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This paper proposes a novel neural network architecture and its ensembles to predict the
critical superconductivity temperature of materials based on their chemical formula. The
research describes the methods and processes of extracting data from the chemical formula
and preparing these extracted data for use in neural network training using TensorFlow. In our
approach, recurrent neural networks are used including long short-term memory layers and
neural networks based on one-dimensional convolution layers for data analysis. The proposed
model is an ensemble of pre-trained neural network architectures for the prediction of the
critical temperature of superconductors based on their chemical formula. The architecture of
seven pre-trained neural networks is based on the long short-term memory layers and
convolution layers. In the final ensemble, six neural networks are used: one network based on
LSTM and four based on convolutional neural networks, and one embedding ensemble of
convolution neural networks. LSTM neural network and convolution neural network were
trained in 300 epochs. Ensembles of models were trained in 20 epochs. All neural networks
are trained in two stages. At both stages, the optimizer Adam was used. In the first stage,
training was carried out by the function of losses Mean Absolute Error (MAE) with the value of
optimizer learning rate equal to 0.001. In the second stage, the previously trained model was
trained by the function of losses Mean Squared Error (MSE) with a learning rate equal to
0.0001. The final ensemble is trained with a learning rate equal to 0.00001. The final ensemble
model has the following accuracy values: MAE is 4.068, MSE is 67.272, and the coefficient of
determination (R2) is 0.923. The final model can predict the critical temperature for the
chemistry formula with an accuracy of 4.068°.

Keywords: convolution neural network, superconductor, neural networks ensemble, critical temperature, LSTM
neural network

INTRODUCTION

This paper presents a work deal with superconducting materials—materials that conduct current
with zero resistance temperature equal to or below the critical temperature Tc (Hamidieh, 2018).
Most of the known superconductors show the effect of superconductivity at extremely low
temperatures below 100 K (Bonn, 2006; Flores-Livas et al., 2016; Nishiyama et al., 2017; Szeftel
et al., 2018). However, despite the necessity of low temperatures for the appearance of the effect of
superconductivity, superconductors are used in many areas.
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The relevance of superconductors include societal challenges
related to health and wellbeing. Superconductors are used in
medicine mainly inside devices for CT scan and Magnetic
Resonance Imaging, MRI, systems and in magnetometers for
SQUID, Superconducting Quantum Interference Device (Alonso
and Antaya, 2012). They are used for magnetoencephalography,
magnetocardiography, and other processes for detection and
mapping weak magnetic fields of the human body. The
introduction of superconductors in such systems allows for
conducting safe patient’s research methods, to obtain a highly
accurate three-dimensional picture of the state of the studied area
of the human body.

Although the superconductivity effect can be used in many
areas, the effect disappears when the temperature rises above
critical (Suhl et al., 1959; Stewart, 2011; Flores-Livas et al., 2016).
The need to maintain low temperatures to maintain the
superconductivity effect is a complex and costly task. So,
increasing the temperature of MRI (Sinanna et al., 2016) coils
of the device above the critical temperature destroys the effect of
superconductivity and triggers the process of destruction of the
coils. This effect is used for emergency stops of MRI machines.
The device is out of service and requires a long and expensive
repair after an emergency stop. However, the use of high-
temperature superconductors in the superconducting MRI
coils would avoid such results of an emergency shutdown,
making this procedure safe.

In addition, superconductors are often used in electrical,
researchers, and other systems. Superconductors are used in
superconducting fault current limiters, SCFCKs, for electrical
current limitation (Noe and Steurer, 2007). Superconducting coils
aare used for generation and sustain high magnetic fields in the
Large Hadron Collider at CERN (Hamidieh, 2018).
Superconductors are used to create and support quantum
states in quantum systems and quantum computers (Krinner
et al., 2019). Superconductivity effect is used in the development
of electric motors, unipolar machines, topological generators,
rigid and flexible cables, switching and current-limiting devices,
and magnetic separators, transport systems in the production of
such coils for accelerators and for the creation of devices for
measuring temperatures, costs, levels, and pressures.

