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In this paper, we report a switchable ultra-wideband metamaterial absorber with
polarization-insensitivity and wide-incident angle at THz band which is composed of
VO2 disk, polyimide dielectric substrate, and gold ground plane. The results show that the
absorption is greater than 90% from 3.5–8 THz for a temperature of 300 K and this
absorption band disappears when the temperature rises to 350 K. The absorption
property of our proposed metamaterial absorber is insensitive to polarization states
and angles and it can withhold high absorption of more than 80% for wide-incident
angles, up to 60° for TE mode and TM mode. The wideband absorption mechanism is
elucidated using an effective medium and surface current analysis.
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INTRODUCTION

Absorbing materials refer to natural materials or metamaterials constructed by electromagnetic
structures that can absorb electromagnetic waves in free space. Traditional absorbing material is a
kind of absorbing material coated on the target surface, which is usually made of ferrite, carbon
powder, and other absorbents mixed with some non-metallic substrates such as thermoplastic or
epoxy resin. The traditional absorbing material usually has the disadvantage of having a narrow
absorption band, small absorption angle and being bulky. In 2008, Landy et al. (Landy et al., 2008)
firstly proposed the concept of metamaterial absorber. Since then, metamaterial absorber has
attracted wide attention. Many researchers have achieved excellent results on wideband
absorption, polarization-insensitivity, tunable absorption, and so on from microwave to the
visible light band (Chen, 2012; Wang et al., 2014a;; Hao et al., 2014; Chen et al., 2015; Lin et al.,
2016; Chen et al., 2019; Xie et al., 2019; Zhang et al., 2019; Zheng et al., 2019; Quader et al., 2020;
Zhang et al., 2021). At present, the researches of metamaterial absorber are flourishing to achieve
wideband absorption, polarization-insensitive absorption, tunable absorption, and multi-band
absorption (Aydin et al., 2011; Li et al., 2011; Ding et al., 2012; Xu et al., 2012; Argyropoulos
et al., 2013). However, the narrow-incident angle of metamaterial absorbers limit their applications
in practice. Consequently, it is necessary to design metamaterial absorbers with polarization-
insensitivity and wide-incident angle.

Many methods have been devoted to widen the incident angle of metamaterial absorbers. In 2017,
Fan J X et al. proposed a wide-angle wideband terahertz metamaterial absorber with a multilayered
heterostructure (Fan et al., 2017). In 2018, Huang X T et al. designed a wide-angle perfect metamaterial
absorber based on cave-rings and the complementary patterns (Huang et al., 2018a), its absorption is
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over 92% at around 6.53 THz when the incident angle for the TE
mode is up to 80°, and at TM mode, its absorption at 7.64 THz is
greater than 92% even for an incident angle of up to 70°. In the
same year, Huang X T designed multiband ultrathin polarization-
insensitive terahertz perfect absorber (Huang et al., 2018b), it
presented the ability to maintain high absorption of more than
80% for a large incident angle up to 60° for both TE and TMmodes.

However, the absorption band of the above mentioned wide-
angle terahertz metamaterial absorber is narrow, this limits their
application in practice. In this work, we propose a switchable
ultra-wideband metamaterial absorber with polarization-
insensitivity and wide-incident angle at the THz band. Its
absorption is over 90% from 3.5–8 THz for a temperature of
300 K and the absorption band fades away when the temperature
rises to 350 K. It remains highly absorptive with over 80%
absorption for a wide-incident angle up to at 60°for both TE
mode and TM mode. Compared with the reported wide-angle
terahertz wideband metamaterial absorber (He et al., 2011; Wang
et al., 2014b; Li et al., 2015; Huang et al., 2018c; Dinh et al., 2021),
our designed metamaterial absorber has the advantages of wider
absorption bandwidth and incident angle.

MODEL DESIGN

As illustrated in Figure 1, the unit cell of our proposed
metamaterial absorber consists of VO2 disk, polyimide
dielectric substrate, and gold ground plane. The periodicities
of the unit cell are a � b � 12 μm. The geometrical parameter
of the VO2 disk is r � 5 μm. During the simulation process, the
VO2 disk is set as a thermally tunable resistance filmmaterial with
the conductivity σ � 2 × 102S/m when the temperature T � 300 K
and σ � 2 × 105S/m when temperature T � 350 K according to
the reference (Dao et al., 2019), the thickness of VO2 disk is 3 μm.
The polyimide dielectric substrate selected has a relative dielectric
constant of εr � 2.35, a loss of tan δ � 2.35 and its thickness is
7 μm. The thickness of the gold ground plane
(σ � 4.56 × 107S/m) is 0.1 μm. The difficulty of the realization
of our proposed metamaterial absorber in practice is the
preparation of VO2 disk.

The full-wave electromagnetic simulation of our proposed
metamaterial absorber is performed with CST Microwave Studio.

