Xb2 + . . . +MbnXbn

Mc1Xc1 +Mc2Xc2 + . . . +McnXcn
(3)

where Yb
Yc

is defined as the mass index ratio of nonmetallic to
metallic elements in a material; b1,b2. . .bn represent the
nonmetallic elements and c1,c2. . .cn represent the metal
elements. Two new features are generated.

Experimental Procedure
In this study, we first selected the appropriate dataset division
ratio and machine learning classification algorithm through
testing. Specifically, data of 40, 50, 60, 70, 80 and 90% were
randomly selected from the original corrosion dataset after
cleaning as the training set, and the remaining data as the test
set. The training set was mainly used to optimize the classification
model, and the test set was only used to identify the classification
accuracy of the model. We prepared five machine learning
classification models to be tested, including random forest
classification model (RFC), support vector classification model
with radial basis function kernel (SVC), gradient boosting
decision tree classification model (GBC), naive bayes
classification model (NB), and k-nearest neighbor model
(KNN). Datasets of different proportions were input into
different classification models for testing. During the training
process, we used receiver operating characteristic (ROC) curve
and area under curve (AUC) to evaluate the training effect of the

model (Li et al., 2015). Each group of tests was repeated for 100
times, and the best-performing dataset division ratio and
classification model were selected according to the average score.

Secondly, in terms of feature reduction, we conducted feature
importance calculation and Pearson correlation analysis for all feature
parameters (i.e., 13 material features, eight solution features, four
environmental features and immersion time). noise and redundancy
features were eliminated to form feature combination Ⅰ and based on
this feature combination, pitting judgment model Ⅰ was established.

Thirdly, in the aspect of feature combination, two feature
parameters (i.e., PREN and pHIS) were added by using the
traditional theoretical calculation model. For feature creation,
we converted the information of each steel element into two
feature parameters (i.e., Ya and Yb

Yc
). The four new feature

parameters were combined with feature combination Ⅰ, and
then the feature combination Ⅱ was formed after removing the
features that contributed less to the target parameter, and the
pitting judgment model Ⅱ was established. The performance of
the two models was compared, and the improvement of the
model’s generalization ability was demonstrated.

In the process of feature selection, model optimization and
evaluation, F1 score was employed for the evaluation standard. In
short, the F1 score is a measure of the classification problem and
is a harmonized mean of precision and recall. Its value is
approximately close to 1, indicating that the model has better
performance (Lim and Chi 2021). For a binary classfication
problem, a 2 × 2 confusion matrix is formed based on the
forecast labels and actuality labels (as shown in Table 2),
where the true positive (TP) refers to correct judgment of a
positive sample (e.g., a case of pitting is correctly predicted) and a
false positive (FP) means failure to judge a positive sample (e.g., a

TABLE 1 | List of features used in the machine learning models.

Material
Features

Unit Data
range

Solution
Features

Unit Data
range

Environment
Features

Unit Data
range

Wt% C 0.07–0.26 Fluid velocity (Vs) m/s 0–1.5 Temperature (T) °C 60–150
Si 0.22–0.41 Salinity (Sal.) 0–211510.2 H2S Kpa 0.048–12000
Mn 0.41–1.45 Cl− 0–129880 CO2 Kpa 0–10500
P 0.006–0.014 HCO3

− 0–10000 CO2/H2S — 0–125000
S 0.001–0.015 Ca2+ mg/

L
0–18200

Cr 0–1.27 Mg2+ 0–5000 Time (t) h 2–240
Ni 0–0.27 Na+ 0–69381.6
Cu 0–0.087 SO4

2- 0–192 Pitting — Yes / No
Mo 0–0.72
Ti 0–0.028
Nb 0–0.026
Al 0–0.091
V 0–0.081

TABLE 2 | Confusion matrix for binary classifier.

Actuality Forecast

True False

True True positive (TP) False negative (FN)
False False positive (FP) True negative (TN)
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case of pitting is wrongly predicted). Similar definitions can be
given to the false negative (FN) and true negative (TN). Further,
precision, recall and F1 score can be respectively calculated by the
following formulas:

precision � TP

(TP + FP) (4)

recall � TP

(TP + FN) (5)

F1 � 2
precision × recall
precision + recall

(6)

This research was based on python programming language,
using Spyder3.3.6 software, and all machine learning algorithms
involved in the research process were executed by the scikit-learn
library. The main algorithm parameters are as follows:
max_depth � 40 and n_estimators � 100 in RFC model; C �
170 and gamma � 0.5 in SVC model; max_depth � 10 and
n_estimators � 100 in GBC model; k � 2 in KNN model, and all
other parameters in the model are set to default values.