At present, there are two main directions in the field of
superconductivity application: in magnetic systems and in
electric machines. Many types of research are underway to
find new superconductors with high critical temperatures
(Sleight et al., 1993; Flores-Livas et al., 2016; Si et al., 2016).

In the research (Hamidieh, 2018), models for predicting the
properties of chemical compounds based on statistical algorithms
XGBoost andmultiple regression were developed. The algorithms
were evaluated by RMSE and R2 metrics. The superconductor
data comes from the Superconducting Material Database
maintained by Japan’s National Institute for Materials Science
at http://supercon.nims.go.jp/index_en.html. After some data
preprocessing, 21,263 superconductors are used. The
developed model in the research based on the multiple
regression method has RMSE value 17.6 K and R2 value 0.74.
The model based on the XGBoost method has an RMSE value 9.
5 K and R2 value 0.92.

In the research (Abdulkadir and Kemal, 2019), the model for
predicting the properties of chemical compounds based on
XGBoost statistical algorithm. In his article, he uses a
statistical model to predict the superconducting critical
temperature based on features extracted from the chemical
formula of the superconductor. This article, like Kam
Hamidiyeh’s article, is based on the idea of analyzing the
features of the chemical formula of the material and develops
his ideas. The algorithms were evaluated by RMSE and R2
metrics. Developed XGBoost model has RMSE value 9.091 K
and R2 value 0.928.

In the research (Li et al., 2019), the hybrid neural network that
combines a convolution neural network and long short-term
memory neural network is proposed to extract the characteristics
of materials for critical temperature prediction of
superconductors. The superconductor data comes from the
Superconducting Material Database maintained by Japan’s
National Institute for Materials Science. The algorithms were
evaluated by RMSE, MAE, and R2 metrics. The developed hybrid
neural network has RMSE value 83.565 K and R2 value 0.899 and
MAE value 5.023.

All these researches (Hamidieh, 2018; Abdulkadir and Kemal,
2019; Li et al., 2019) are using the same dataset.

Therefore, this paper presents a novel technique for an
accurate prediction of these cases.

Then the aim of our research is to develop a model for using
the chemical formula of material and then to predict the critical
temperature of superconductivity for this material. Our research
considers and describes an approach based on the use of various
neural network architectures and their combinations for chemical
formulas analysis. This research considers the use of neural
networks whose structure is based on the use of LSTM and
convolution layers.

In the final neural network ensemble, six networks are used:
one network based on LSTM and four based on convolutional
neural networks, and one embedding ensemble of convolution
neural networks. LSTM neural network and convolution
neural network were trained in 300 epochs. Ensembles of
models were trained in 20 epochs. All neural networks are
trained in two stages. At both stages, the optimizer Adam was
used. In the first stage, training was carried out by the function
of losses Mean Absolute Error (MAE) with the value of
optimizer learning rate equal to 0.001. In the second stage,
the previously trained model was trained by the function of
losses Mean Squared Error (MSE) with a learning rate equal to
0.0001. The final ensemble is trained with a learning rate equal
to 0.00001.

This article is organized as follows: after presenting the
introduction in Introduction, materials and methods used in
this paper are described in Materials and Methods, including
the preparation and standardization of materials data for neural
network-based machine learning systems. Process of Development
and Training of Neural Network Model describes the proposed
neural network algorithms designed to process sequential data,
detailing the features and parameters used in the ensemble of pre-
trained neural networks with different architectures. Results and
Discussion are presented in Results and Discussion. At the end of
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the article, the conclusions of this research and future work are
described.

