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Post-installed anchor technology is widely used for structural strengthening and for
retrofitting existing constructions. The old–new concrete interface associated with
using this technology is of great significance in the shear capacity of concrete
structural member under shear forces. For such members, interface failures usually
occur with bond slip. In this paper, an application of a piezoceramic enabled active
sensing technique is put forward to monitor Old - New concrete interfacial bond slip.
Three concrete specimens (S1, S2, and S3) are fabricated and each specimen
consists of two parts. Each part is made of concrete poured at different times,
and both are bonded with an anchored rebar embedded inside the specimen. Two
PZT aggregates bonded to opposing sides of the concrete specimen helped to realize
active sensing. During the shear loading test, both the load values and the signals from
sensors are acquired every 20 s. The test durations of S1, S2 and S3 lasted 960,
1,120, and 1,110 s, respectively. Furthermore, the received signal energies are
quantified through wavelet packet analysis to monitor the Old - New concrete
interfacial bond slip process. The experimental results show that the change of
WPEI in the received signals has a direct relation with the severity of the Old -
New concrete interfacial bond slip. Moreover, the PZT-based active sensing
approach is feasible to monitor the shear-induced bond slip in Old - New concrete
interfaces.

Keywords: anchored rebar, bond slip, lead zirconate titanate transducer, active sensing, structural health
monitoring

INTRODUCTION

Post-installed anchor technology has been commonly applied in terms of structural strengthening
and retrofitting of existing constructions. A post-installed anchor in general is composed by a rebar
imbedded in a hole drilled in hardened concrete with structural bonding agent (Cook, 1992; Cook
et al., 1993; Ronald and Robert, 2001). Currently, epoxy acts as an universal structural adhesive due
to its excellent properties (Wang et al., 2015). Since the rebars can be installed in nearly all the
expected position in hardened concrete, the post-installed anchors are able to increase the whole
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framework’s bearing capacity by integrating the new concrete
member with the original concrete member (Wörle, 2014).

As the post-installed anchor technique serves as a connection
method of high efficiency in terms of structural reconstruction
and expansion, now it has been widely applied in practice and has
also attracted much research attention. Much of the reported
research literature focus on interfaces in rebar, epoxy, and
concrete systems (Mahrenholtz et al., 2016; González et al.,
2018; Muciaccia et al., 2018). Bouazaoui and Li (2008) used
pull out tests to investigate the interfacial adhesion quality
between rebar and concrete as well as to measure the apparent
shear stress between anchored rebar and concrete. Barnaf et al.
(2012) carried out the pull out tests and numerical simulations so
as to determine both the behavior and bonding strength of
industrial adhesives which are adopted for anchor bonding.
Bajer and Barnat (2012) conducted researches over both the
bond quality and the concrete-bond failure of a bonded
anchor loaded by tensile forces. The pull-out test is commonly
introduced to check the bonding strength between concrete and
anchored rebar systems; nevertheless, pull-out tests are
detrimental (Yilmaz et al., 2013; Brencich, 2015).
Nondestructive evaluation (NDE) methods are generally
required for the purpose of performing in-situ assessment over
epoxy bonded anchors. Rizzo et al. (2010) studied the adoption of
acoustic emission (AE) to evaluate the structural stability of
concrete strengthened and underpinned by chemically bonded
anchors.

Moreover, the PZT-enabled active sensing approach was
introduced by Jiang et al. (2019) to demonstrate the
development of bonding strength along the interface layer
between the concrete and the bonded rebar. The AE
parameters including the amplitude, duration, and signal
strength were employed to characterize the stage of concrete
bond deterioration (Abouhussien and Hassan, 2017b). Hou et al.
(2009) discussed the feasibility of OTDR optical fiber technology
to monitor the debonding of FRP reinforced concrete structure.
Zhou et al. (2008) used BOTDR(A) technology to evaluate the
bond slips between steel bars and concrete in reinforced concrete
beams. In addition, electro-mechanical impedance (EMI) method
was employed to detect the bond-slip in the concrete-encased
composite structure (Liang et al., 2016).

