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Although elastic properties of hydrating cement paste are crucial in concrete engineering
practice, there are only a few widely available models for engineers to predict the elastic
behavior of hydrating cement paste. Therefore, in this paper, we derive an analytical model
to efficiently predict the elastic properties (e.g., Young’s modulus) of hydrating cement
paste. Notably, the proposed model provides the prediction of hydration, percolation, and
homogenization of the cement paste, enabling the study of the early age elasticity evolution
in cement paste. A hydration model considering the mineral composition and the initial w/c
ratio was used, while the percolation threshold was calculated adopting a
phenomenological semi-empirical method describing the effects of the solid volume
fraction and the w/c ratio. An efficient mixing rule based on the degree of solid
connectivity was then adopted to calculate the elastic properties of the hydrating
cement paste. Moreover, for ordinary Portland cement, a simplified model was built
using Powers’ hydration model. The obtained modeling results are following experimental
data and other numerical results available in the literature.
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INTRODUCTION

As a critical mechanical design parameter of concrete structures affecting their deformation and
failure, the elastic modulus of cement pastes at early age constantly attracts engineering and scientific
attention (Acker and Ulm, 2001; Bentur, 2002; Springenschmid, 2009). In general, as the main
evolving cement component at an early age, hydrating cement paste critically affects the elastic
modulus of cement paste. On the one hand, during the cement paste hydration process, the elastic
modulus of cement paste is subjected to changes in the physical environment due to the
microstructural development of the cement paste. On the other hand, the chemical composition
of hydrating cement paste varies over time, so these physical and chemical changes make the
prediction of elastic properties of cement pastes very challenging.

The literature on the experimental characterization of the elastic properties of cement-based
materials during hardening is vast (Schutter and Taerwe, 1996; Boumiz et al., 1996; Princigallo et al.,
2003; Constantinides and Ulm, 2004; Haecker et al., 2005; Voigt et al., 2005; Sun et al., 2005).
Reinhardt and Grosse (2005) investigated cement-based samples during setting and hardening by
adopting several testing methods based on the resonant frequency, ultra-sound wave propagation,
impact echo, electric properties of concrete nuclear magnetic resonance, and acoustic emissions.
Azenha et al. (2010, 2011) measured the elastic modulus of cement pastes and mortars using a novel
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method based on ambient vibration after casting and found that
many factors affected the elastic modulus, especially the water-to-
cement ratio (abbreviated as w/c). Irfan-ul-Hassan et al. (2016)
characterized the elastic stiffness and creep properties of a series
of ordinary Portland cement pastes at different aging stages. They
found that the quasistatically determining elastic modulus agreed
well with the ultrasonically determining elasticmodulus for the same
cement pastes. All these experiments indicated that the elasticity
evolution of hydrating cement paste is closely related to the mineral
composition and the w/c ratio of cement, and this relationship
cannot be described as a simple mathematical correlation.

Besides the experimental studies, many analytical and
numerical approaches have been proposed to predict the
elastic properties of early-aged cement paste. Bernard et al.
(2003) used Atkins’ model (Atkins, 1994) to simulate the
hydration kinetics of ordinary Portland cement, demonstrating
a multistep approach starting at the nano-level of the C-S-H
matrix and predicting the elasticity evolution of cement-based
materials with high accuracy. However, modeling may require an
impractical number of specific model parameters to design the
hydration kinetics. Using CEMHYD3D software to determine the
cement paste microstructure numerically, Haecker et al. (2005)
adopted a direct homogenization via the finite element method
(FEM), exhibiting good results. They found better agreement with
experimental results when the modeling resolution was increased.
Applying the FEM and the Fast Fourier Transform elastic
homogenization to the CEMHYD3D hydrating microstructure,
Šmilauer et al. (2006) showed that this numerical homogenization
was more accurate and versatile than Bernard’s method for the
hydration kinetics simulation. The homogenizationmethods based
on spherical particles provided too high percolation thresholds,
while those established on non-spherical phases were successful in
terms of providing exact percolation thresholds and strength
upscaling (Pichler et al., 2009; Pichler et al., 2011; Pichler et al.,
2013; Chu et al., 2018a; Chu et al., 2018b).

