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The repair of bone defects in load-bearing positions still faces great challenges. Tantalum
(Ta) has attempted to repair bone defects based on the excellent mechanical properties.
However, the osseointegration of Ta needs to be improved due to the lack of
osteoinduction. Herein, tantalum–gelatin–methacryloyl–bioactive glass (Ta–GelMA–BG)
scaffolds were successfully fabricated by loading BG in 3D-printed Ta scaffolds
through a chemical crosslinking method. The results showed that the composite
scaffolds have the ability to promote cell adhesion and proliferation. The incorporation
of BG resulted in a significant increase in apatite-forming and osteogenesis differentiation
abilities. In vivo results indicated that the Ta–GelMA–BG scaffolds significantly enhanced
the osteointegration at the early stage after implantation. Overall, the Ta–GelMA–BG
scaffolds are a promising platform for the load bearing bone regeneration field.
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INTRODUCTION

Bone defects and nonunions caused by trauma, resection, and abnormal development pose a major
clinical problem worldwide (Panteli et al., 2015). Current approaches for graft materials include
autografts, allografts, ceramic, and metallic implants (Khan et al., 2008). The autografts or allografts
have limited sources and are expensive (Greenwald et al., 2001). Ceramic implants cannot support
the body weight and are only used with external fixation. Stress shielding often inevitably occurs and
extraction surgery is needed to remove the fixation (Sumner, 2015). Metallic implants are suitable for
the load-bearing bone defects. For example, the Ti-6Al-4Vmetal is still the most widely used material
for orthopedics surgery (Thijs et al., 2010). However, concerns have also been raised for their
unsuitable mechanical properties (Sagomonyants et al., 2011b), cytotoxicity (Li et al., 2010),
corrosion, and potential allergies (Olmedo et al., 2008). These limitations of titanium have led to
continuous efforts to explore more suitable metallic implant materials.

Tantalum (Ta) has been shown to be a promising material for orthopedic clinical applications
(Balla et al., 2010). Ta is a ductile, highly chemically resistant, biocompatible material (Black, 1994).
However, the high price and difficulties in machining limit their clinical usage. Bulk Ta implants have
high mechanical strength, and well-designed porous Ta has mechanical properties similar to those of
human cancellous bone. This is vital for preventing the stress shielding (Arabnejad et al., 2017).
Porous Ta favors the attachment and proliferation of osteoblasts as well as osteointegration (Stiehler
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et al., 2008; Sagomonyants et al., 2011a). More importantly, the
porous structure can significantly reduce the weight and the cost
of the implant (Lefebvre et al., 2008).

Traditional manufacturing techniques include furnace
sintering, plasma spraying, lost wax casting, and vapor
deposition techniques (Ryan et al., 2006). However, these
techniques have difficulty satisfying the personalized demand
for bone defects and precisely imitating trabecular structures.
Different from traditional reduced material manufacturing, 3D
printing is a bottom-to-top additive fabrication process. The low
waste and high customized design endow it with a low material
demand, which is suitable for the high price of the Ta metal
(Wauthle et al., 2015). 3D printing solved the difficulties of
machining the Ta metal, because the metal powder was used
in layer-to-layer fabrication. For example, Wauthle et al. (2015)
and Fraser et al. (2019) used selective laser melting (SLM) to
manufacture a highly open porous (80%) pure Ta implant.
Within the limits of the cancellous bone, the porous Ta shows
excellent mechanical properties, such as high elastic modulus and
the ductile deformation mechanism. The satisfying bone
ingrowth confirmed the success of the scaffold design
(Endrizzi et al., 2016). However, since Ta is a chemically
stable metal with no osteoinductivity, the bone in-growth rate
is limited (Liu et al., 2015b). To meet the increasing requirements
for earlier loading of implants in clinical applications, the surface
modification of porous Ta is used to achieve faster bone ingrowth
and more stable osseoincorporation (Roffi et al., 2017). Especially
for the cases with large-volume bone defects, it is important for
the porous tantalum to induce bone formation and strengthen the
osseoincorporation (Candrian et al., 2017).

