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Editorial on the Research Topic

Dual-Phase Materials in the Medium and High Entropy Alloy Systems Al-Cr-Fe-Ni and Al-Co-
Cr-Fe-Ni

The pioneering work of Yeh et al. (2004) and Cantor et al. (2004) initiated an expansive research
activity on high entropy alloys (HEAs), aiming at discovering novel materials in the newly opened
compositional spaces. The original concept of entropically stabilized solid solution phases
around equimolar alloy compositions with not less than 5 elements has driven the quest for
single phase high entropy alloys, as described in a critical update (Streuer, 2020). Recent review
articles provide critical assessments of the HEA concept while trying to structure and condense
the ample and diverse research results and also provide guidance for future research (Miracle
and Senkov, 2017; George et al., 2019; George et al., 2020; Li et al., 2021). Besides continuous
research on “ad litteram” HEAs which closely follows the original definition, the scope
was soon extended as to accommodate multicomponent alloys with lower configurational
entropy of mixing, so-called medium entropy alloys, MEAs (i.e., Zhou et al., 2018). Special
interest was further focused on alloys that provide pathways to dual-phase or multi-phase
microstructures (these alloys are sometimes categorized as compositional complex alloys,
CCAs, to differentiate with single phase HEAs/MEAs), thus enabling more options for
microstructure engineering.

The alloy systems Al-Cr-Fe-Ni and Al-Co-Cr-Fe-Ni are most attractive in this respect. Both
systems host compositional ranges for the design of dual-phase materials composed of a face
centered cubic (FCC-A1) and a body centered cubic (BCC-B2) phase following distinct phase
transformation pathways. Examples are the alloys Al0.7CoCrFeNi and AlCrFe2Ni2 (Dong et al., 2016;
DeJeer et al., 2017) which pass through a BCC-B2→FCC-A1 solid state phase transformation and the
alloys AlCoCrFeNi2.1, Al0.9CrFeNi2.1 which display eutectic growth following Liquid → BCC-
B2+FCC-A1 (Lu et al., 2014; Jin et al., 2019). Importantly, in both alloy systems the Al-rich BCC-B2
phase is prone to spinodal decomposition, which may impact on the overall phase transformation
cascade and certainly affect the mechanical properties.

This “Research Topic” was initiated with main focus on dual-phase HEAs and MEAs from the
above alloy systems, calling for contributions on a wide range of open issues, including phase
transformation pathways, alloy processing by conventional and additive technologies, mechanical
and functional properties, i.e., corrosion behavior, and other more. From the perspective of future
applications knowledge on all these aspects is required in equal measure. For dual-phase MEAs
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around the composition AlCrFe2Ni2 this special issue draws on
contributions from several partners of the joint European project
“NADEA” funded by national agencies in the frame of the M-era.
Net program. In fact 7 out of 11 papers relate to this project and
capture the progress toward objectives at mid-term. NADEA
aims at targeted MEA developments for applications which
require a good balance between strength and ductility or
toughness along with wear and corrosion resistance in areas
commonly served by duplex and superduplex steels. In the
following we briefly introduce the individual contributions:

Stryzhyboroda et al. presented key experiments and results
from current CALPHAD modeling efforts for the alloy systems
Al-(Co)-Cr-Fe-Ni. CALPHAD databases and thermodynamic
codes are valuable digital tools for alloy design and ICME
modeling, if phase equilibria as well as segregation trends are
well described. Currently this is not the case (Gorsse and Senkov,
2018) and more work is required for database modeling and
validation specifically also re-assessing entire sub-systems.
Kuczyk et al. showed how additive manufacturing by laser
metal deposition can provide a fast track to valuable data
about phase equilibria, i.e., for validation of CALPHAD
databases, using compositionally graded samples. One single
sample designed to screen through a selected section plane can
be used to accurately measure phase equilibria along one or more
isotherms after correspondingly selected annealing treatments.
Data were provided for AlxCoCrFeNi with x � 0.2 to1.5 (5–30 at.
% Al) at T � 1350 K.

Hecht et al. discussed phase transformations in the dual-phase
alloy AlCrFe2Ni2 which are similar to Al0.8AlCoCrFeNi and which
depend on the cooling rate applied during the BCC-B2→FCC-A1
solid state phase transformation. Apart from the classical
Widmanstätten structure obtained upon slow cooling, an ultrafine
vermicular microstructure, previously termed noodle-like or worm-
like (Dong et al., 2016), was identified for higher cooling rates and
associated to a characteristic “duplex spinodal” phase transformation
pathway. The related crystal orientation relationship (OR) between
FCC and BCC was analyzed in detail, being distinct and different
from all well-knownORs established between BCC and FCC phases.
Gein et al. further investigated the ultrafine vermicular
microstructure in alloys based on AlCrFe2Ni2 however with
minor additions of molybdenum ranging from 1 to 3 at.%. The
alloys were prepared by arc melting of large (300 g) buttons and
subjected to annealing treatments. For 2 at.% Mo a well-balanced
microstructure with promising mechanical properties was reported
after annealing at 1,100°C for 1 h with subsequent water quenching.
The flexural stress/strain behavior favorably compares to the
reference superduplex steel EN 1.4517.