Sanahuja et al. (2007) adopted Powers’ hydration model
(Powers and Brownyard, 1946) and modified the C–S–H
bricks aspect ratio to obtain a proper percolation threshold.
Their simulation results at a late age and the end of hydration
were in good agreement with experimental data. Sun et al. (1999,
2005) investigated the early-age properties of the cement-based
materials by ultrasonic waves and HYMOSTRUC3D simulation
and revealed a dominant role of the connectivity of solid phases in
the microstructure. Applying a combination of Powers’ hydration
model, the self-consistent scheme (SCS), and a “burning”
algorithm percolation method, Stefan et al. (2010) accurately
predicted the early-age elastic properties of the cement-based
materials. However, Powers’model might be imprecise. Adopting
CEMHYD3D to capture the hydration microstructure accurately,
Zhao et al. (2013) studied the elastic properties of hydrating
cement pastes with a method similar to Stefan et al. (2010).
However, this model was inconsistent with the experimental
evolution of the elastic properties with a low w/c ratio.

Although all the methods mentioned above are feasible and
practical, they still exhibit some limitations. Moreover, an
experimental approach is practical, but it requires more time
and financial costs, and it does not yield a quantitative

relationship or a transparent mechanism. Numerical
simulations (adopting CEMHYD3D, HYMOSTRUC3D, or
FEM) accurately generate microstructural properties but are
related to high computational costs and sometimes depend on
the model resolution or mesh (Haecker et al., 2005). Some
analytical formulas used in the above works are highly
accurate but too sophisticated and inconvenient for engineers
(Bernard et al., 2003). Therefore, a more convenient and efficient
method is needed to evaluate the development of the early-age
elastic properties of cement pastes.

As already established, any prediction model has three
indispensable parts: hydration model, percolation theory, and
homogenization method. The present paper proposes new
methods for all three parts; i.e., an efficient hydration method
is proposed to consider the composition of the cement and the
initial w/c ratio explicitly, the percolation threshold is calculated
using a semi-empirical formula considering the effects of the solid
volume fraction and the w/c ratio; and, an efficient mixing rule
based on the degree of solid connectivity is used as a
homogenization method to estimate elastic properties. Our
efficient and convenient approach for engineers yields
theoretical predictions of the early-age elastic properties of
cement paste consistent with the experimental results.

THEORETICAL FRAMEWORK

In this paper, a new set of hydration and percolation models, and
a homogenization method, are proposed and combined to
evaluate the evolution of the early-age elastic properties of
cement paste. A detailed description of the framework is given
in the following subsections.

Cement Hydration Model
The hydration model estimates the chemical composition of the
hydrating cement paste and provides a volumetric prediction for
the homogenization analysis. Powers’ model (Powers and
Brownyard, 1946) was used by several researchers (Sanahuja
et al., 2007; Stefan et al., 2010) for its timely implementation.
However, the model might be imprecise and does not consider
cement type (Stefan et al., 2010). It is important to note that some
improvements to Powers’ classical model have already been
proposed. In contrast to the single “hydrate” adopted by
Powers, Muller et al. (2013) differentiated between C-S-H and
calcium hydroxide and separated the interlayer water within C-S-
H by nuclear magnetic resonance relaxometry, showing a
nonlinear relationship between the mass fraction of bound
water and the hydration degree. Based on these findings,
Königsberger et al. (2016) developed a hydration model that
could calculate the volumetric fractions of various components.
The improved model yielded volumetric fractions more
accurately, but it did not consider the type of cement. Atkins’s
kinetic model used by Bernard et al. (2003) describes the
hydration kinetics of each clinker X (where X � C2S, C3S,
C3A, C4AF) according to nucleation, growth, and diffusion
laws. The model is relatively accurate but introduces too many
parameters for practical applications.
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The Avrami equation was used to assess the reaction rates of
four clinkers in Portland cement (Lin and Christian, 2007;
Jennings and Tennis, 1994; Tennis and Jennings, 2000). The
equation assumes that the clinkers react with similar rates:

αi � 1 − exp[− ai(t − bi)ci ] (1)

where αi is the hydration degree of clinker I at time t (in days). ai,
bi, and ci are constants determined by a specific cement (Taylor,
1987), as shown in Table 1.