MATERIALS AND METHODS

Materials
The research used a dataset from the research (Hamidieh, 2018).
This dataset used in the research has 21,263 samples and is
publicly available at the Center for Machine Learning and
Intelligent Systems, Bren School of Information and Computer
Science, University of California, Irvine (Center for Machine
Learni, 2020). This set contains superconductor formulas and
their parameters. The parameters of superconductor formulas
were presented in a table with 21,263 rows by the number of
superconductor formulas in the database. The formulas in the
dataset contain from one to nine chemical elements. The dataset
has 87 columns: columns 1 to 86 describe the chemical elements
used in the formulas and column 87 contains the critical
temperature Tc. The table has the coefficient value for each
element of each formula. Values of element properties were
obtained from the periodic table of elements in csv format
(GitHub Gist, 2020)

The dataset used elements with atomic numbers up to 86,
elements up to and including radon. For each element, 16
parameters were selected: atomic mass, number of neutrons,
number of protons, period, atomic radius, electronegativity,
first ionization, density, melting point, boiling point, number
of shells, group, specific heat, is metal, is nonmetal, is metalloid.

The parameters “is metal”, “is nonmetal”, “is metalloid” were
presented in 1 hot encoding format. These parameters have been
selected because they provide a precise description for each of the
86 elements considered. After selecting these parameters, a table
of 86 elements was standardized for these parameters.

Machine learning algorithms have low data accuracy with
large differences in the size of input values. The parameters of
chemical elements can vary by many orders of magnitude
(Matthias, 1955; Montavon et al., 2013; Ramprasad et al.,
2017; Meredig et al., 2018), so it was necessary to adapt the
data for a quality learning process. For each of the 16 element
parameters, an average value and an average deviation have been
calculated based on the 86 elements used. Based on these data, a
table of periodic elements has been standardized for better
compatibility with machine learning algorithms.

Elements from the standardized table of chemical elements
were inserted into superconductor formulas from the dataset for
the elements, respectively. Coefficients of chemical elements in
standardization formulas were not exposed. If the number of

FIGURE 1 | Structure of LSTM neuron (Colah’s blog, 2020).

FIGURE 2 | One-dimensional convolution neuron.

FIGURE 3 | Ensemble of neural networks (Alam et al., 2019).
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elements in a claim is less than 10, the claim is expanded to 10 and
all parameters of all missing elements were set to zero (Montavon
et al., 2013; Wei et al., 2016; Ramprasad et al., 2017). The result
obtained was recorded in the processed dataset.

Two variants of chemical elements arranged in the processed
dataset were considered: sorting by their indication in the chemical
formula in the source dataset and sorting by their number in the
periodic table of elements. The choice of sorting by number in the
periodic table of elements was due to some differences in the order in
which the chemical elements were arranged in the formulas in
different fields of activity. In this variant of sorting the arrangement
of elements in the formula view for the neural network, the specifics
of recording the chemical formula do not affect the result of the
neural network operation.

Methods
In this subsection, the details about the neural networks used in
this research are described.

Long Short-Term Memory Based Neural Network
LSTM neural networks, Long Short-Term Memory neural
networks, are a special kind of recurrent neural networks,
capable of learning long-term dependencies. They were
introduced by Sepp Hochreiter and Jurgen Schmidhuber
(Hochreiter and Schmidhuber, 1997). LSTM networks are
explicitly designed to avoid the long-term dependency
problem. LSTM networks consist of LSTM neurons. Figure 1
shows the principle of work of the LSTM neuron of a neural
network as a whole and the structure of an individual LSTM layer
in particular.

LSTM predictions are always based on past network input
experience. However, as input data increase in size, the
importance of data entering the neural network decreases at
the beginning compared to data entering the neural network
later (Sherstinsky, 2020). Therefore, the data at the beginning of
the sequence have minimal impact on the result of the LSTM
layer of the neural network, and the latest data have themaximum

FIGURE 4 | Architectures of recurrent neural networks.
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impact on the result of the LSTM layer. To reduce this effect, the
data dimensionality is added to the values used to operate the
neural network. In this research, the value 0 is used to supplement
the data to the standard size used by the neural network. These
fillers are added before the data is processed so that the addition
of data to the standard size taken by the LSTM layer for
processing will have minimal impact on the extraction of
information from the data (Montavon et al., 2013; Owolabi et
al., 2014; Stanev et al., 2018). If we add these fillers after the data
being processed, the neural network result will be less accurate
because the filler values will have an effect on the result.