Vogiatzief et al. and Roccio Molina et al. explored additive
manufacturing (AM) of an alloy with composition close to
AlCrFe2Ni2, but with 17.5 rather than 16.7 at.% aluminum,
using laser powder bed fusion (L-PBF) and laser metal
deposition/direct energy deposition (LMD/DED), respectively.
Alloy processing required substrate preheating to at least 450°C
(LMD/DED) and 700°C (L-PBF), respectively. The applied
preheating effectively reduced thermal gradients but also
allowed some amount of FCC-A1 to form during the build
operation thus mitigating the cracking susceptibility of the

spinodally decomposing BCC-B2. The full amount of FCC-A1
was only achieved by post build annealing heat treatments and
the annealing temperature and duration was used to tailor
microstructure and properties, e.g., the flexural stress/
strain behavior. Comparison to a reference superduplex
steel EN 1.4517 showed that the target MEA is a
promising material with good chances to compete with
duplex steels. However, both alloy composition and
processing parameters must be further optimized in order
to establish a robust AM manufacturing route.

Eshed et al. investigated a casting route for alloy
AlCrFe2Ni2 with main emphasis on microstructure and
phase analysis after selected homogenization and
annealing treatments. Transmission electron microscope
(TEM) and high resolution TEM provided detailed insight
into phase constitution. An unexpected carbide phase was
observed, which raises questions as to the origin and role of
impurities, a subject which calls for further and systematic
investigation.

Zollinger and Fleury provided a brief report on the effect of
casting texture on the elastoplastic behavior of Al0.8CrCuFeNi2
during uniaxial compression tests. The alloy solidified with a
primary FCC-A1 phase and interdendritic BCC-B2 in a hybrid
mould with alumina walls and a copper base, thus displaying a
morphological transition from a columnar (textured) to an
equiaxed (untextured) FCC-A1 phase. When tested under
uniaxial compression with the loading axis parallel to the
direction of solidification, the columnar microstructure, with a
preferred orientation of the fcc phase toward the <100> direction
showed remarkably higher yield strength than the equiaxed
microstructure. The improved macroscopic behavior of the
<100> textured sample was related to confinement of the
activated slip system(s) to FCC-A1 dendrites separated from
one another by the BCC-B2 envelop. Wang et al. and
Godlewska et al. investigated the corrosion behavior of
selected Al-(Co)-Cr-Fe-Ni alloys using, among others,
potentiodynamic polarization tests and electrochemical
impedance spectroscopy.

Wang et al. focused on the alloy Al0.1CoCrFeNi and its
behavior in NaCl-containing aqueous solutions of various
concentration, while Godlewska et al. probed several alloys
around the baseline composition AlCrFe2Ni2 in a 3.5 wt.%
NaCl aqueous solution including for reference three
AlxCoCrFeNi alloys as well as the superduplex steel EN 1.
4517. At room temperature the pitting corrosion resistance
and passivation capability of EN 1.4517 are outstanding and
unrivaled by AlCrFe2Ni2-based alloys, irrespective of small Mo-
additions. This behavior is due to the Cr-depletion of the BCC
phase. The performance in potentiodynamic tests is judged rather
similar to lean duplex steels (Siow et al., 2001). The nearly fully
FCC alloy tested by Wang and independently confirmed by
Godlewska for an alloy with similar composition is the most
resistant to pitting corrosion and closely matches the superduplex
steel behavior.

Finally, Röhrens et al. addressed dual-phase eutectic alloys
prepared by suction casting from ternary, quaternary and
quinary eutectic alloys, i.e., Ni48Fe34Al18, Ni44Fe20Cr20Al16
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and Ni34.4Fe16.4Co16.4Cr16.4Al16.4. The special merit of the
investigation relates to the fact that it incorporates the
ternary alloy, originally investigated 20 years ago (Misra
and Gibala, 1997; Misra and Gibala, 1999) in an attempt
to ductilize the NiAl-B2 intermetallic alloy. This family of
alloys could indeed serve as a very good reference for future
research on HEA and MEA eutectics for the Al-Co-Cr-Fe-Ni
alloy system.

We hope that the reader will find this collection of articles
interesting and useful as reference for future research endeavors
in this emerging field of alloy design, processing and materials
characterization.
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