The Avrami equation is suitable for nucleation and growth,
but it cannot describe the reactions governed by diffusion. In
addition, it can separate the reactions of different clinkers in
Portland cement (Tennis and Jennings, 2000). However, it does
not consider the effect of w/c.

Based on simple spatial considerations, Bentz (2006)
developed a simple model of the Portland cement hydration
kinetics:

dα/dt � kϕw(t)2c(t)/ϕT(t), (2)

where α is the hydration degree, and k is analogous to a first-order
rate constant and varies with the specific cement composition,
particle size distribution, and curing temperature. ϕw(t), ϕT(t) ,
and λ(t) are the volume fractions of water-filled and unhydrated
cement, and the total capillary porosity as functions of time t,
respectively. The Bentz equation considers the influence of the
w/c ratio and requires only one parameter. However, it assumes
that the compounds react at the same rate.

In the present work, an efficient hydration kinetics model is
proposed. The model combines the Avrami equation and Bentz’s
model and shows the effects of w/c and mineralogical
components of the cement. In this model, the Avrami
equation is used to determine the initial reaction, while
Bentz’s model describes the following hydration stage,
explicitly expressed by:

{ αi � 1 − exp[− k0ai(t − bi)ci ], t≤ t0
dαi/dt � kiϕw(t)2ci(t)/ϕT(t),   t≥ t0

(3)

where t0 (in days) is the junction time of the two stages,
k0 and ki are rate constants determined by the hydration
degree of clinker i at time t0, and ci(t) denotes the volume
fractions of four mineralogical components in the
unhydrated cement. If there are no experimental data for
the calibration of parameters, it is assumed that k0 � 1 and
t0 � 3.

Tennis and Jennings (1994) proposed two types of C-S-Hs
in hydrating cement paste, i.e., one is high-density C-S-H

(HD C-S-H), and another is low-density C-S-H (LD C-S-H).
After drying, the mass fraction of LD C-S-H is:

f LD−C−S−H/C−S−H � 3.017 × (w/c) × α − 1.347α + 0.538. (4)

The model results are compared quantitatively with
experimental data of Danielson (1960) in Figure 1, which
shows a reasonably good agreement. It can be seen that the
present model is capable of describing the cement hydration.

Percolation Theory
For the cement paste, the static elastic modulus exhibits a non-
zero value only after a specific hydration degree αs (equivalent to
the set degree) has been reached, which is called a percolation
threshold. The SCS was used by Bernard et al. to obtain the
percolation threshold (Bernard et al., 2003), which relates to a
solid volume fraction greater than 50% or a porosity lower than
50% (where the sum of the fractions of solid and porosity is 1).
However, the SCS overestimates the percolation threshold.
Sanahuja et al. (2007) improved it by modifying the
slenderness ratio of C-S-H bricks based on experimental
results, but they could not determine a fixed ratio fitting all
situations.

Torrenti et al. (2005) and Zheng et al. (2012) introduced
cohesion due to hydration products and particle agglomeration
effects, and their predictions agreed with experimental results.
Boumiz et al. (1996) obtained the percolation thresholds by
measuring hydration heat and ultrasonic, showing that the
percolation threshold, αs, increased with the w/c ratio in
cement pastes, being almost irrelevant to the w/c ratio in
mortar or concrete. Additionally, for mortar, concrete, and
cement pastes with a w/c ratio below a certain number (called
the critical w/c ratio in the following sections), αs was close
to zero.

For a w/c value lower than critical, unhydrated cement
particles are initially in contact, so the solid phase percolates
once the hydration products are generated, yielding an almost

TABLE 1 | Constants in the Avrami equations (Taylor, 1987).