RESULTS AND DISCUSSION

Selection of Dataset Division Ratio and
Machine Learning Models
Based on the five classification models, the influence of different
training set proportion on model performance was explored, and
the results were shown in Figure 1. We randomly selected a
specified proportion of test sets and repeated the test 100 times
to evaluate the prediction performance of the model according to
the average score. On the whole, as the proportion of the training
set gradually increased, the prediction performance of the model
gradually improved. This was because the amount of data in the

training set was usually proportional to the effective information
contained in it. Therefore, a larger proportion of the training set
was highly likely to improve the comprehensive prediction
performance of the model. However, when the proportion of
training set increased to more than 80%, the F1 score of KNN
model decreased significantly, while the F1 score of SVCmodel and
NB model decreased slightly. This may be due to the overfitting of
these algorithm, and thus, the generalization ability of the model is
significantly reduced (Deng et al., 2015). Therefore, the division
ratio of the training set selected in this study was 80%.

In the process of determining the partition ratio of training set,
it was found that the RFC model had the best comprehensive
performance. In order to further confirm the best model for
predicting pitting, the ROC curve and AUC value of the five
classification models were respectively drawn and calculated. The
ROC curve, which defines false positive rate (FPR) as the X axis
and true positive rate (TPR) as the Y axis, describes the
relationship between TP and FP. The closer the ROC curve is
to the upper left corner, the better the performance of the model
(He et al., 2021). AUC is the area under the ROC curve and the
larger the AUC, the higher the model performance. Figure 2
(A-E) were the ROC curves drawn based on the five different
models (RFC model, SVC model, GBC model, KNN model and
NBmodel). Among them, the method of five fold cross validation
was used in the process and the blue line represented the average
ROC curve. By comparison, the curve based on RFC model was
closer to the upper left corner, which proved that this model had
the best performance. In addition, the average AUC based on the
RFC model was 0.84. Meanwhile, other classification models
adopted the same method, and the calculated results of
average AUC were shown in Figure 2F. The red lines
represented the error range for 100 repetitions. As can be seen
from the figure, RFC model had the best predictive performance,
followed by NB model and GBCmodel, SVC model and KNN
model had the lowest average AUC value. Combined with the
above results, the RFC model was selected for subsequent studies.

Effect of Feature Engineering on Model’s
Performance
In the first step, the pearson correlation analysis method was used
to reduce features. Specifically, input the original 13 material
features, eight solution features, four environmental features and
immersion time into the RF model, and the calculation results of
feature importance were shown in Figure 3. To ensure the
generalization ability of the model, we only selected the
features with importance values above 0.02. (i.e., CO2, T, CO2/
H2S, H2S of environmental features; Cl−, Sal., Na+, Ca2+, Mg2+,
HCO3

− of solution features; t). The combined importance of the
selected 11 features exceeds 0.85, and they contain most of the
information related to pitting.

In terms of environmental features, CO2 is usually present in
corrosive solution in the form of a dissolved gas. HCO3

− and
H2CO3 is formed when CO2 reacts with water and H+ produced
in the ionization reactions of them can result in local acidification
and pitting corrosion (Chen et al., 2021b). The solubility of H2S in
water is higher than that of CO2. With the increase of the

FIGURE 1 | The pitting prediction performance of five different
classification models in different proportions of datasets.
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concentration of H2S, H2S decomposes into more H+ and HS−,
which can change the local acidity of steel surface and promote
the anodic dissolution process, thus affecting the pitting
susceptibility of steel (Zhao et al., 2020). In addition, no
matter in the corrosion process dominated by CO2 or H2S, the
non-dense or non-uniform corrosion products formed on the
surface of the steel can accelerate the development of pitting
corrosion (Liu et al., 2017). Temperature is also a key factor
affecting pitting, as many materials do not pitting below a certain

temperature (critical pitting temperature), which has been
demonstrated to exist (Mendibide and Duret-Thual 2018).

In terms of solution features, it is generally believed that Cl−

has a great influence on the pitting susceptibility of steel. In other

FIGURE 2 | ROC curve and mean AUC obtained by cross-validation (A) When using the RFC model, (B) When using the SVC model, (C) When using the GBC
model, (D) When using the KNN model, (E) When using the NB model, (F) When the five classification models are compared.

FIGURE 3 | The feature importance sequence for 26 features based on
RF model.

FIGURE 4 | Pearson correlation matrix for 12 features.
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words, the higher the content of Cl−, the looser the corrosion
product scale formed on the steel surface and the more serious the
cracking is. The Cl− reaching the steel surface through the
corrosion product scale can accelerate the local anode reaction,
produce pitting pits and develop rapidly along the longitudinal
direction (Liu et al., 2014b). Ca2+ and Mg2+ also have the ability to
influence pitting susceptibility of steel significantly given that the
presence of divalent salts can reduce CO2 solubility (i.e., CaCO3

in the case of Ca2+ presence and MgCO3 in the case of Mg2+

presence) (Hua et al., 2018). Salinity refers to the total ion content
in the solution, and the increase of its content can also change the
solubility of CO2 and H2S, thus affecting the development of
pitting corrosion (Han et al., 2011).