One-Dimensional Convolution Neural Network
Deep convolution networks provide state-of-the-art classifications and
regressions results over many high-dimensional problems (Mallat,
2016). In the convolution neural networks, a convolution operation is

used. The convolution operation is a mathematical operation for two
functions, which results in a third function expressing a change in the
shape of one function to another.

For different types of input data, there are different convolution
variants defined by the parameters of the convolution kernel. For
two-dimensional convolution, by the example of image analysis,
the kernel is defined by resolution of image and depth, the number
of color channels, of image. For one-dimensional convolution, the
kernel parameters are the length of the input sequence, the number
of elements in one sequence row, and depth, and the number of
values per one sequence step.

A deep neural network consists of neuronal layers with set
parameters. In one layer, all neurons have the same convolution
parameters. An example of a neuron of a one-dimensional
convolution neural network for the sequence analysis using
the chemical formula is shown in Figure 2.

One-dimensional convolution layer is used for analyzing two-
dimensional data sequences. This type of layer creates and uses a
convolution kernel that is convolved with the layer input over a single
spatial or temporal dimension to produce a tensor of outputs. In the
case of the formula analysis in Figure 2, the neuron, depending on the
size of the convolution core, analyzes the parameters of each group of
elements, moving from left to right.

Neural Network Ensemble
Neural networks are flexible and scalable algorithms that can adapt
to the data used in training. However, they are trained using a
stochastic learning algorithm and adapt to the specifics of the
learning data during training. So even the same architecture neural
networks, trained on the same dataset, but started training with
different parameters of weights, can find different variants of the
optimal set of weights each time they are trained, which, in turn,
leads to different forecasts (Hansen and Salamon, 1990).

To improve learning outcomes and reduce learning, a learning
approach is used that is based on learning from the same data and
then combines multiple neural networks with different
architectures. This is called ensemble learning and not only
reduces the variance of forecasts but can also lead to forecasts
that are better than any single model. An example of an ensemble
of neural networks is shown in Figure 3.

Accuracy Metrics of Neural Network
In the training process, different methods are used to assess the
quality of training and neural network performance. Prediction of
the critical superconductivity temperature value for a chemical
formula is a regression problem. For the regression problem,
metrics are used: mean absolute error, mean squared error, root
mean square error, and coefficient of determination.

MAE is a measure of the error between paired observations
expressing the same phenomenon. A special feature of MAE is its
resistance to emissions in data. MAE calculated by the following
equation:

MAE � ∑n
i�1
∣∣∣∣xi − yi

∣∣∣∣
n

(1)

with actual value xi, predicted value yi, and number of values n.

TABLE 1 | Results of training of recurrent neural networks.

Name Dropout Activation MAE (degrees°K) MSE (degrees°K2)

R1 0 None 4.8908 92.1871

R1 0 Relu 5.1268 100.8792

R1 0.05 none 4.8328 93.8598

R1 0.05 Relu 5.0758 97.2897

R1 0.1 none 4.9218 94.8925

R1 0.1 Relu 5.1089 96.2879

R2 0 none 4.9705 100.8791

R2 0 Relu 5.1798 110.8971

R2 0.05 none 4.9518 99.8791

R2 0.05 Relu 5.1209 107.9871

R2 0.1 None 5.0129 97.5872

R2 0.1 Relu 5.1408 100.1879

R3 0 None 4.9287 96.7898

R3 0 Relu 5.1287 110.8987

R3 0.05 None 4.9019 95.1982

R3 0.05 Relu 5.0791 105.2847

R3 0.1 None 4.9271 95.0879

R3 0.1 Relu 5.0971 101.2878

R4 0 None 4.9833 99.7972

R4 0 Relu 5.0917 100.1972

R4 0.05 None 4.9613 96.4879

R4 0.05 Relu 5.0796 104.1975

R4 0.1 None 4.9486 95.1479

R4 0.1 Relu 5.0579 109.1871
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The MSE is calculated as the mean square difference between the
predicted and actual values. The result is always positive regardless of
the sign of the predicted and actual values, and the ideal value is 0.0. A

square value means that larger errors result in more errors than
smaller errors, which means that the model is penalized for larger
errors. MSE calculated by the following equation:

