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Engineered cementitious composites (ECCs) suffer from high shrinkage and low early
strength due to large dosage of cementitious materials and slow hydration of fly ash. This
study aims to improve compressive properties and reduce drying shrinkage of ECC using
ceramic wastes and hydrothermal curing. Experimental results have indicated that ceramic
polishing powder (CPP) and recycled ceramic sand (RCS) exert opposite effect on the
compressive strength of ECC. Hydrothermal-cured ECC enhances elasticity modulus and
compressive strength and reduces later drying shrinkage as compared with that under
standard curing. A CPP dosage of 35% and a hydrothermal curing regime with a
temperature of 70°C and age of 7 days are recommended for the engineering
application of ECC.
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INTRODUCTION

Compared with common cement-basedmaterials, the engineered cementitious composite (ECC) has
excellent ductility, impact strength, and fracture resistance (Li, 2003). It exhibits strain-hardening
and multiple cracking behaviors with ultimate strain exceeding 3% under uniaxial tension (Li et al.,
2001). Because of these significant advantages, ECC has become increasingly popular in the field of
civil engineering. However, ECC produces large drying shrinkage due to the high content of
cementitious materials. Its 28-day shrinkage strain can reach up to 1,200–1,800 με (Gao et al., 2018).
Such large shrinkage causes high tensile stress and even cracks in ECC, which degrades the stiffness
and resistance to penetration. When ECC is utilized as the repairing and connecting material, the
shrinkage weakens the bond between the ECC and the substrate (Li and Li, 2006). The high dosage of
fly ash in ECC even causes low early strength, which leads to long curing time and slow turnover of
formwork. In addition, the cementitious materials and quartz sand increase the cost of ECC. The
above-mentioned shortcomings hinder the application of ECC in engineering.

High-temperature curing, including steam curing and hydrothermal curing, can effectively
activate pozzolanic reaction and elevate the early hydration degree of cementitious materials.
More hydration products generate on the surface of cementitious particles, which makes the
microstructure denser (Hanehara et al., 2001). As a result, the early strength of cement-based
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materials is significantly improved. The high-temperature curing
also shortens the curing time and production cycle, speeds up the
turnover of the mold, and improves the production efficiency
(Wu et al., 2017; Liu et al., 2020). Studies have demonstrated that
steam curing improves the bond performance of the fiber-cement
matrix interface. The strength and fracture energy of the interface
show an upward trend with increasing curing age (Zhu et al.,
2011; Wei, 2017). Besides the mechanical properties, the
shrinkage of concrete can be reduced by high-temperature
curing (Richard and Cheyrezy, 1995).

Ceramic polishing powder (CPP) is a by-product from
grinding and polishing processes of ceramic tile production.
Benefited by the small particle size and glass phase, CPP has
high pozzolanic activity, which makes it an ideal substitute to
replace cement or fly ash (Ay and Ünal, 2000; Wang et al., 2011).
Wang et al. (2012) found that CPP as an admixture can exert
secondary hydration effect, refine the pore structure of the
hardened cement paste, and inhibit the alkali-aggregate
reaction. Li et al. (2019a) indicated that addition of CPP by 20
vol% can reduce the cement content by 33% and increase 7-day
and 28-day compressive strength by 85% at least. In addition,
CPP can effectively improve chloride resistance of the mortar (Li
et al. 2020), substantially decrease autogenous shrinkage of
cement paste (Li et al. 2019b), and improve the frost
resistance of the mortar (Cao et al., 2014).

In addition as a substitute for cement, qualified hardness
and good wear resistance enable ceramic wastes to act as
aggregates. Using recycled ceramic sand (RCS) as a
replacement to partial sand can lead to various
enhancements in the compressive strength, abrasion
resistance, workability, resistance to chloride-ion corrosion
of concrete, and reduction in the shrinkage of the mortar
(Binici, 2007; López et al., 2007; Liu et al., 2015; Nie et al.,
2015). However, it was also found that RCS slightly
deteriorated workability and compressive strength of
masonry mortar and recycled concrete in other studies.
This was attributed to high water absorption, slightly low
density, and rough surface of the RCS than river sand (Wu
et al., 2008). The influence of RCS on mechanical properties
of cementitious composites needs to be studied further.