Bioactive glasses (BGs) have attracted increasing attention in
recent years due to their osteoconductive and osteoinductive
properties (Hench, 2016; Baino et al., 2018). Our previous
work also proved that BG could successfully promote bone
regeneration via immunomodulation (Zhao et al., 2018a; Zhao
et al., 2018b). Moreover, BG is also used as a novel biocompatible
degradable inorganic nanocarrier (Kim et al., 2016; Mahapatra
et al., 2016; Kang et al., 2018; Patel et al., 2019). However, despite
all of its advantages, it has fatal disadvantages. BG has low
fracture toughness and cannot withstand rapid temperature
changes, which leads to the formation of microcracks and
then reduces the mechanical properties (Boccaccini et al.,
2007). Therefore, although BG has been widely used in bone
regeneration, it can only be used for the reconstruction of non-
load-bearing bones (Jones, 2013). However, load-bearing capacity
is especially important for bone scaffolds that are used to repair
critical-sized bone defects in the load-bearing bones, because no
loading or dramatically reduced loading on the bone scaffolds
results in no stimulus for continued bone remodeling. According
to Wolff’s law, without proper loads placed under, no satisfactory
bone remodeling will occur (Chen et al., 2010). Therefore, the
bone scaffolds should be strong enough to bear loading for bone
remodeling in the load-bearing sites.

This problem can be overcome by creating BG-Ta hybrid
structures, which can be used as scaffolds to fill bone defects. The
porous Ta scaffold is used to reconstruct the anatomy of the bone
defect with mechanical stability and a sustained load at the site of

the injury. Abundant porosities allow nutrients and oxygen to
reach the osteoblasts seeded or migrated within. The surface
modification of BG is designed to improve the osteoinductive and
osteointegrative properties of the Ta scaffold. In order to attach
BG to the Ta surface, a binder is necessary. Gelatin methacryloyl
(GelMA) is an attractive chemically crosslinked hydrogel, which
has excellent biocompatibility and biodegradability (Yue et al.,
2015). To our knowledge, the combination of a 3D-printed Ta
bionic structure and BG nanomolecules has not been explored in
the field of load-bearing bone regeneration. Therefore, in this
study, we use the SLM method to print the customized Ta
scaffold. Surface chemical modification was used to
photocrosslink with the BG-loaded GelMA. Both in vitro and
in vivo experiments were carried out to evaluate the properties of
the scaffolds and the osteoconductivity and osteoinductivity of
the BG-GelMA coating.

EXPERIMENTAL SECTION

Fabrication of Ta–GelMA–BG Scaffolds
Fabrication of Ta scaffolds: Porous Ta scaffolds were fabricated
via an SLM system (Concept Laser M2, Upper Franconia,
Germany) with Unigraphics NX software (Siemens PLM
Software, TX, United States). The printing process was
protected in an Ar/N2 atmosphere by using Ta powder
particles (Siemens PLM Software, TX, United States) with the
diameters in the range of 15–50 μm. The porous Ta samples were
ultrasonically cleaned in ethyl alcohol and deionized water. The
samples with diameters of 11 mm and 3 mmwere used for in vitro
and in vivo experiments, respectively.

Fabrication of GelMA: GelMA was synthesized following a
previously reported method (Nichol et al., 2010). In brief, 10 g
type A gelatin (Sigma, USA) was added to 100 ml phosphate
buffer saline (PBS) at 60°C until fully dissolved. 5°ml of
methacrylic anhydride (Aladdin, China) was added dropwise
into the solution at a rate of 0.5 ml min−1 under vigorous
stirring for 3 h. In order to remove the unreacted components,
the mixture solution was dialyzed against deionized water for
1 week at 40°C using 12–14 kDa cut-off dialysis tubes. After
dialysis, the solution was centrifuged and filtered through a
neutral filter paper. Finally, the GelMA solution was frozen at
−20°C, lyophilized, and stored at −80°C.