Throughout the simulation process, the boundary conditions of x
and y directions are set as unit cell, the z-direction is set as open.
All + Floquet ports are used to simulate the incoming and
outgoing waves. The electromagnetic parameters are calculated
using a frequency-domain electromagnetic solver.

RESULTS AND DISCUSSION

For the metamaterial absorber, the absorption can be calculated
by A(ω) � 1 − |S11|2 − |S21|2(S11and S21are the reflection and
transmission). For our designed metamaterial absorber, there
is no transmission due to the gold ground plane. Thus, the
expression of absorption can be simplified as
A(ω) � 1 − |S11|2. The simulated absorptions of the
metamaterial absorber with the temperature T � 300 K and
T � 350 K are shown in Figure 2. The absorption is more
than 90% from 3.5–8 THz for a temperature of 300 K and the
absorption band disappears when the temperature rises to 350 K.

To understand the absorption mechanism, the normalized
input impedance of the metamaterial absorber with the free space

FIGURE 1 | Schematic diagram of the metamaterial absorber unit cell, (A) 9 × 9 array of the unit cell, (B) perspective view of the unit cell.

FIGURE 2 | The absorption of the metamaterial absorber under the
temperatures T � 300 K and T � 350 K
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for normal incidence (T � 300 K) is retrieved from the simulated
S11 and S21 parameters by using the scattering parameter method
(Smith and Schultz, 2002), as shown in Figure 3. The real part of
the normalized input impedance of the metamaterial absorber
with free space is nearly unity from 3.5–8 THz, which indicates
that our proposed metamaterial absorber acquires an impedance
match with free space from 3.5–8 THz, which means that the
reflection is nearly zero. As an outcome, the absorption will be
very high.

The wideband absorption mechanism of the proposed
metamaterial absorber is further clarified in Figure 4. Figure 4
shows the surface current of the metamaterial absorber on the
VO2 disk and gold ground plane at 6 THz (T � 300 K). It can be
seen that the induced anti-parallel currents on these two layers
prove that magnetic resonance is formed at 6 THz. Therefore, the
absorption of the metamaterial absorber at 6 THz originates from
the magnetic resonance (Son et al., 2014). The reason for

wideband absorption is that the circuit resonant structure
formed by VO2 disk, polyimide dielectric substrate, and a gold
ground plane can realize the impedance match between the
metamaterial absorber and free space over a wide frequency
range near the resonant frequency, and can then broaden the
absorption band (Costa et al., 2010; Zhang et al., 2013).

The power loss density distributions at different frequencies
are monitored at T � 300K, as shown in Figure 5. It can be
observed that there are similar power loss density distributions at
different frequencies at 4 and 6 THz, the power losses all
concentrate on the front part of polyimide dielectric substrates.

Figure 6 shows the absorption of the metamaterial absorber at
different polarization angles (T � 300 K). Owing to the rotational
symmetry of the unit cell, the absorption under different
polarization angles is the same.

The waves are usually incident on to metamaterial absorber
with different incident angles. Figure 7 shows the absorption of
the metamaterial absorber with different incident angles at TE
and TMmode (T � 300 K). For TE and TMmode, the absorption
is over 80% for incident angles below 60° from 3.5–8 THz.
However, the absorption decreases noticeably for incident
angles beyond 60°. This indicates that the absorption property
of the metamaterial absorber has the advantage of being
responsive towards wide-incident angle.

Figure 8 and Figure 9 shows the absorption of the
metamaterial absorber for different thickness of VO2 disk and
polyimide dielectric substrate (T � 300 K). The absorption band
of the metamaterial absorber gradually shifts to a higher
frequency with the increase of thickness of VO2 disk. The
absorption of the metamaterial absorber gradually decreases
with the increase of the thickness of the polyimide dielectric
substrate.

CONCLUSION

In conclusion, we propose a switchable ultra-wideband terahertz
metamaterial absorber with polarization-insensitivity and wide-
incident angle. It is composed of a VO2 disk, polyimide dielectric

FIGURE 3 | The normalized input impedance of the metamaterial
absorber with free space (T � 300 K).

FIGURE 4 | The surface current of the metamaterial absorber at 6 THz (T � 300 K), (A) VO2 disk; (B) gold ground.
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FIGURE 5 | The power loss density distribution of the metamaterial absorber (T � 300 K), (A) 4 THz, (B) 6 THz.

FIGURE 6 | The absorption of the metamaterial absorber at different
polarization angles (T � 300 K).

FIGURE 7 | The absorption of the metamaterial absorber at different incident angles (T � 300 K), (A) TE mode, (B) TM mode.

FIGURE 8 | The absorption of the metamaterial absorber with different
thickness of VO2 disk (T � 300 K).
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substrate, and gold ground plane. The simulation results show that
the absorber provides a strong wideband absorption for incident

waves from 3.5–8 THz for a temperature of 300 K and this strong
absorption band diminishes when the temperature rises to 350 K.
We also show that the absorption property of our proposed
metamaterial absorber is insensitive to polarization states and
angles and it responses well under wide-incident angles as well.
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