The annual emission of ceramic wastes in China has
exceeded 18 million tons. The wastes from Foshan account
for one fifth of the national emission (Cai et al., 2011; Wang
et al., 2019). However, most of the ceramic wastes are disposed
by means of stacking in the open, without any treatment or
utilization. The waste particles and dust pollute air,
groundwater, and soil, which arouses public concern (Xu
et al., 2013). Application of ceramic wastes in ECC is an
appropriate method to deal with the wastes from the
perspective of economics and environment.

As mentioned above, high-temperature curing can increase
early strength and reduce drying shrinkage of cementitious
materials. CPP and RCS have great potential to be mineral
admixtures and aggregates, respectively. The application of
ceramic wastes in ECC will produce additional economic and
environmental benefits. This study, therefore, was intended to
improve the compressive and shrinkage performance of ECC

using ceramic wastes and hydrothermal curing. To this aim, ECC
specimens containing ceramic wastes were first cured under
various conditions and then subjected to compressive and
drying shrinkage tests. The effects of curing conditions and
ceramic waste dosages were investigated.

EXPERIMENTAL PROGRAM

Materials and Mix Proportions
The materials used in the production of the ECC mixture
consisted of cementitious materials, aggregates, fibers, and
additives.

Cementitious Materials
Class 42.5R ordinary Portland cement and Class F fly ash were
used as the binders of the control mixture. The fly ash had a
specific surface area of 362 m2/kg. CPP was utilized as an
alternative to fly ash. The chemical composition of cement, fly
ash, and CPP is presented in Table 1. Similar to fly ash, CPP was
mainly composed of aluminosilicate. The residue on the 45 μm
sieve of cement, fly ash, and CPP was 10.2, 11.2, and 3.1%,
respectively, which meets the requirement as cementitious
materials. The particle sizes of the cementitious materials are
illustrated in Figure 1. CPP had fineness between that of cement
and fly ash.

Aggregates
Quartz sand and RCS with the size of about 100 mesh were used
as the aggregates of ECC. As illustrated in Figure 2, RCS was
obtained by crushing and milling ceramic tile fragments and
configuration according to the gradation of quartz sand. The
microtopography of both aggregates was taken using a scanning
electron microscope. Both RCS and quartz sand had sharp edges
and rough surfaces, while there were more large particles and
chippings in the former (Figure 3). This is also verified by the size
distribution of aggregates in Figure 1. RCS particles had close
median size while wider distribution than quartz sand.

Fibers
The fibers used were polyvinyl alcohol (PVA) fibers and basalt
fibers (Figure 4). Detailed properties of the fibers are summarized
in Table 2.

Additives
A superplasticizer with a water reducing rate of 20% and a
hydroxypropyl methyl cellulose-based thickener were used to
improve the workability of ECC in this study.

Mix Proportions
As shown in Table 3, a total of three mixture proportions were
adopted. P0 was the control mixture without any ceramic
waste. P1 replaced half of fly ash by CPP. P1S1 further
replaced half of quartz sand by RCS based on P1. The
constant water-binder ratio of 0.35, the PVA fiber dosage of
1.5vol%, and the basalt fiber dosage of 0.5vol% were kept for all
mixtures (Tang, 2020).
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Preparation of Specimens
Cementitious materials, aggregates, and thickener were first
mixed for about 3–4 min. Water and superplasticizer were
then added and mixed for the next 2–3 min until the mixture
was homogeneous. Basalt fibers and PVA fibers were added with

an interval of 1 minute to avoid clustering. The mixture was then
mixed at high speed for three additional minutes.