However, the shear bearing capacity of a strengthened
member is collectively assumed by the concrete and the
anchored rebars when the member is under shear load. The
interface between the new and old concrete is relatively weak due
to the discontinuous aggregate particles in the Old - New concrete
interface caused by the different pouring time (Maili and Jing,
2018). Therefore, the Old - New concrete interface plays a crucial
role in determining the shear bearing capacity; specifically,
interface failures usually occur with bond slip. To prevent the
brittle and sudden failure of strengthened concrete structures, it is
of practical significance and great research value to monitor the
bond slip at the Old - New concrete interface when a strengthen
structural member is under shear load. Most studies mainly focus
on the effect of shear force on the interfacial bond slip of new-old
concrete. In Wang’s research, theoretical and experimental
research was performed to evaluate the mechanical

performance of new and old concrete beams under sustained
loads (Wang et al., 2011). As to find out the influencing factors on
the bond slip, the age difference (Song et al., 2015), normal
stresses (Al-Fasih et al., 2021) and curing condition
(Mirmoghtadaei et al., 2015) were considered. Many studies
have also shown that the concrete type has a certain influence
on the interfacial bond slip between the Old - New concrete. In
their researches, concrete types include: reinforced concrete
(Abouhussien and Hassan, 2017), high-strength concrete
(Qasim, 2020), ultra-high-strength (Hyun-Soo Youm and
Changbin, 2021), composite ceramist lightweight aggregate
concrete (Liu et al., 2020), and reactive powder concrete (Ju
et al., 2020). In addition, the influence of compressive strength on
the bond slip of the old-new concrete were evaluated and the
optical compressive strength were concluded (Júlio et al., 2006;
Diab et al., 2017). Recently, the scanning electron microscopy
(SEM) were employed to evaluate the interfacial bond properties
of self-expanding polymer and concrete under the shear load
(Fang et al., 2021).

In recent years, the piezoelectric-based technique has been
commonly accepted and applied as an effective form of structural
health monitoring (SHM) technique (Bhalla and Kaur, 2018;
Feng and Ou, 2018; Hu et al., 2018; Xu et al., 2019). Serving as one
of the most commonly recognized piezoelectric materials, Lead
Zirconate Titanate (PZT) has the advantages of low costs, quick
response, and wide bandwidth (Zhu et al., 2017; Zhou et al.,
2020), and can be easily fabricated in different geometries (Zeng
et al., 2015;Wang et al., 2020a). Because of the piezoelectric effect,
PZT patches can be used as either sensors or actuators for
structural damage detection and condition monitoring
(Nicassio et al., 2020). Most of the early applications of PZT-
based techniques are based on impedance analysis and active
sensing. For example, impedance analysis was adopted in order to
evaluate debonding between fiber-reinforced polymer rebar and
fiber-reinforced polymer rebar (Li et al., 2017), preload
monitoring in bolted connections (Lee, 2021), load monitoring
(Annamdas and Soh, 2017), damage monitoring in pin
connection (Fan et al., 2018), and monitoring the status of a
composite panel (Dziendzikowski et al., 2018). The active sensing
technique was used for cement hydration monitoring (Kong and
Song, 2017), impact localization (Coles et al., 2020), monitoring
of bolted spherical joint connections (Xu et al., 2018a), timber
crack monitoring (Wang et al., 2020b) and cyclic crack
monitoring (Qin et al., 2015).