Clinker i ai bi ci

C3S 0.25 0.90 0.70
C2S 0.46 0 0.12
C3A 0.28 0.90 0.77
C4AF 0.26 0.90 0.55

FIGURE 1 | The present hydration model results (p) vs. experimental
results (e) of Danielson (1960) with different w/c (t0 � 3).
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zero αs value. In an increasing w/c ratio, the cement particles are
at the beginning mutually separated by water. As hydration
proceeds, the solid volume, fs, increases, and the hydrates glue
the particles together. However, the microstructure has
negligible stiffness until it reaches a sufficient solid phase to
thread one side to the opposite, yielding an αs increase with the
w/c ratio.

Therefore, the question is how to determine the sufficient
amount of solid. We here consider an extremely dispersed
situation, in which the cement grains are supposed to be
spherical particles uniformly distributed in the water, having
the same diameter and hydration rate. When the solid volume
fraction exceeds that of an inscribed sphere in the cube (the
corresponding value is 0.5236), an interconnected solid phase
forms, spanning the whole structure, so the sufficient amount of
solid, fss, is 0.5236.

The above is a conservative estimation with an overestimated
percolation threshold because the size, shape, hydration rate, and
distribution of the cement grains are nonuniform. Moreover, the
particle agglomeration effect considerably reduces the percolation
threshold (Zheng et al., 2012).

In cement pastes with a low w/c ratio, the initial solid volume
fraction, fsi, is larger than fss, resulting in a zero αs value,
similar to the prediction of Bernard et al. (2003). In the case of
a high w/c ratio (>0.3), the solid phase percolates only if there
are sufficient hydration products. In other words, the
percolation threshold corresponds to a critical solid volume
fraction, fsc, which is smaller than fss and increases with the w/
c ratio.

Based on the above analyses, we propose a semi-empirical
formula considering the effects of the solid volume fraction and
the w/c ratio to estimate the percolation threshold of a cement
paste:

αs � { 0, fsi ≥fss

α(fs � fsc), fsi <fss
}. (5)

Here, the critical solid volume fraction, fsc, is defined as follows:

fsc � {fsi, fsi ≥fss

fsi + β(fss − fsi), fsi <fss
}, β � β(w/c) (6)

where β is a function of the w/c ratio. According to a test
conducted by Boumiz et al. (1996), β can be written as follows:

β � {w/c, w/c< 0.5
0.5, w/c< 0.5}. (7)

It is noted that a high w/c ratio cannot be used in practice because
of the associated high porosity and poor mechanical properties,
and thus, we do not consider a w/c ratio larger than 0.6.

It is challenging to determine the accurate percolation
threshold experimentally, and experimental values exhibit a
specific measurement error and cannot provide a strict
evaluation criterion; however, their trend can still provide a
vital validation input (Maia et al., 2012). In Figure 2, the
experimental values are taken from Boumiz et al. (1996). For
the given cement, the percolation threshold, αs, increases with the
w/c ratio above a certain value, similar to the finding of Bernard
et al. (2003). Moreover, the trend of our model is consistent with
the experimental results.

Homogenization Method
We now have the volumetric fractions of all phases and the
percolation threshold as described above. A homogenization
method is indispensable to determining the mechanical
properties of the early-aged cement paste. Several
homogenization methods have been used. As an example, the
SCS scheme was used by Bernard et al. (2003), Sanahuja et al.
(2007), and Zhao et al. (2013), while the FEM and Fast Fourier
Transform elastic homogenization were applied by Šmilauer et al.
(2006). Additionally, a burning algorithmwas used by Stefan et al.
(2010) and Zhao et al. (2013) to obtain the connected volume of
solids.

Although the SCS can provide the percolation threshold and
approximate elastic properties, it is an implicit algorithm and
cannot be solved directly. Furthermore, it does not consider the
gluing effect of the hydrated products and does not distinguish
isolated clusters from the percolated solid phase so that the solid
volume may be overestimated.