FIGURE 5 | Architectures of convolution neural networks.
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MSE � 1
n
∑n
i�1

(xi − yi)2 (2)

with actual value xi, predicted value yi, and number of values n.
RMSE is a measure of the difference between the values

predicted by the model or evaluator and the observed values.
It is calculated as the square root of MSE and big value of errors
have a disproportionate impact on RMSE. RMSE is calculated by
the following equation:

RMSE �
�����������∑n

i�1 (xi − yi)2
n

√
(3)

with actual value xi, predicted value yi, and number of values n.
The coefficient of determination, R2, is the proportion of

dispersion in the dependent variable, which is predictable from
the independent variable or variables. It provides an estimation of
how well the observed outcomes are reproduced by the model
based on the proportion of common variations in outcomes
explained by the model. The coefficient of determination is
calculated by the following equation:

R2 � 1 − ∑n
i�1 (xi − yi)2∑n
i�1 (xi − y)2 (4)

with actual value xi, predicted value yi, mean value of actual
values y, and number of values n.

PROCESS OF DEVELOPMENT AND
TRAINING OF NEURAL NETWORK MODEL

The processed dataset was shuffled and randomly divided into three
parts: 80% - training set, 10% - test set, and 10% - validation set. Each
value within each subset was duplicated 5 times, after which the

subset was mixed. This operation was performed so that the training
did not focus on the features of individual batches. Since formulas
had a different number of elements in their composition, they were
added to 10 elements by an element, all parameters of which and the
coefficient in the formula have the value 0.

After pre-processing, the original set containing 21,263 formulas
was divided into a training set of 17,010 unique formulas, a test set of
2,126 formulas, and a validation set of 2,127 formulas. Each formula in
each subset was repeated 5 times, after which the subset wasmixed. As
a result, the training set had 85,050 formulas, the test set had 10,630
formulas, and the validation set had 10,635 formulas.

After dividing the dataset into subsets, theywere trained in different
neural network architectures. Since the formulas were a sequence of
elements with predefined parameters, the focus was on neural network
architectures based onLSTMand one-dimensional convolution layers.
The input of the neural network was supplied a processed formula
added to 10 elements, each of which has 17 parameters: the coefficient
of the element in the formula and 16 parameters of the chemical
element from the periodic table of elements.

Models were trained in two stages. At both stages, the optimizer
Adam was used. In the first stage, training was carried out by the
function of losses Mean Absolute Error, MAE with the value of
learning rate equal to 0.001. In the second stage, the previously trained
model was trained by the function of losses Mean Squared Error,
MSE, with a low learning rate equal to 0.0001.

LSTM Based Neural Network Models
Various architectures based on LSTM layers were considered during
the research. The architectures and their names, which gave themost
accurate results, are shown in Figure 4. For these networks, various
activation functions and dropout values have been investigated. The
results of training for these architectures are shown in Table 1.

According to the analysis of these results, the best results were
obtained by R1 neural network of three LSTM layers, without the
function of the activation of neurons on the recurrent layers, with
a value of dropout on each of the layers equal to 5%. The best
results were obtained with the number of epochs equal to 300 and
the size of the batch equal to 200.

One-Dimensional Convolution Based
Neural Network Models
Also, in the process of research were considered the architecture of
convolution networks based on one-dimensional convolution layers.
L2 regularizationwith a value of 0.0001 was applied for each layer for
reducing the effect of overfitting. Architectures and their indexes,
which gave the most accurate results, are shown in Figure 5. For the

TABLE 2 | Results of training of convolutional neural networks with different
kernels.