Fabrication of Ta–GelMA–BG scaffolds: Ta–GelMA–BG
scaffolds were prepared by adhering GelMA-BG sol on Ta
scaffolds. The first step was to prepare the GelMA-BG sol. In
brief, BG (mol% 60SiO2-36CaO-4P2O5) with a size of
400–500 nm was synthesized using the sol-gel method with
alkali-catalyzed template as in our previously reported study
(Zhao et al., 2018a). 1 g of lyophilized GelMA was dissolved
into 10 ml PBS containing a 0.5% w/v photoinitiator (Irgacure
2959, Aladdin, China) at 60 C. Subsequently, 10% w/v BGs were
dispersed into the GelMA solution and allowed to stir overnight
at 40 C. Then, the Ta scaffolds were immersed into the solution
and vacuumed for 30 min. Subsequently, the Ta–GelMA–BG
scaffolds were incubated at 4 C for 30 min and immediately
irradiated with UV light (360–480 nm) for 5 min at an
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intensity of 6.9 mW/cm2. After crosslinking, the scaffolds were
soaked in PBS overnight to remove the unreacted chemical
components. Finally, the composite hydrogels were frozen at
−20°C for 12 h and lyophilized for 48 h to obtain interconnected
porous hydrogels. The Ta–GelMA scaffolds were prepared using
the same method, except without the addition of BG.

Characterizations of Ta–GelMA–BG
Scaffolds
The surface morphology of Ta–GelMA–BG scaffolds was
investigated through a field emission scanning electron
microscope (SEM, DSM 982-Gemini or Sigma 300, Zeiss). The
X-ray diffraction analyzer (XRD, Bruker D8, Netherlands) at a
scanning speed of 2°/min and 2θ from 10 to 80° was used to detect
the phase composition of scaffolds. The porosities of the scaffolds
were measured using the Archimedes’ principle. The apatite-
forming ability was investigated by immersing the scaffolds in
SBF (VSBF/Mscaffolds: 50 ml g−1) for 7 days in a polyethylene
bottle at 37 C. The scaffolds were collected from SBF after
soaking, rinsed with distilled water 3 times, and dried at 60 C
overnight. Then, the apatite formation on the surface was
analyzed by SEM.

In VitroCytocompatibility andOsteogenesis
Differentiation Studies
Mouse bonemarrow–derivedmesenchymal stem cells (mBMSCs,
ATCC) were used to study the cytocompatibility and osteogenesis
differentiation properties of the scaffolds. The cells were seeded
on the surface of scaffolds (11 mm in diameter and 1.5 mm in
thickness) at a density of 2×104 cells per sample and cultured with
DMEM supplemented with 10% fetal bovine serum and 1%
penicillin/streptomycin solution at 37 C in 5% CO2. After
2 days of culture, the cell attachment was analyzed by SEM
observation.

The cell proliferation on scaffolds was investigated by a cell
counting kit-8 (CCK-8, Dojindo, Japan). After 1, 3, and 7 days
incubation, the scaffolds were rinsed with PBS, and then added
with the fresh medium containing 10 v/v% CCK-8 solution. After
1 h incubation, the absorbance of the fresh medium was recorded
at a wavelength of 450 nm using a microplate reader (Thermo
3001, Thermo. Sci.).

Alizarin red-S assay was performed at day 14. In brief, after
fixation with 4% paraformaldehyde for 30 min, the cells were
washed three times with ultrapure water and then submerged to a
solution of 1% Alizarin Red-S (pH 4.2, Sigma-Aldrich) for 10 min
at room temperature.

The relative gene expression levels of osteogenic
differentiation (OCN, OPN, RUNX2, COL1, and ALP) were
analyzed by the real-time quantitative polymerase chain
reaction (RT-qPCR) at 7 days. Typically, total RNA was
extracted using HiPure Total RNA Micro Kit (Magen)
following the manufacturer’s instructions. The isolated RNA
was then reverse transcribed into cDNA by using the Reverse
Transcription Reagents Kit (Takara). The RT-qPCR was
performed by using a Maxima SYBR Green/ROX qPCR

(Thermo Scientific) and conducted on a Quantstudio 6 Flex
(Life technologies). The gene expressions were calculated by
the 2–ΔΔCt method. The sequences of primers for OCN, OPN,
RUNX2, COL1, and ALP genes were given in Supplementary
Table S1. The relative expression of the genes was normalized
against the housekeeping gene GAPDH.

