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The effect of high temperature on corrosion behavior and passive film composition of Ni-based
alloy 825 in H2S-containing environment was investigated by Confocal Laser Microscope
(CLM), Scanning Electron Microscope (SEM), Energy Dispersive Spectrometer (EDS), and
X-ray Photoelectron Spectroscopy (XPS). The experiment was carried out at 150 and 230°C in
NaCl solution. The partial pressure of H2S was set to 1.2MPa and CO2 was set to 3.2MPa.
The results showed that Ni-based alloy 825 presented good general corrosion resistance.
Pitting corrosion was likely to occur at 230°C because of Cr depleted in the passive film. NiS
appeared at high temperature and is damaging to protectiveness of passive film.
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INTRODUCTION

With the increase in energy demand and development in oil field exploitation methods, ultra-deep oil and
gas fields have gradually increased. During cooperation with colleagues in field, we found the environment
in working condition is more severe than expected. As depth increases, downhole equipment is facing
temperatures above 100°C. Because of the high H2S, high Cl−, and high CO2 that exist in the downhole
environment,materials usually used in production suffer fromdecreasing corrosion resistance. Carbon steel
will face high corrosion risk in the harsh corrosive environment (Javidi and Bekhrad, 2018). Nickel-based
alloys with better corrosion resistance are used in production equipment. There was plenty of research
about the corrosion behavior at temperature lower than 200°C. H2S partial pressure was stabilized at several
KPa. This didn’t match to the high temperature and highH2S partial pressure in production. There are few
reports on the passive film composition of alloy 825 under extreme environments. The relation between
passive film composition and corrosion resistance still needs to be studied. Incoloy 825 is the most widely
used Ni-based alloy in engineering. Its high content of Cr and Ni makes for great passivation performance
and good corrosion resistance. Early research had discovered the passivation ability of Cr (Kirchheim et al.,
1989) and it became a common element in various stainless steels. Mo is a typical additive to improve the
stability of passive film and prevent occurrence of localized corrosion (Laszczyńska et al., 2017; Hendersona
et al., 2018).

However, Ni-based alloys cannot be corrosion-free in extreme environments. There were many
researchers in related fields. Elshawesh et al. (2015) had reported a failure case of a 825 joint in CO2/H2S
environment at 60°C which was caused by pitting corrosion in long-term service. Banaś et al. (2007)
presented S2− ion could hinder the formation of oxide film and changed the corrosion mechanism of
alloys. Ding et al. (2014) believedH2S accelerate the anodic and cathodic reactions of stainless steel. H2S
could reduce the corrosion resistance of materials by changing the electrochemical properties of passive
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film. Alexander et al. (2018) compared the difference of corrosion
mechanism between duplex stainless steel and nickel-based alloy in
H2S environment. Both materials showed the susceptibility of
selective corrosion. Dong et al. (2011) revealed the increase of
austenite phase could increase the corrosion resistance of crevice
corrosion. Cheng et al. (2000) proved the presence of nickel sulfide
and H2S accelerated the corrosion rate of Alloy 825 by using an
electrochemistry method. Temperature can influence the corrosion
resistance of materials. Zhao et al. (2011) tested Ni-based alloy
using a solution containing H2S/CO2 and found the increase in
temperature resulted in a higher corrosion rate while presence of
elemental sulfur led to localized corrosion. Elizabeth et al. (2014)
used optical measurement to observe corrosion behavior 825 in
3MNaCl with CO2 at 250°C. However, the downhole environment
is much more severe. The Cl− concentration is nearly saturated
under severe working conditions and the H2S and CO2 could reach
MPa level. Further research on Ni-based alloy corrosion behavior
under severe conditions is still needed.

In this paper, the corrosion resistance of the passive film of Ni-
based alloys has been further studied by using Confocal Laser
Microscope (CLM), Scanning Electron Microscope (SEM),
Energy Dispersive Spectrometer (EDS), and X-ray
photoelectron spectroscopy (XPS). The pitting corrosion
behavior of Alloy 825 by changing the temperature in a high
Cl− high H2S/CO2 environment is discussed.