Active sensing technology was also applied for detecting and
monitoring the structural bond slip, which includes but not
limited to the bond slip detection between concrete and a steel
plate (Xu et al., 2018b; Feng and Ou, 2015), the bond slip between
concrete and GFRP/steel bars (Hong et al., 2018; Zhang et al.,
2020), and the debonding detection in hidden frame supported
glass curtain walls (Kong et al., 2016). However, to the authors’
best knowledge, no literature is available about active sensing-
based monitoring of Old - New concrete interfacial bond slip in
post-installed anchor reinforced structures. Therefore, this paper
conducts experiments to detect the Old - New concrete interfacial
bond slip using the method of PZT-based active sensing. To
demonstrate whether the PZT enabled active sensing approach is
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feasible or not, three testing specimens are fabricated, with each
specimen containing two sections of concrete that are respectively
poured at two different times. An anchored rebar is installed in
both the new and the old concretes. Two PZT aggregates severed
as an actuator-sensor active sensing pair to monitor the Old -
New concrete interface bond slip when the specimens
experienced shear loads applied a by test machine. The
experimental results show the development of bond slip at the
interface between the new and old concrete with the shear loading
procedure, and that the bond slip influences the interface
shearing capacity and the stress wave propagation. The
comparison between the load-time curve and the WPEI - time
curve demonstrates that the active sensing method is an effective
approach to detect the bond slip processes in Old - New concrete
interfaces.

PRINCIPLES

Analysis of Old - New Concrete Interfacial
Shear Mechanism
The Old - New concrete interfacial bond slip mechanism of the
anchoring specimen can be segmented into three stages as seen in
Figure 1. As shown in Figure 1A, from the beginning of loading
until the occurrence of Old - New concrete interfacial bond slip, the
shear capacity attributes to the adhesive force of the concrete. At
this stage, the bond is composed by van der Waals forces, the
chemical strength of the cement base, and the mechanical bite
ability of the Old - New concrete aggregate (Maili and Jing, 2018).
When a sufficiently strong shear force occurs, the interfacial bond
slip can be witnessed, which begins as a small crack at the interface.
With the continuously increasing shear force, the crack continues
to grow until it spans the entire interface, as shown inFigure 1B. At
this stage, the anchored rebar begins to partake remarkably during
the interfacial shear process. The interfacial shear capacity mainly
stems from the frictional force of concrete as well as the shear force
of the anchored rebar. After the interface is separated, as shown in
Figure 1C, the bite force of the Old - New concrete interface is
observed a decline to zero, and the shear capacity is entirely born by
the pinned rebar.

Piezoceramic-Based Active Sensing
Method
Figure 2 illustrates the active sensingmethod for monitoring Old -
New concrete interfacial bond slip within an anchored rebar
reinforced concrete structure during the shearing test process.
Two PZT aggregates are attached on the new and old concrete
surfaces, respectively. One PZT aggregate participates as an
actuator and another plays a role as a sensor. The propagation
of the stress wave originated from the actuator can be clearly
witnessed from the old concrete to the new concrete through the
interface and the anchored rebar. The sensor is capable of detecting
the stress waves propagating from the new concrete since concrete
participates significantly as a desirable conduit for the propagation
of the stress wave. During the interfacial bond slip monitoring test,
the stress waves propagation is highly dependent upon the bond
condition of the Old - New concrete interface. From the beginning
of loading until the initiation of the interfacial bond slip, the
performance of the new-old concrete bond is pretty excellent.
The stress wave can easily travel through both sections of concrete
and be received by the sensor with minimal distortion. when the
shear force increases to a specific high level and relative interfacial
sliding occurs, the crack between new and old concrete will exert a
direct influence on the propagation of the stress wave.With further
interfacial bond slip, the stress wave energy spread from the old
concrete to the new one continues to attenuate. The stress wave
energy decreases towards a steady state as the crack completely
separates the interface. When the interface is completely separated,
only a minimal amount of stress wave energy is propagated
through the anchor rebar still connecting the two sections of
concrete. With the analysis of the received signals’ energy, the
Old - New concrete interfacial bond slip process can be monitored.