In Vivo Bone Regeneration Assays
Surgical procedure and treatment: Adult female Sprague-
Dawley rats (220–250 g) were provided by the Laboratory
Animal Center, Southern Medical University. Before the
surgical procedure, the rats were anesthetized with 10% chloral
hydrate by intraperitoneal injection and the surgical areas were
disinfected by iodine and ethyl alcohol. A femoral condyles defect
model with a 3 mm diameter × 3 mm deep was formed on the
femoral condyles by using an electric trephine drill. Then, Ta,
Ta–GelMA, and Ta–GelMA–BG scaffolds were used to fill in the
bone defects (Supplementary Figure S1). The wounds were
sutured and a prophylactic antibiotic was administered to
avoid infections.

Histological analysis: After 8 weeks, the rats were euthanized
by an overdose of anesthetics and their femoral samples were
harvested. Then the bone specimens were fixed in 4%
paraformaldehyde, dehydrated in a series of ethanol
concentrations, and embedded in polymethylmethacrylate
(PMMA). Subsequently, they were initially processed into
thicker sections (150 μm) with a Leica SP1600 saw microtome
(Leica, Hamburg, Germany), and were then sectioned into
thinner sections (∼50 μm) by grinding and polishing. To
visualize the formed new bone, all the slices were stained with
hematoxylin and eosin (H&E), and were then imaged with a
phase contrast light microscope to observe the new bone
formation and osseointegration.

Statistical Analysis
Data were expressed as mean ± standard deviation (SD). The
statistical significances were determined via the Student’s t-test or
one-way analysis of variance (ANOVA) in SPSS 26.0 software
(IBM SPSS Inc. Chicago, United States). The difference was
considered to be statistically significant when p < 0.05.

RESULTS

Characterizations of the Ta–GelMA–BG
Scaffolds
In this study, Ta–GelMA–BG scaffolds were successfully
prepared by adhering GelMA-BG sol on the Ta scaffold’s
surface, through an UV crosslinking process as shown in
Figure 1A. Due to the attachment of BG, the color of
Ta–GelMA–BG scaffolds was whiter than that of the Ta
scaffolds, as shown in the digital photos (Figure 1B). The
microstructure of the scaffolds was further observed by SEM
and the average bore diameter of Ta scaffolds was approximately
400 nm. Although the aperture of GelMA and GelMA-BG was
reduced, the porous structure could still be observed. In addition,
the BG particles had evenly dispersed in the GelMA gel.
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The porosity and mineralization properties of Ta–GelMA–BG
scaffolds were further detected (Figure 2). The XRD analysis
showed that the characteristic peaks of Ta were observed in all
three groups. In addition, a broad peak centered at ∼22° (2θ)
could be observed only in Ta–GelMA–BG group indicating the
representative amorphous nature of BG (Figure 2A). The
porosity of the scaffolds was tested as shown in Figure 2B.
Due to the adhesion of GelMA-BG, the porosity of
Ta–GelMA–BG scaffolds showed a decreasing trend.
Furthermore, the apatite formation was researched by
incubating the scaffolds in SBF for 7°days (Figure 2C), as the
apatite-forming ability plays an important role in promoting
osteointegration. There is no mineralization on the surface of
Ta and Ta–GelMA, due to the lack of Si, Ca, and P ions from the
SEM images results. In contrast, much BG remained on the
surface of Ta–GelMA–BG scaffolds after 7°days of degradation.
Further enlargement showed that most of the BGs had changed

into flake-like apatite. All of these results suggested that
Ta–GelMA–BG scaffolds were successfully fabricated and had
excellent porosity and mineralization properties.

In vitro Biocompatibility and Osteogenesis
of Ta–GelMA–BG Scaffolds
The attachment and proliferation of mBMSCs on the surfaces of
Ta, Ta–GelMA, and Ta–GelMA–BG were examined by seeding
the cells on the scaffolds. SEM images results indicated that all the
groups were beneficial for cell attachment after culturing for
2°days (Figure 3A). However, Ta group had significantly fewer
cells than the other two groups indicating the only using Ta had a
weak effect on promoting cell adhesion. Further observation
showed that the prominent filopodia extension and spread
areas of Ta–GelMA were better than Ta–GelMA–BG group,
which might be due to the hydrophobic characteristics of BG

FIGURE 1 | Fabrication and observation of Ta–GelMA–BG scaffolds. (A) Schematic illustration of the fabrication process of Ta–GelMA–BG scaffolds. (B) SEM
analysis of the surface structure of Ta, Ta–GelMA, and Ta–GelMA–BG scaffolds. The inserted image of B shows digital photos of the scaffolds and the yellow box
indicates the enlarged area.
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were not suitable for cell growth. The CCK-8 results further
verified the phenomenon of cell proliferation observed by SEM.
There was no significant difference at 1 and 3°days. However,
when the culture time increased to 7°days, the proliferation rates
on Ta–GelMA–BG were significantly higher than those on Ta
(p < 0.05) (Figure 3B).