MATERIALS AND METHODS

Materials and Solutions
All test specimens were cut from an 825 Ni-based Alloy plate. The
chemical composition of 825 is listed in Table 1.

The corrosion test specimens were cut to 40 mm × 20 mm
× 3 mm. The specimens for surface characterization were cut to
10 mm × 10 mm × 3 mm in size. All samples were cleaned with
acetone, alcohol, and deionized water after machining.
Corrosion test specimens were polished to 600# and surface
characterization specimens were successively polished to 2000#
to make it suitable for SEM and XPS test. Specimens were
cleaned by deionized water and alcohol, then dried by cool air,
and then weighed.

For a more precise simulation of working condition, 350 g L−1

NaCl was applied in an immersion test. The test solution
containing approximately 350 g L−1 NaCl were purged with N2

for 2 h. Before the test, solution was saturated with CO2 and then
H2S was introduced and stabilized at 1.2 MPa. The partial
pressure of CO2 is controlled to 3.2 MPa which is similar to
working condition. As the gas pressure is fully stabilized, the
autoclaves were heated to 150 and 230°C, respectively. The test
duration was set to be 720 h. The total pressure of two conditions
is about 5 MPa after heating.

Weight Loss
After experiment, specimens were taken out of the autoclave.
Deionized water and acetone were used to rinse. The specimens
were blow-dried by cool wind. The corrosion product was
removed by 15% HCl and then weighed. The corrosion rate
was calculated by the following equation:

CR � 87600W
A × t × D

(1)

where CR is the corrosion rate (mm/a),W is for total weight loss
(g),A is for sample surface area (cm3), t is for experiment time (s),
D is for density which is 8.14 g/cm3 for Alloy 825.

TABLE 1 | The chemical composition of 825 (wt%).

Alloy C Cr Mn Si Cu Mo S Al Ti Fe Ni

825 0.01 21.3 0.45 0.18 2.24 3.08 0.003 0.21 0.75 30 bal

FIGURE 1 |Macro-morphology of 825 sample after the immersion tests at different temperatures: (A) no obvious corrosion product at 150°C, (B) black corrosion
product at 230°C.
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Surface Morphology
CLM and SEM were used to observe the corrosion product on
the specimen. After the immersion test, the specimens were
rinsed with deionized water and dried by cool air. The surface of
the specimens was analyzed using CLM to obtain the
dimensional information of pits. A Quanta250 environmental
SEM equipped with an EDS was used to analyzed the surface
morphology and corrosion products. The depth of corrosion
pits was acquired and pitting corrosion rate was calculated by
the following equation:

CRp � 8760D
t

(2)

where CRP is the pitting corrosion rate (mm/a), D is for depth
of the deepest pits (mm), and t is for experiment time (h).

Surface Characterization
The composition of the passive films formed at various
temperatures was analyzed by XPS with a PHI5000
VersaProbe III [monochromatic Al Kα (hυ � 1,486.6 eV),
analysis angle 45°]. The shift change was adjusted by C 1s
at 284.8 eV. XPSPEAK 41 was used to analyzed the XPS result.

RESULT

Corrosion Rate
We used Eq. 1 to calculate the general corrosion rate. The
corrosion rate is 0.0007 ± 0.0001 mm/a for 150°C and
0.0010 ± 0.0001 mm/a for 230°C. The Alloy suffered from
higher general corrosion rate at 230°C than 150°C. However, it
should be pointed out that corrosion rates were extremely low,
indicating Alloy 825 showed good general corrosion resistance
under the testing conditions.

Surface Morphology
Figure 1 shows the morphology of Alloy 825 samples after the
immersion tests at different temperatures. It was observed that
samples lost metallic luster after test.