The isolated clusters (or non-percolated solid particles) do not
contribute to shear stiffness. Their mechanical behavior is similar
to that of water (Šmilauer et al., 2006; Zhao et al., 2013), so that we
consider them as voids. Only percolated solid phase (or spanning
clusters) contributes to the mechanical properties of the
particular microstructure. Before the percolation threshold is
reached, the volumetric fraction of the percolated solid phase
is zero, and it can achieve a value of 100% if the solid phase fills
out available space. Therefore, we write the volumetric fraction of
the percolated solid phase, fps, as follows:

fps � { 0, fs ≤fsc(fs−fsc)/(1−fsc), fs >fsc
}, (8)

which shows that the hydrating cement paste does not exhibit
stiffness when fps is zero. When fps equals 1, the elastic properties
of the early-aged cement paste are equal to those of the solid

FIGURE 2 | Percolation threshold predicted using our model and
experimental results for different w/c ratios.
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phase. Thus, we propose that the elastic properties are the average
volume values of the percolated solid phase and voids as
expressed by:

Ecp � fpsEs + (1 − fps)Ev, (9)

where Ecp, Es, and Ev are elastic moduli of the cement paste,
percolated solid phase, and voids, respectively. For simplicity, it is
assumed that Ev � 0.

Elastic modulus, Es, can be obtained from bulk modulus, Ks,
and shear modulus, Gs, which are calculated adopting the
Mori–Tanaka method, in which the LD C–S–H is chosen as
a matrix phase. Supplementary Material briefly introduces the
Mori–Tanaka method. The method represents a simple and
useful approach for estimating the effective behavior of a
composite material. The method has been described in
detail by Budiansky (1965) and Mori et al. (1973). All the
material properties used in the present study are given in
Table 2.

RESULTS AND DISCUSSIONS

The modeling results are quantitatively compared with the
experiments of Boumiz et al. (1996) for different w/c ratios
ranging from 0.3 to 0.6, Figure 3, showing a reasonably
good agreement and suggesting that the present model is
capable of describing the elastic properties of a hydrating
cement paste.

Figure 3 indicates that the elastic modulus of cement pastes
with a high w/c ratio is in good agreement with the experimental
results. However, there is a discrepancy between the experiment
and the model for cement paste having a low w/c ratio (e.g., 0.3),
and the model exhibits a quasi-linear relationship between the
elastic modulus trend with the hydration degree. This
discrepancy was previously assigned to the measuring accuracy
(Stefan et al., 2010; Zhao et al., 2013).

Figure 4 compares the present model results, experimental
data of Boumiz et al. (1996), and numerical data of Zhao et al.
(2013), who combined the CEMHYD3D hydration model, SCS,
and a burning algorithm. The elastic modulus predicted by our
modeling approximately coincides with that obtained by Zhao
et al. (2013). Still, they overestimated the elastic modulus because
the used burning algorithm and SCS gave a higher volumetric
fraction of the percolated solid phase.

In the case of ordinary Portland cement, without considering
the effects of the hydration rate and mineral composition, a more
straightforward relationship between the elastic modulus and
hydration degree can be derived by replacing the hydrationmodel
of Eq. 3 in Cement Hydration Model with Powers’s model,
providing the volume fractions of the anhydrous phase
(subscript a) and hydrates (h) as simple functions of the w/c
ratio and the hydration degree, α:

fa � 0.32(1 − α)/(w/c + 0.32), fh � 0.68α/(w/c + 0.32) (10)

Using the parameters from Table 3, the percolation threshold,
αs, and the elastic modulus of the hydrating cement paste, Es, can
be derived from Eqs 5–11 as follows:

TABLE 2 | Elastic parameters of components.

Compound E (GPa) υ Ref

C3S 135 0.3 Bernard et al. (2003)
C2S 140 0.3
C3A 145 0.3
C4AF 125 0.3
LD C-S-H 21.7 0.24
HD C-S-H 29.4 0.24
Gypsum 45.7 0.33 Haecker et al. (2005)
Calcium hydroxide 42.3 0.324
Hydrogarnet 22.4 0.25
Monosulfate 22.4 0.25
Ettringite 22.4 0.25
Calcium aluminate hydrate 22.4 0.25
Stratlingite 22.4 0.25

FIGURE 3 | Elastic modulus (E) predicted using our model (continuous
lines) and experimental results (points) for different w/c ratios.