Then, we calculated the pearson correlation coefficient based on
our dataset of solution features and environment features. As shown
in Figure 4, the color (blue or red) indicates the direction of the
relationship (positive or negative), and the intensity of the color
indicates how strong the relationship is (white for completely
unrelated and dark blue or red for perfectly correlated). Strong
correlations occur between Sal., Na+, and Cl−, mainly because Cl−

and Na+ were usually very high in the solution being counted, and
the salinity was almost composed of these two ions. Sufficient
information could be obtained by selecting only one feature from
a combination of features with strong correlation, and the
importance of feature was usually proportional to the effective
information contained in it (Wang et al., 2020). Thus, Cl− was
retained and Sal. and Na+ were discarded. Another feature
combination with strong correlation was Ca2+ and Mg2+, which
had a similar effect on the pitting susceptibility of steel. Ca2+ was also
retained according to the above idea. The feature combination Ⅰ
(i.e., CO2, T, CO2/H2S, H2S of environmental features; Cl−, Ca2+,
HCO3

− of solution features; t) was determined.
Two feature parameters, PREN and pHIS, were added by

feature combination,and using feature creation method Ⅰ and
Ⅱ, two new feature parameters were obtained, namely Ya and

Yb
Yc
.

The four newly generated feature parameters (i.e., PREN, pHIS,
Ya,

Yb
Yc
) were combined with feature combination Ⅰ, and the feature

importance was calculated and sorted (Figure 5). pHIS and
Yb
Yc

had

great influence on the pitting judgment model, especially pHIS, while
the importance values of PREN and Ya were relatively low. Pourbaix.
(2009) have showen that the pitting potential of carbon steel becomes
negative with the decrease of pH, which increases the susceptibility of
pitting induction. To sum up, the two feature parameters (i.e., PREN
and Ya) were removed, and the feature combination Ⅱ including CO2,
T, CO2/H2S, Cl

−, Ca2+, HCO3
−,t, pHIS and

Yb
Yc
was selected as the input

features of the pitting judgment model.
Based on above two different groups of input features (feature

combination Ⅰ and Ⅱ), pitting judgment models Ⅰ and Ⅱ were
individually established by RF model. Table 3 lists the predictive
performance of eachmodel. Each prediction process was repeated
100 times. By comparison, pitting judgment model Ⅱ with
increased pHIS and Yb

Yc
had a stronger performance, and the

average F1 score for the training set and test set reached 0.996
and 0.987, respectively. As shown in Figure 5, the performance
improvement of Model Ⅱ was mainly due to the two increased
features, especially the pHIS, which contributed greatly to judging
whether pitting occurs. Therefore, we employed this model as the
preferred model of pitting judgment.

As shown in Figure 3, the two most important feature
parameters are CO2 content and T for judging the

FIGURE 5 | The feature importance sequence for 12 features based on
RF model.

TABLE 3 | The predictive accuracy of the pitting predictionmodel using the feature
combination I and II, respectively.

Methods Training set - F1 score Test set- F1 score

Max Min Mean Max Min Mean

Feature combination Ⅰ 0.975 0.949 0.969 1 0.813 0.938
Feature combination Ⅱ 1 0.974 0.996 1 0.886 0.987

FIGURE 6 | Influence of temperature and CO2 content on the prediction
of pitting.
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occurrence of pitting. We tried to explore the law of pitting
occurrence only through these two feature parameters. The
relationship between T and CO2 content with the occurrence of
pitting is displayed in Figure 6. Surprisingly, both 3D scatter
plot and the projection drawing of T and CO2 content are
disable to classify the occurrence of pitting. Pitting and non-
pitting overlap each other, suggesting that the parameters of T
and CO2 content are not enough to distinguish the occurrence
of pitting. Some other features also contribute to affect the
pitting process. As we know, the development of pitting is an
extremely complex process, and the influence of many factors
must be considered comprehensively, which is exactly the
advantage of machine learning model compared with
traditional theoretical model.

Generalization Capabilities of Machine
Learning Model
25 new rows of immersion test corrosion data (all parameters
within the range) were collected (from our lab) as the
validation set to verify the generalization ability of the
model. The methods of feature reduction, combination, and
creation were used to transform it into a feature set of the same
type as feature combination Ⅱ, and then the pitting corrosion
of each sample was predicted by the optimized model. As
shown in Table 4, the pitting judgment model still shows a
high prediction accuracy.

CONCLUSION

In this study, we proposed a machine learning model based on
experimental data to judge the occurrence of pitting for pipeline

steel. Machine learning algorithm and feature engineering
correlation method are used to analyze the relationship
between the occurrence of pitting and input features such as
material factors, solution factors and environmental factors. For
this kind of material, CO2, T, CO2/H2S, Cl−, Ca2+, HCO3

−,t, pHIS

and Yb
Yc

are considered to be the key factors to judge whether
pitting happens or not. The generalization ability of the model is
enhanced by replacing alloying element content with specific
input parameters. Finally, the F1 scores of the optimized models
were all greater than 0.97. Based on these results, machine
learning method provides an effective means for processing
high-dimensional and complex corrosion data, and can be a
useful tool for further exploration of material corrosion
problems.
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