Name Kernel MAE (degrees°K) MSE (degrees°K2)

C1 2 4.7972 85.8867

C1 3 4.7287 85.4572

C1 4 4.7553 83.9879

C1 5 4.7843 89.4839

C2 2 4.8138 88.3587

C2 3 4.7628 89.7028

C2 4 4.8575 86.9126

C2 5 4.8052 85.8867

C3 2 4.8975 86.0501

C3 3 4.7559 85.7088

C3 4 4.8641 85.3812

C3 5 4.8384 88.4810

TABLE 3 | Results of training of neural networks with cross validation.

Name MAE (degrees°K) MSE (degrees°K2)

R1 4.8009 79.1871

C1 4.6608 78.0079

C2 4.7025 76.4987

C3 4.6989 79.7912
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convolution neural networks, training at different kernel sizes was
provided. The size of the convolution kernel was changed from 2 to
5. The training results for these architectures are shown in Table 2.

The best result for convolutional neural networks was obtained with
the kernel size equal to three. The best results were obtained with the
number of epochs equal to 300 and the size of the batch equal to 200.

Cross-Validation Approach for Training
Neural Network Models
For the variants of architectures, cross-validation training was
used. The source dataset of 21,263 values was divided 10 times

into 90% train subset and 10% test subset. In addition, each value
within each subset was duplicated 5 times, after which the subset
was mixed. The cross-validation train subset had 95,685 formulas
and the test dataset had 10,630 formulas. The best results of
training with the use of cross-validation are presented in Table 3.
All architectures of the neural network were trained on the best
cross-validated dataset. All modules have two options: adapted
for MAE and adapted for MSE. The training process of neural
networks for MAE is shown in Figure 6.

The cross-validation variant of the dataset, which gave the best
training results and the neural networks trained on this data, were
saved and used to create an ensemble of neural networks.

FIGURE 6 | Neural networks training process on cross-validated dataset.
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Ensemble of Neural Network Models
Since the C2 and C3 neural networks have similar
architecture, they were adapted to minimize MSE loss and
combined into an ensemble. After training, an ensemble of
C2 and C3 neural networks was inserted into the final
ensemble. Model C1 has been added in two variants:
adapted to minimize MAE loss and adapted to minimize
MSE loss. The final ensemble architecture from pre-trained
neural networks is shown in Figure 7. In the ensemble, all
outputs of all pre-trained models were combined and
analyzed by a fully connected layer. In the process of
training, weights of pre-trained models were frozen. Only
the last fully connected layer of 64 neurons was trained.
Output values of 6 pre-trained networks were combined and
sent to the full layer of 64 neurons with “ReLU” activation
function. The result of the full layer is used to estimate the
critical superconductor temperature.

The final version of the ensemble was trained in two
stages. In the first stage, training was carried out by the
function of Mean Absolute Error loss, MAE, with the value of
learning rate equal to 0.00001. In the second stage, the
previously trained model was trained by the function of

Mean Squared Error loss, MSE, with a low learning rate
equal to 0.0000001. The low rate of training is discussed by
the fact that the ensemble consists of already pre-trained
models. The best results were obtained with the number of

FIGURE 7 | Architecture of final ensemble of neural networks.

FIGURE 8 | Ensemble training process.

Frontiers in Materials | www.frontiersin.org October 2021 | Volume 8 | Article 7147529

Viatkin et al. Prediction Temperature Superconductors Materials

https://www.frontiersin.org/journals/materials
www.frontiersin.org
https://www.frontiersin.org/journals/materials#articles


epochs equal to 20 and the size of the batch equal to 200. The
process of ensemble training for the minimization of MAE
loss is shown in Figure 8.

The error of this ensemble after training is 4.068 for MAE loss
and 67.272 for MSE loss. After minimization, MSE, loss
coefficient of determination, R2, was calculated. The coefficient
of determination, R2, is 0.923. Also, after minimizing MSE loss,
root mean square error, RMSE, was calculated. RMSE is 8.202.
The final ensemble of neural networks has 1,330,247 trainable
parameters.