Wavelet Packet-Based Energy Index
The wavelet packet-based energy index (WPEI) is an effective
analysis technique that has been widely used to quantitatively
evaluate structural changes. In this study, the stress-wave energy
transmission from the old concrete to the new concrete is
sensitively correlated to the performance of interface bond;
thus, the energy response which is observed and noted at the

FIGURE 1 | The Old - New concrete interfacial bond slip process of the anchoring specimen: (A) Force state diagram of interface before bond slip; (B) Force state
diagram after interfacial bond slip; (C) Force state diagram after interface separation.
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sensor can indicate and gauge the bond condition and even the
bond slip process. In order to monitor the stress waves’ energy
recorded at PZT sensors, WPEI analysis is introduced herein to
compute the energy values of the signal at PZT sensors. Because
the received sensor signal is a frequency rich wave that is
correlated to the actuator’s production, the sweep sine wave
excitation signal, WPEI analysis can be utilized in the
decomposing of the recorded wave into a series of frequency
bands. The total energy of the received stress wave signal can be
estimated by the summation of energies across all the
frequency bands.

The PZT sensor signal that represents the propagation stress
wave is decomposed through wavelet packet decomposition. Here
a n-level decomposition is assumed, which will result in 2n signal
sets {X1, X2, . . . , X2n }. Furthermore, j is assumed to be the
frequency band, with j � 1, 2, . . . , 2n and n � 5 in this study.
Each decomposed signal from the original signal Xj can be
further defined as following:

Xj � [xj,1, xj,2, . . . , xj,m] (1)

where m refers to the number of samples. Thus, the decomposed
signal energy Ej can be specifically expressed as:

Ej � ∑
k�m

k�1
x2
j,k (2)

The total energy of the stress wave signal E can be summarized by
all the decomposed signals and expressed as:

E � ∑
2n

j�1
Ej (3)

The recorded signal can be characterized based on the WPEI
analysis. In this experiment, the Old - New concrete interface
bond condition at the beginning of the shear loading test is
recognized as the original state. The received signal energy
decreases with the worsening of interfacial bond slip, and the
WPEI computes the changes in the received signal energy during
the shear loading test.

EXPERIMENTAL SETUP AND PROCEDURE

Specimen Fabrication
In the experiment, three specimens (S1, S2, and S3) with the same
dimensions and materials were fabricated. Each specimen
consists of three parts: old concrete, new concrete and an
anchored rebar. Figure 3 details the fabrication process and
the dimensions of the specimens. Firstly, the first (i.e., old)
layer of class C25 concrete with the dimensions 160 mm ×
160 mm × 80 mm was poured. In the specimen, the part of
old concrete is first poured and set for 28 days. Then, the rebar
was implanted into a hole drilled into the old concrete and
secured in place using epoxy. After the epoxy completely
solidified for few hours, the new concrete of class C35 was
poured over the old concrete. After the new concrete has
solidified with another 28 days, the specimens are formed and
conducted the experiments. The dimensions, strength grade and
implanted length of the rebar are Φ14 mm × 140 mm, HRB 335
and 70 mm, respectively.

As vividly illustrated in Figure 4, two PZT aggregates are
firmly adhered to the surfaces of new and old concrete. One of
them participated as the actuator and the other one worked as the
sensor in the monitoring test. The aggregate is composed by
inserting a PZT patch with electric wire into two cylindrical
marble blocks. The dimensions of the cylindrical smart aggregate
and the PZT patch areΦ25 mm × 20 mm and 15 mm × 15 mm ×
0.3 mm, respectively. The material properties of the experimental
specimens and PZT aggregates are listed in Table 1.

Experimental Setup
Figure 5 illustrates the experimental setup for the monitoring of
the Old - New concrete interfacial bond slip. The setup includes
the specimens (S1, S2, and S3) with PZT aggregates, a power
amplifier, a data acquisition and control system, and a laptop
computer. To excite the PZT actuator, a swept sine wave signal is
initially produced by the data acquisition and control system and
then augmented by the power amplifier with a gain of 50. Then
the amplified swept sine signal is fed into the actuator to produce
the stress wave, and the sensor detected the propagating wave

FIGURE 2 | Stress-wave-based active sensing principle for the interfacial bond slip process: (A) Stress waves propagating before bond slip; (B) Stress waves
propagating after interfacial bond slip; (C) Stress waves propagating after interface separation.
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from concrete. For the swept sine signal, the frequency range is
1,000 Hz–300 kHz, the amplitude is 3 V, and the time interval is
1 s. The sampling frequency of the data acquisition and control
system is 2 MS/s.