The fresh mixture was cast into molds and compacted on a
vibrating table. The specimens were subsequently placed indoors
for 24 h with a polyethylene film on them.

Curing Conditions
After reaching the age of 24 h, the specimens were removed from
the moulds and subjected to various curing schemes. Five curing
schemes, including standard curing and four hydrothermal ones,
were adopted (Table 4). The temperature and relative humidity
for the standard curing were set according to the Chinese
standard GB/T 17671-1999 (SBQTS, 1999). For the
hydrothermal curing, the specimens were immersed in a hot
water controller equipped with a thermostat. The upper
temperature of hydrothermal curing was set at 70°C, according
to the Chinese standards GB/T 31387-2015 (AQSIQ and SAC,
2015) and JG/T 565–2018 (MHURD, 2018). Hydrothermal cured
specimens were cooled down to room temperature before
compression and shrinkage tests.

Axial Compression Tests
Axial compression tests were carried on ECC specimens with
reference to the Chinese standards CECS 13-2009 CECS (2009)
and JGJ/T 70-2009 (MHURD, 2009). In consideration of the
loading capacity of the testing machine, cylindrical specimens

TABLE 1 | Chemical composition of the cementitious materials (%).

Materials SiO2 Al2O3 Fe2O3 CaO MgO SO3 K2O Na2O Cl− Loss
on ignition

Cement 19.57 7.69 2.39 59.21 2.84 2.45 0.59 — 0.06 3.20
Fly ash 53.97 31.15 4.16 4.01 1.01 0.73 2.04 — 0.13 2.67
CPP 69.04 16.92 0.77 1.43 1.38 — 2.17 2.17 0.58 2.93

FIGURE 1 | Size distribution of cementitious materials and aggregates.

FIGURE 2 | Preparation of RCS.
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FIGURE 3 | Scanning electron microscope images of RCS and quartz sand.

FIGURE 4 | Images of PVA fibers and basalt fibers.

TABLE 2 | Material properties of fibers.

Fiber Density (g/cm3) Diameter (μm) Length (mm) Tensile strength
(MPa)

Elastic modulus
(GPa)

Elongation (%)

PVA fiber 1.30 40 12 1,560 41 6.50
Basalt fiber 2.65 17 9 2,750 90.1 2.92

TABLE 3 | Mix proportions of ECC (kg/m3).

Mixture
ID

Cement Fly
ash

CPP Quartz
sand

RCS Water Superplasticizer Thickener

P0 323.2 754.2 0 355.5 0 377.1 1.26 0.54
P1 323.2 377.1 377.1 355.5 0 377.1 1.91 0.54
P1S1 323.2 377.1 377.1 177.8 177.8 377.1 1.91 0.54
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with a height of 141.4 mm and a diameter of 70.7 mm were
employed. Three specimens were prepared for each mix
proportion under each curing scheme. Before the test, gypsum
was used to cap both ends of the specimens to level. As shown in
Figure 5, a pair of LVDTs was installed in the middle of the
specimens with a gauge length of 70.7 mm to measure axial
deformation. Axial load with a rate of 0.5 mm/min was
applied using an electrohydraulic servo tester. The loads and
axial deformation were recorded synchronously with a data
acquisition instrument. The elastic modulus of ECC specimens
was calculated based on the specification in the Chinese standard
JGJ/T 70-2009 (MHURD, 2009).

Shrinkage Tests
Drying shrinkage of ECC after curing was tested in accordance
with JGJ/T 70–2009 (MHURD, 2009). Prismatic specimens for
the shrinkage test had dimensions of 40 mm × 40 mm × 160 mm.

After curing, the initial length of specimens was recorded. The
specimens were then placed in an environmental chamber under
a temperature of 20°C and a relative humidity of 60%. The
shrinkage values were recorded on the 7th, 14th, 21st, and
28th day of the test.