Figure 2 shows the micro-morphology of the 825 sample after
the immersion tests at different temperatures. There is no obvious
pit on the surface of the sample tested at 150°C. A large number of
pits were found at 230°C. Several researches (Banaś et al., 2007;
Tomio et al., 2015) indicated that in H2S-containing
environments the Ni-Cr-Mo alloy would form oxides of Cr
and Mo and black sulfides such as FeS, NiS, and MoS2 on the
surface. The composition of passive film is different from that
formed in H2S-free environment (Wang et al., 2017; Wang et al.,
2018; Wang et al., 2020).

Figure 3 shows micro-morphology of the 825 sample after
removal of the corrosion products. The corrosion product was
removed with 15% HCl. The samples tested at 150°C showed no
pit on the surface, and no height difference caused by corrosion
was observed on the entire surface. A large number of pits could
be clearly found on the surface of the specimen and were evenly
distributed on the surface at 230°C. The depth of pits ranged from
7 to 10 μm. The pitting corrosion rate was 0.12 mm/a according
to Eq. 2. The rising temperature greatly increased localized
corrosion susceptibility of Alloy 825 in a sulfur-containing
environment.

Figure 4 shows the SEM images of Alloy 825 sample after the
immersion tests. A layer of film could be observed on the surface of the
sample tested in 3.2MPa CO2, 1.2MPa H2S at 150°C. The film was
intact and had no obvious corrosion product accumulation. The

FIGURE 2 | Micro-morphology of 825 sample after the immersion tests
at different temperatures without remove corrosion products: (A) no pit
observed at 150°C. (B) black pits founded at 230°C.

FIGURE 3 | Micro-morphology of 825 sample after removal of the corrosion products at different temperatures: (A, B) no pit founded at 150°C. (C, D) black pits
founded at 230°C and scanned by CLM.
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material showed good corrosion resistance in this environment. The
particles corrosion product appeared at 230°C, indicating the corrosion
tendency at 230°C is higher than that at 150°C. Scratches still could be
seen over the surface, which suggested the material had strong
resistance to general corrosion. This is consistent with the results in
Corrosion Rate. EDS was used to analyze the surface corrosion product
film. The analysis found corrosion product film contains a small
amount of sulfur element and the sulfur content in the particle
corrosion product is much greater than corrosion product film.

XPS Result
For corrosion product deposited on the corrosion product film
and the corrosion product film, XPS is used for composition
analysis. All samples were sputtered for 30 s to remove the
outermost product film. The sampling depth of XPS is
0.5–2 nm for metals and about 1–3 nm for inorganic products.

Figure 5 shows the result of XPS results at 150°C. It mainly
contained Cr, Fe, Ni, Mo, and O and S. The Cr shows obvious split
peaks. The peaks were corresponding to Cr2O3 (576.8 eV) and CrO3

(578.5 eV). Cr oxides were still formed in high-temperature
H2S-containing environment which was the main reason for
Alloy 825 to maintain good corrosion performance under severe
conditions. Fe spectrum were mainly composed of Fe2O3 (710.9 eV)
and FeS (713.8 eV). It can be determined the corrosion products are
Fe2+/Fe3+ oxides and sulfides in the passive film. The content of Mo
in the passive film is the least of the four elements. Its spectrum was
split into three peaks of Mo, MoS2, and MoO3. The Ni spectrum
mainly consisted of Ni(OH)2 (861.2 eV) and satellites. O spectrum
was divided into O2−(530.2 eV) and OH−(531.6 eV). The peak of S
was mainly S2−(530.2 eV).

Figure 6 shows the surface XPS results at 230°C, 1.2 MPa H2S,
3.2 MPa CO2. The Cr and Fe spectra could be separated to similar

FIGURE 4 | SEM and EDS result of Alloy 825: (A) no obvious corrosion products at 150°C (B) particle corrosion products observed at 230°C.
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FIGURE 5 | XPS analysis results for Alloy 825 at 150°C, 1.2 MPa H2S 3.2 MPa CO2.

FIGURE 6 | XPS analysis results for Alloy 825 at 230°C, 1.2 MPa H2S 3.2 MPa CO2.
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peak as 150°C. There were Mo and MoS2 in the Mo spectrum.
However, MoO3 disappeared at 230°C.