In the experiment, the axial compressive load adopted upon
the specimen is under the control of a universal material test

machine under the displacement control mode, as shown in
Figure 5. In order to apply a uniform stress to the specimen,
two thick steel plates were placed at the upper and lower ends of
the specimen, respectively. Furthermore, two steel blocks and two
wood blocks were placed between the test specimen and thick
steel plates, and the specific position of the blocks are shown in

FIGURE 3 | The production process and dimensions of the specimens. (A) Pouring the old concrete; (B) Implanting the rebar into the old concrete; (C) Pouring the
new concrete (units mm); (D) The old-new concrete specimen.

FIGURE 4 | The position and structure of PZT aggregates. (A) The top view of the specimen; (B) The front view of the specimen; (C) The profile of PZT aggregates.
(units mm).

TABLE 1 | The material properties of the experimental specimens.

Materials Parameters Value Units

Concrete Density 2,400 kg/m3

Young’s modulus 33 Gpa
Compression strength 40.3 Mpa

Rebar Density 7,900 kg/m3

Yield strength 350 Mpa
Tensile strength 530 Mpa
Elongation 19 %

Epoxy Tensile strength 14 Mpa
Compressive strength 65 Mpa
Flexure strength 53 Mpa
Bonding strength 17 Mpa

PZT aggregates Dimension Φ25 × 20 Mm
Piezoelectric strain coefficients (−d31/d33/d15) 1.75/4.00/5.90 10−10 C/N
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Figure 5. It is noted that the position of wood blocks and steel
blocks in the upper and lower ends of the test specimen is
different. When the vertical load was set upon the central
position of the steel plate by the hydraulic machine,
compressive stress is applied to the old-new concrete
specimens through the wood and iron blocks. Due to different
Young’s modulus between the wood and iron blocks, they will
produce different compression deformation. Different
deformations of the blocks can lead to different vertical
displacement of old and new concrete, resulting in shear
forces at the Old - New concrete interface. Before the concrete
interface is stripped, the specimen is not deformed, two thick steel
plates have a strong binding force at the upper and lower ends of
the test specimen, resulting in good shear force conduction at the
interface.

In terms of both the PZT-enabled active sensing and pressure
gauge, the load value and received signal were collected every 20 s.
During each experiment, the Old - New concrete interfacial bond
slip would be eventually accompanied by a visible crack and a
shear displacement, meanwhile, there would be a plunge in the
loading time history. When this happened, the experiment was
terminated.

EXPERIMENTAL RESULTS AND
DISCUSSIONS

Figure 6 shows the specimens after the shear loading test. A
visible crack can be observed in each specimen. The loading time
histories of S1, S2, and S3 are respectively represented by the red,
black, and blue curves in Figure 7. The load in Figure 7 is the
compressive force from the testing system. As explained in
Experimental Setup, the process of applying compressive stress
in the specimens result in the interfacial bond slip between the
old/new concrete. Therefore, the time history curve of the
compressive force was employed to reflect the interfacial bond

slip process of the old/new concrete. The test durations of S1, S2,
and S3 are respectively 960, 1,120, and 1,110 s. It is clearly
illustrated from the red curve that there are three stages in the

FIGURE 5 | Experimental setup of the experimental test. (A) The overall diagram of experimental setup; (B) The details of the spencimen in the experimental setup.

FIGURE 6 | Specimens after shear loading test.