RESULTS AND DISCUSSION

Compressive Properties
Figure 6 shows the failure mode of specimens after axial
compression. It was evident that the cracks were mostly
diagonal. The existence of fibers prevented specimens from
peeling off. This is linked to the bridging effect of fibers which
limits the development of cracks and improves the ductility of
ECC (Lin et al., 2019). The incorporation of ceramic waste and
the hydrothermal curing resulted in little change on the failure
mode of ECC.

The stress–strain relationships of specimens under axial
compression are plotted in Figure 7. As compared with
standard cured specimens, hydrothermal cured ones exhibited
much higher stiffness and peak stress, but slightly less peak strain.

TABLE 4 | Description of curing schemes.

Test ID Curing method Temperature (°C) Time

H2D0 Standard curing 20 7 days for shrinkage test and 28 days for compressive test
H5D3 Hydrothermal curing 50 3 days
H5D7 Hydrothermal curing 50 7 days
H7D3 Hydrothermal curing 70 3 days
H7D7 Hydrothermal curing 70 7 days

FIGURE 5 | Schematic view of the compression test (unit: mm).

FIGURE 6 | Failure mode of specimens after the compression test.
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Mixture P1 showed the highest compressive strength, followed by
P1S1, while P0 ranked last.

The effect of ceramic wastes and curing conditions on the
compressive properties of ECC is illustrated in Figure 8. Under
the standard curing, the replacement of fly ash by CPP increased
the compressive strength of P1 specimens by 21%, which is
benefited by the finer particles and higher pozzolanic activity
of CPP. Previous studies have indicated that CPP can effectively
reduce the porosity of matrix, thereby increasing the compressive
strength (Tang, 2020; Li et al., 2021; Xiong et al., 2021). CPP also
slightly improved the ultimate strain of ECC. This can be
explained by the findings of Kulovaná et al. (2016) that a
proper amount of CPP was able to enhance the effective
fracture toughness of concrete. High fracture toughness raised
the threshold for propagation of cracks and thus increased the
peak strain of CPP-incorporated ECC.

The replacement of quartz sand by RCS, however, slightly
reduced the compressive strength and elastic modulus of the P1S1
specimens, as compared to P1 ones. This phenomenon is mainly
ascribed to increasing porosity caused by deteriorative
workability of fresh RCS-incorporated mixture. RCS is
characterized by higher water absorption than natural
aggregate. This reduces actual water for mixing while increases
the viscosity of the fresh mixture. The viscous mixture is difficult

to be compacted and results in porous microstructures after
hardening. The previous mercury intrusion porosimetry results
indicated that complete replacement of quartz sand by RCS
increased total porosity of matrix by 9.3% (Tang, 2020). In
addition, ceramic tiles have Moh’s hardness between 4 and 5,
which is lower than that of 7 in quartz (Chen, 2017). The inferior
hardness affects the performance of RCS under compression.

After hydrothermal curing, ECC specimens elevated both
compressive strength and elastic modulus while decreased
peak strain. The ranking of the three formulas was
approximately the same as that under standard curing, but the
gap widened among them. Hydrothermal curing accelerated
hydration of the cementitious materials, which magnified the
differences in compressive properties (Fathy and Sun, 2014;
Gonzalez-Corominas et al., 2016; Huang et al., 2016).
Increasing curing temperature to 50°C significantly improved
compressive performance of P0 and P1 specimens. When it
further increased to 70°C, scarcely any effect was observed.
Extension of hydrothermal curing increased elastic modulus
while reduced strain capacity of ECC. The long hydrothermal
curing also exhibited positive influence in the compressive
strength of P0 and P1 specimens, except P1S1 ones. The
compressive strength of P1S1 under curing schemes H5D7
and H7D7 was 28.44 and 26.40 MPa, a little lower than that

FIGURE 7 | Stress–strain relationships of ECC specimens under compression.