Ni formed NiS and Ni(OH)2 at 230°C. The appearance of
sulfides in the passive film lead to a decrease in general corrosion
resistance and induced pitting corrosion. The O spectrum was
composed by O2− and OH− which is the same as the result at
150°C. The S spectrum could be separated to different peaks of S2−

and S2
2−.

Figure 7 shows the relative proportions of the elements in the
passive film under the two conditions. As the temperature
increased, the content of Cr in the passive film reduced. At
150°C, the relative proportion of Cr was above 60%, which
reduced to 20% after the temperature was increased to 230°C.
At the same time, the relative proportions of Fe and Ni increased.
At 150°C, the relative ratios of Fe and Ni in passive film were
lower than that of Cr which was less than 15%. However, when
the temperature raised to 230°C, the relative ratio was increased to
about 30% for Fe and 40% for Ni. Mo kept about 10% in both
conditions.

DISCUSSION

The increase in temperature influenced the corrosion behavior of
nickel-based alloys in H2S-containing environments. It increased
the corrosion rate and risk of pitting corrosion by affecting the
composition of the passive film. From 150°C to 230°C, changes
occurred in the composition of the surface passive film of nickel-
based Alloy 825. Under sulfur-containing conditions, S appeared
in the passive film and sulfide had detrimental effect to isolated
corrosive media.

At 150°C, the content of Cr in the passive film was higher than
that of Alloy 825 which showing enrichment in passive film.
When temperature increased, the Cr in the passive film greatly
reduced. This is consistent with other studies at lower
temperatures which pointed out an increasing loss of Cr2O3 as
temperature increases (Zhang and Shoesmith, 2013).

The oxides and sulfides of Fe were formed in both conditions.
The content of Fe in the passive film increases with temperature.
Low corrosion resistance of Fe/FeS results in an increase in the
dissolution rate at 230°C.

At lower temperatures, Ni only formed the Ni(OH)2, while
NiS was produced at high temperatures. Monnot (Monnot
et al., 2017) found that appearance of sulfide will not only
reduce the density of the film but also cause changes in the
electrochemical property of passive film. The original ion-
selective oxide film converted to the sulfide film which was
lacking in ion-selective. This promoted the permeation of
corrosive ions such as Cl−, S2−, and CO3

2 to the base metal,
increasing the pitting susceptibility. Therefore, pitting
corrosion occurred in 825 at 230°C.

Ni(OH)2 has good corrosion resistance. At the same time, the
relative content of Ni in the passive film was significantly
increased, which is close to the proportion of Ni in Alloy 825.
Because of the formation of sulfides, the composition of the
passive film changes and the corrosion resistance is reduced. The
cathodic reaction of H2S corrosion is a series of depolarization

processes of H2S, HS−, and H+. It lowers the pH of the
environment as in the following:

H2S + e− →H + HS− (3)

HS− + e− →H + S2− (4)

The dissolution process of Ni at lower temperature is as
following (Cheng et al., 2000):

Ni +H2S +H2O→Ni(HS)ads +H3O
+ + e− (5)

Ni(HS)ads →NiHS+ + e− (6)

NiHS+ +H3O
+5Ni2+ +H2S +H2O (7)

The hydrolysis reactions of Ni2+ lead to a formation of Ni(OH)2
at 150°C.

At 230°C, Ni forms NiS in the sulfur-containing environment.
NiS was a common corrosion product of nickel-based alloys after
localized corrosion (Zhao et al., 2011). The NiS is formed as
follows (Banaś et al., 2007; Sun et al., 2019; Li et al., 2021):

Ni +H2S(aq)→NiS +H2 (8)

NiS could not form a protective layer at low pH (Davoodi et al.,
2011) which caused continuous corrosion. The presence of NiS
may be one of the reasons for the decreased protection of
passivation film at high temperature.