FIGURE 7 | Load-time relationship of specimens during shearing test.
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loading process. From 0 s to 140 s, the shear strength of the new-
old concrete interlayer is generated by the concrete’s bond
strength. In this stage, the load value increases rapidly and
linearly with time. From 140 s to 800 s, the interfacial shear
capacity is significantly produced by both the concrete.
frictional force of the concrete and shear force of anchored
rebar. At this point, the load rate slowed down significantly.
From 580 s to 800 s the load value remained almost a constant
value. From 800 s to 960 s, visible cracks appeared in the interface
between old and new concrete. In this stage, the interlayer shear
strength is mostly generated by the shear force of anchored rebar
and the load value drops rapidly. The maximum load value of S1
is 60.42 kN. S2 and S3 can also be divided into three stages of the
same trend (black curve at 0–240 s, 240–1,020 s, and
1,020–1,120 s; blue curve at 0–220 s, 220–980 s, and
980–1,110 s). The maximum load of S2 is 56.50 and 61.74 kN
for S3.

The received signal was recorded every 20 s during the
experiment. Figure 8A shows the WPEIs of received signals of
S1 during the shear loading process. The WPEIs can be divided
into four stages over time: 0–140 s, 140–580 s, 580–800 s, and
800–960 s. Figure 8B demonstrates the time domain signal
collected in S1 at 0, 140, 580, 800, and 960 s. Each curve acts
as a representation of the received signal by sensor over a 1 s
duration (i.e., the length of the swept sine signal). The received
signals at 0 and 140 s are almost identical as indicated by the blue
curve and green curve in Figure 8B. TheWPEI experiences only a
slight change in this stage, suggesting that bond slip has not yet

occurred and the Old - New concrete interface bond strength can
bear the shear load. From 140 to 580 s, the WPEI experiences a
notable decrease with time elapsed. The decrease in WPEI is
mirror by the drop in the amplitude of the received signals
between 140 and 580 s, as seen in the green and yellow curves
in Figure 8B. The signal strength reduction means that the Old -
New concrete interfacial bond slip has occurred and is worsening.
From 580 to 800 s, there is little change of in WPEI while the
amplitude of the received signals has slight reduction. The lack of
significant changes means that the interfacial bond slip has spread
throughout the entire interface, but the Old - New concrete
interface is not completely separated. From 800 to 960 s, the
WPEI continues to decrease towards a very low value. As shown
in Figure 8B, this stage is represented by the black curve. and the
amplitude of the recorded signal at 960 s is greatly reduced to less
than 0.01 V. In this stage the Old - New concrete interface is
beginning to separate, and the stress wave can only propagate
through the rebar, explaining the weak received signal. Figures 9,
10 present that the behavior of the WPEIs and time domain
signals of S2 and S3 remain almost the same as that of S1. The
WPEIs and the amplitude of the received stress wave signals vary
with the deterioration of Old - New concrete interface bond
condition.

The relationship between the load and the WPEIs of S1, S2,
and S3 are shown in Figure 11. The blue curve represents the load
value during the shear loading test and the red curve represents
the WPEI of the recorded signals. As clearly illustrated in
Figure 11A, in first 140 s, the load value increases linearly and

FIGURE 8 | WPEIs and received signal of S1: (A) WPEIs of the received signal; (B) the received stress wave signal.
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FIGURE 9 | WPEIs and received signal of S2: (A) WPEIs of the received signal; (B) the received stress wave signal.

FIGURE 10 | WPEIs and received signal of S3: (A) WPEIs of the received signal; (B) the received stress wave signal.
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the WPEI value changes slightly, which means that in this stage
there is no bond slip at the interface and that the shear capacity is
generated by the Old - New concrete bond strength. From 140 to
580 s, the load value increases nonlinearly, and the growth rate
decreases. The WPEI decreases significantly in this stage. These
changes show that the Old - New concrete interfacial bond slip
has initiated and is continuing to develop. In this stage, the
anchored rebar begins to play an important role in the shear
process of the interface, and the interfacial shear capacity mainly
originates from the shear force of anchored rebar and the
frictional force of concrete. From 580 to 800 s, the load value
reaches a steady-state value and the WPEI value decreases
slightly. In this stage, the bond slip continues to develop, and
the crack runs throughout the entire interface. However, the Old -
New concrete interface is not completely separated, and the shear
force is shared by both the frictional force of concrete and the
shear force of anchored rebar. From 800 to 960 s, both the load

and the WPEI experiences an obvious reduction. In this stage, a
visible crack and shear displacement in the S1 can be observed.
The interface of Old - New concrete began to separate, and the
bite force of the interface is reduced to zero. The interfacial shear
capacity mainly depends on the shear force of the anchored rebar.
Therefore, the stress wave can only travel through the rebar, and
the WPEI drops rapidly.