RESULTS AND DISCUSSION

In this research, the application of neural networks to the analysis of
superconductor tempers was considered. The analysis was based on
the properties of chemical elements and their coefficients in the
chemical formula. As a result, neural networks with convolution and
recurrence architecture were trained. The ensemble of neural
networks was created as a combination of the best variants of
architectures of pre-trained neural architectures.

The accuracy metrics of ensemble after training are shown in
Table 4:

The final ensemble of neural networks has 1,330,247 trainable
parameters.

The results of the prediction of this ensemble in comparison
with previously developed algorithms are presented in Table 5.

The root mean square error of the developed ensemble is smaller
than the minimum value of the RMSE error of previous algorithms.
RMSE of the ensemble from this article was decreased by 0.889°.

The coefficient of determination is more than the value of
previous algorithms. The mean absolute error is smaller than the

MAE of previous algorithms. R2 metric of the ensemble from this
article was decreased by 0.005.

Mean absolute error of the developed ensemble is smaller than
the minimum value of MAE error of previous algorithms. Mean
absolute error of ensemble from this article was decreased by 0.937°.

Although the neural network ensemble has lost exactly the
coefficient of determination, MAE and RMSE values have
decreased. Comparison of MAE and RMSE value changes with
the coefficient of determination value allows considering the
decrease in the value by the coefficient of determination as
insignificant in comparison with improved accuracy and
decrease in MAE and RMSE values.

The developed neural network ensemble algorithm, as well as
earlier algorithms presented in this article, is based on the same dataset.
This dataset includes only the chemical formula of the superconductor
and its critical temperature. However, many substances may change
their internal structure depending on many factors. Adding to the
model of atomic structure information of investigated material could
considerably increase the quality of work of models intended for
analysis of chemical compounds.

CONCLUSION

In this paper, an ensemble of neural networks was developed to
predict the critical temperature of superconductors. Input data
for this neural network model are only the chemical formula of
the material. Sorting chemical elements in the formula by the
element number in the periodic table of chemical elements
allowed the neural network to concentrate more actively on
real parameters of chemical elements rather than on features
of their representation in the chemical formula.

TABLE 4 | Accuracy metrics of ensemble.

Neural network name RMSE (degrees°K) R2 MAE (degrees°K)

Ensemble of R1, C1, C2, C3 networks 8.202 0.923 4.068

R1 8.899 0.892 4.801

C1 8.832 0.897 4.661

C2 8.749 0.906 4.703

C3 8.932 0.890 4.699

TABLE 5 | Compilation different algorithms.

Algorithm Author Year RMSE (degrees°K) R2 MAE (degrees°K)

Multiple regression Hamidieh (2018) Kam Hamidieh 2018 17.6 0.74 —

XGBoost Hamidieh (2018) Kam Hamidieh 2018 9.5 0.92 —

XGBoost Abdulkadir and Kemal (2019) Abdulkadir Karacı 2019 9.091 0.928 —

Hybrid neural network Li et al. (2019) Shaobo Li 2020 9,141a 0.899 5.023

Proposed model Authors of this paper 2020 8.202 0.923 4.068

aOriginal value was 83.565. In the article (Abdulkadir and Kemal, 2019), the MSE value was printed instead of the RMSE value.
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As the chemical formula represents a sequence of parameters,
recurrence and convolution algorithms of neural networks were
used in this neural network model. Combined use of these
algorithms helped to give high accuracy calculation of the
target parameter, critical temperature for chemical formula.
Our proposed method based on a neural network model can
be useful for searching high-temperature superconductors.

Nowadays, superconductors are used in various fields.
However, the necessity to provide low temperatures for the
use of the effect of superconductivity makes these devices with
the use of superconductors expensive and difficult to service.
These devices are large with a relatively small size of the used
superconductor. Many efforts and materials are used to simply
maintain the temperature enough to support the
superconductivity effect. Also, low temperatures are dangerous
for humans, where the superconductivity effect is manifested.

Due to the increase of using superconductor material in
different devices, which solves problems related to societal
challenges, the proposed research line could be implemented
in real time in the near future.
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