The content of Mo in the Alloy 825 is relatively low. But it plays
a critical role in improving performance of the passive film. The
sulfide and oxide of Mo have a good insulation of corrosion
environment. Previous studies have shown that oxides of Mo
have good corrosion resistance (Tomio et al., 2015; Henderson
et al., 2019). Its protective performance comes from the ability to
form passive film with cation selectivity. But when the temperature
reaches 230°C, the following reaction may happen (Li et al., 2020a):

MoO3 + 2HS− →MoS2 + 2OH− +H2 (9)

The reaction (9) is nearly impossible at room temperature
and atmospheric pressure (Natishan et al., 1999). But

FIGURE 7 | The comparison of relative proportions of the elements in
passive film of Alloy 825 under two conditions.
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MoS2 might formed in a sulfur-containing environment at
230°C.

Figure 8 shows the possible mechanism of Alloy 825 in the
experimental environment. The corrosion behavior of
passive film at lower temperature has been studied
extensively (Zhang and Shoesmith, 2013; Henderson et al.,
2019; JianqiaoYang et al., 2020; Li et al., 2020b; Nimmervoll
et al., 2021). As Figure 8A shows, Mo is enriched in the outer
layer and Ni/Cr in the metal border. This is the result of
dissolution of passive film and the deposition of Mo oxide at
low pH. NiS does not form and amount of FeS is limited.
Dissolution/formation of passive film is relatively slow.
Therefore, a complete oxide passive film can be formed to
keep good corrosion resistance. With the increase of
temperature, the dissolution/formation process of the
passive film is accelerated. Because of the higher diffusion
ability of Ni than Cr, it takes priority to combine with S2−

(Zhao et al., 2011), so NiS corrosion products are formed on
the metal surface. MoO3 is converted to MoS2 with less
corrosion resistance. The content of Cr is decreased in
passive film. The surface was adhered by a loose layer of
NiS/FeS and Mo sulfide without precipitating a protective
film on the metal. When corrosive solution reaches substrate,
pitting corrosion happens.

In summary, the increase in temperature will cause the
corrosion of Alloy 825 to accelerate in high H2S environment.
At 150°C, Cr enriched passive film could still be formed on the
surface of Alloy 825. There was only a small amount of FeS in
the passive film, which had little effect on the corrosion
resistance. The main composition of passive film was still
Cr and Ni oxides. Oxides of Mo also provided great corrosion
resistance. After the temperature rose to 230°C, the relative
proportion of Cr in the passive film reduced while the
proportion of Ni and Fe increased. The appearance of
sulfide reduced the protectiveness of the passive film.
Therefore, the surface of the sample tested at 150°C has
only a thin film of corrosion products. No partial
corrosion products were attached to the film and no
obvious localized corrosion phenomenon was on the

surface. On the surface of the specimen at 230°C, the
performance of the passive film deteriorated and the
corrosion rate increased. A thicker corrosion product layer
appeared and partial corrosion product was attached to the
surface. With defects in the passive film, pitting corrosion
occurred.

CONCLUSION

In the present work, the corrosion behavior of Alloy 825 in high
temperature with CO2/H2S and composition of passive film were
studied. Weight loss, CLM, SEM, EDS, and XPS were used to
analyze the specimen.

The conclusion is listed as follows:

1) The general corrosion of Alloy 825 is relatively slow in
environment with 3.2 MPa CO2, 1.2 MPa H2S. Corrosion
rate is 0.0007 ± 0.0001 mm/a for 150°C and 0.0010 ±
0.0001 mm/a for 230°C.

2) No pitting corrosion occurred at 150°C. When temperature
raised to 230°C, pitting corrosion was likely to occur on the
Alloy 825 surface.

3) The passive film is mainly composed of Cr2O3, CrO3, Fe2O3,
FeS, Ni(OH)2, Mo, MoS at 150°C. At the higher temperature
of 230°C, NiS is present in the passive film.

4) Cr suffered from a rapid decline in proportion while Fe
and Ni were more enriched in film when temperature
raised from 150°C to 230°C. NiS and MoS2 also occur in
film which caused the losses of corrosion resistance.
Therefore, Alloy 825 faced risk of pitting corrosion in
high temperature.
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