In Figures 11B,C, the load-time curve and WPEI-time curve
show share a similar trend as the one shown in Figure 11A. As the
Old - New concrete interface is the weakest parts of all the
specimens during the shear loading test, the interfacial bond
condition varies with increases in applied shear force. The
interfacial bond slip occurs when shear force is bigger than
the interface bond strength, and stress wave propagation will
change. The Old - New concrete interfacial bond slip process can
be tracked by the analysis of the collected signal, which illustrates
that the method of active sensing is able to effectively detect the

FIGURE 11 | The relationship between load and WPEIs for the three different specimens: (A) The relationship between load and WPEIs of S1; (B) The relationship
between load and WPEIs of S2; (C) The relationship between load and WPEIs of S3.
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Old - New concrete interfacial bond slip development in real time
during the shear loading process.

In the experiment process, when the interfacial bond slip
occurs and concrete tilted, compressive loads may take place
at the interface as well. Nevertheless, this paper mainly attempts
to employ the piezoelectric active sensing method to monitor the
process of interfacial bond slip between the new-old concrete
reinforced by the anchored rebar. Although it is likely to result in
the compressive loads when the bond slip happened in the new-
old concrete, the active sensing could effectively characterize the
process of the old-new concrete interfacial bond slip. Different
from the concrete cube in this paper, the main load-bearing
components in the actual project are beams or columns.
Therefore, the anchoring form of the steel bar in the new
concrete and the layout of the transducers in practical project
will also be different from the experimental studies. However, the
paper is an exploratory experiment which explore the feasibility
of the active sensing method to monitor Old - New concrete
interfacial bond slip in the anchored rebar reinforced concrete
structure.

CONCLUSION AND FUTURE WORK

The Old - New concrete interface is the weakest link of concrete
structures reinforced with post-installed anchors, especially when
under shear loads. Interface failure often initiates with bond slip,
and it is necessary to monitor the Old - New concrete interfacial
bond slip to avoid the brittle and sudden failure of strengthen
concrete structures. A PZT-based active sensing method was
developed for the real time monitoring of Old - New concrete
interfacial bond slip in a post-installed anchor reinforced
concrete structure. To verify the proposed approaches,
experiments were conducted upon specimens consisting of two
parts of concrete which were poured at different times. The new
and old concrete parts were connected with an anchored rebar.
Two PZT aggregates were adhered to the two opposing ends of
the concrete specimen to realize the active sensing approach. A
shear loading test was conducted in which the load value and
received signal were collected every 20 s. A comparison of the
wavelet packet-based energy index (WPEI) with the load value
clearly shows that the interfacial bond condition changes with the
shear force development. Interfacial bond slip occurs when shear
force is larger than the interface bond strength. Bond slip can

greatly influence the interfacial shear capacity and the
propagation of the stress wave in the Old - New concrete. The
change of WPEI in the received signals is in direct relation to the
severity of the Old - New concrete interfacial bond slip, and
demonstrates whether the PZT-based active sensing method is
feasible or not in terms of monitoring shear-induced Old - New
concrete interfacial bond slip.

In future studies, the authors will design better loading
methods to ensure that the shear load can be better applied
during the whole experiment process. And the Old - New
interfacial bond slip of real engineering components including
the beams and columns will be further researched in detail. In
addition, the influence of different ages, composite stress
states, and steel anchoring forms on Old - New concrete
interfacial bond slip would be considered. Moreover, the
active sensing method combined with the method of big
data, artificial intelligence would be employed to achieve
intelligent monitoring of old-new concrete interfacial
bond slip.
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