FIGURE 4 | Comparison of results obtained in our model, the simulation
results of Zhao et al. (2013), and experimental results of Boumiz et al. (1996)
for different w/c ratios.
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α�
⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

0 w/c≤0.2912

(1.1544w
c
−0.423)w/c, 0.5≥w/c>0.2912

0.7272.w/c−0.2117, w/c>0.5

⎫⎪⎪⎪⎪⎬⎪⎪⎪⎪⎭
,Ecp �fpsEs

(11)

where

fps �

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎩

0.36α
w/c

, w/c≤ 0.2912

1 + 1 − 0.36α/w/c
0.5236w/c − 1.11524

, 0.5≥w/c≥ 0.2912

0.4877α − 0.3546 · w/c + 0.1033
w/c + 0.1033

, w/c> 0.5

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎬⎪⎪⎪⎪⎪⎪⎪⎪⎭
(12)

Es � Eh[1 + fha
Eh/Ea − 1

1 + 0.5(1 − fha)(Eh/Ea − 1)] (13)

fha � fh/(fa + fh) � 1 − α

1 + 1.125α
(14)

Figures 5, 6 illustrate that the percolation threshold and the
elastic modulus predicted using Powers’s model coincide with
those obtained from experimental results and Eq. 3, validating
our approach. Moreover, the equations based on Powers’s model
are more straightforward for engineers.

The main advantage of our approach is its efficiency and
practicability for engineering applications. The percolation
threshold and elastic modulus were obtained using simple
expressions instead of time-consuming computations, such as
those of the SCS or a simulation with a burning algorithm.

The key to the modeling is an accurate description of the
evolution of the volumetric fraction of the percolated solid
phase. In this study, we adopted a simple phenomenological
but rational assumption. The evolution of the volumetric
fraction of the percolated solid phase can be precisely
depicted using a combination of the burning algorithm
and simulation (e.g., CEMHYD3D or HYMOSTRUC3D),
but the calculations on the entire microstructure are very
time-consuming. The percolation theory in our model
simplifies the existing system and needs to be improved in
future work.

Attention needs to be paid to the linear relationship between
the elastic modulus evolution and the hydration degree,
obtained experimentally by Boumiz et al. (1996).
However, so far, for cement paste with a low w/c ratio
(i.e., <0.3), all models (including our model) show that
the elastic modulus is a convex function of the hydration
degree. Excellent agreement with experimental results is
observed at high w/c ratios. The discrepancy at the early
age of hydration was previously assigned to the experimental
measurements at this age. However, we argue that the
discrepancy is more likely due to the tenuous and loose
connectivity of the solid frame, along with the small
volume fractions of hydrates at early ages. Therefore, the
discrepancy needs to be investigated experimentally using a
tool that effectively characterizes the tightness and strength
of the solid frame connectivity.

The accurate predictions of the elastic modulus in the present
work were limited to cement paste, but they can be extended to
mortars and concretes if the effect of aggregate (or filler) on the
percolated solid phase is reasonably considered. Ongoing
research is expected to address this extension.

CONCLUSION

We proposed an efficient and straightforward approach for
engineers to predict the early-age elastic properties of cement
pastes. A hydration model considering the mineral
composition and the initial w/c ratio was used, while the

TABLE 3 | Mechanical properties of the cement paste phases obtained with the
Powers model (Stefan et al., 2010).

Anhydrous grains Hydrates

Ea (GPa) υa Eh (GPa) υh
135 0.2 25 0.2

FIGURE 5 | Percolation thresholds based on Powers’s model, Eq. 3,
and experimental results of Boumiz et al. (1996) for different w/c ratios.

FIGURE 6 | Elastic modulus based on Powers’s model, Eq. 3, and
experimental results of Boumiz et al. (1996) for different w/c ratios.
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percolation threshold was calculated adopting a
phenomenological semi-empirical method describing the
effects of the solid volume fraction and the w/c ratio. An
efficient mixing rule based on the degree of solid
connectivity was then adopted to calculate the elastic
properties of the hydrating cement paste. The predictive
capability of the present model was validated by comparing
the model predictions with other experimental and numerical
studies. Moreover, for ordinary Portland cement, a simplified
model was built using Powers’s hydration model, and it
exhibited good consistency with experimental results.
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