FIGURE 8 | Compressive strength, elastic modulus, and peak strain of ECC.
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of 29.44 and 27.60 MPa under curing schemes H5D3 and H7D3,
respectively. The slight deterioration in compressive strength is
ascribed to the negative effect of hydrothermal curing on the
soundness of RCS. It was found that immersion of RCS in hot
water with 70°C for 3 days increased the crushing index of RCS by
14.6% in the preliminary test. The hydrothermal curing schemes
of H5D7 and H7D7 are recommended for CPP-incorporated
mixture with the consideration of compressive performance
of ECC.

Shrinkage Properties
Variation of shrinkage strain with ages is illustrated in
Figure 9. After the curing, shrinkage grew fast in the first
7 days while slowed down after 14 days. Experimental results
showed that replacement of fly ash by CPP had little effect on
the shrinkage of ECC, while the incorporation of RCS
increased the shrinkage of ECC. This is attributed to the
difference in hydration rates between CPP and the fine
particles in RCS. The particle size less than 45 μm provided
CPP with excellent hydration activity. Most of the shrinkage
was achieved in CPP-incorporated specimens during the
curing period. However, the fine particles in the RCS were
much larger than CPP. This part of fine RCS particles had an
activity index of 69, which was lower than that of 91 in CPP
(Tang, 2020). This demonstrates a medium hydration activity
of the fine RCS particles, which resulted in slow hydration and
continuous shrinkage after curing.

Hydrothermal curing can effectively reduce later drying
shrinkage of all three mixtures. Compared with the standard
curing, hydrothermal schemes H5D3, H5D7, H7D3, and
H7D7 reduced 28-day shrinkage of mixture P0 by 60, 52,
77, and 53% while reduced that of mixture P1 by 62, 38, 74,
and 57%, respectively. The later shrinkage of P0 and P1
decreased as the curing temperature increased. Higher
temperature can promote hydration and strengthen
microstructure, which reduces the later shrinkage strain of
ECC (Richard and Cheyrezy, 1995). P0 and P1 specimens
increased their shrinkage with increasing curing time.
Extension of curing promoted hydration of cementitious
materials. As one of the hydration products, more

adsorbed water grew in the capillaries of the hardened
matrix. When the specimens are exposed to dry
environment, the adsorbed water evaporated, resulting in
shrunk matrix induced by capillary stress (Huang, 2006).
However, the shrinkage strain of P1S1 was found to decrease
with increasing curing time, opposite to that of P0 and P1.
The reason seemed to be linked to the internal curing of RCS.
The low apparent density and high water absorption enabled
RCS outstanding ability to store water. Long curing time
benefited the water storage of RCS and continuous release of
water to the surrounding matrix, which relieved the drying
shrinkage (Liu and Liu, 2012).

CONCLUSION

In this study, the effect of ceramic wastes and curing conditions
on compressive and shrinkage properties of ECC was researched.
After standard and hydrothermal curing, ECC specimens were
subjected to the axial compression test and dry shrinkage test,
respectively. Based on the experimental results, the following
conclusions are drawn.

CPP was qualified for effective alternative to fly ash in ECC.
Replacement of half fly ash by CPP increased the compressive
strength by 20% at least and exerted positive influence in the
elastic modulus and peak strain of ECC. CPP had little impact on
the drying shrinkage of ECC.

RCS degraded the compressive performance and increases
later drying shrinkage of ECC. The preparation technique should
be improved to smooth RCS particles.

Hydrothermal curing effectively improved strength
development and later volume stability of ECC. CPP-
incorporated ECC can increase compressive strength by 37%
while decrease 28-day drying shrinkage by 38% at least. Elevating
curing temperatures was beneficial to the later volume stability.
Extension of curing contributed to the compressive performance
of ECC.

It is recommended to cure CPP-incorporated ECC under a
hydrothermal environment with a temperature of 70°C for
7 days.

FIGURE 9 | Drying shrinkage of ECC.
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