The in vitro osteogenic differentiation of mBMSCs on the Ta,
Ta–GelMA, and Ta–GelMA–BG scaffolds was also studied
(Figure 3CD). The Alizarin red-S staining result indicated that
all the three groups had the function of promoting
mineralization. However, Ta–GelMA–BG was stained more
deeply than the other two groups (Figure 3C). In addition,
osteogenesis-related gene expression was also tested by
RT–qPCR (Figure 3D). The OPN, RUNX2, COL1, and ALP
expressions in the Ta–GelMA–BG group were significantly
upregulated compared with those in the Ta and Ta–GelMA
groups at day 7. All of these results demonstrated that the
Ta–GelMA–BG scaffolds could significantly promote the
adhesion, proliferation, and osteogenic differentiation of
mBMSCs.

In vivo Osteointegration Assessment
The in vivo osteointegration was evaluated by implanting
Ta–GelMA–BG scaffolds in the rat femur bone for 8°weeks
(Supplementary Figure S1). The H&E staining results showed

that the scaffolds were surrounded by a lot of new bones in all the
three groups (Figure 4). But the osteogenesis effect inside the
scaffolds was significantly different. The Ta group was almost
fully filled with fibrous connective tissues and cannot find a new
bone. Similarly, very little new bones could be observed on the
surface of the scaffold fibers of the Ta–GelMA group (yellow
arrow in Figure 4). However, in the Ta–GelMA–BG group, a
large amount of new bones had attached to the surface of the
scaffold indicating the addition of BG significantly promoted
osseointegration.

DISCUSSION

The promoting osteointegration of implanted biomaterials could
significantly enhance bone regeneration (Agarwal and García,
2015). In this study, 3D printing was used to print the customized
Ta scaffold with designed pore geometry; BGwas used to improve
the osteoinduction of the Ta scaffolds. We explored the effect of
BG in Ta–GelMA–BG scaffolds on bone induction both in vitro
and in vivo. The in vitro results showed that Ta–GelMA–BG can
significantly promote the osteogenesis compared with Ta
andTa–GelMA. In vivo experiments confirmed that
Ta–GelMA–BG significantly promoted the osteointegration
and new bone regeneration.

FIGURE 2 | Property evaluation of Ta–GelMA–BG scaffolds. (A) XRD pattern of the scaffolds. (B) Porosity of the scaffolds. (C) SEM images of the scaffolds after
soaking in SBF for 7 days. (*) p < 0.05 vs Ta group.
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It is well-known that the difficulties of machining and the high
cost of the Ta materials limit their application in the clinic (Ngo
et al., 2018). Numerous researches have used additive
manufacturing to build up metallic implants (Qin et al., 2019).
The ready-to-use fabrication and highly customized design make
this technique suitable for the complicated bone defect. In our
study, SLM-based Ta scaffolds benefited from less material
consumption, because of the layer-to-layer fabrication and the
reusable unsintered metallic powder. For load-bearing
applications, the proper pore design of the thin layer on the top
of a solid substrate is required for the fast and solid anchoring of the
implant (Shao et al., 2017). Compared to the identical Ta porous
structures, our SLM-produced Ta is fabricated according to the
optimization of geometric and mechanical properties for optimal
load transfer and bone ingrowth. The pore design of Ta not only
changed the elastic modulus, but also eased the intraoperative
manipulation of the implant, which could obtain an optimal
implant-bone fit and match the cancellous bone better.

In previous reports, the porous Ta implant has been widely used
in clinical applicationwith excellent osteointegration (Jenkins et al.,

2017). However, the highly stable chemical properties of the
tantalum metal may delay its bonding to the bone tissue and
bone ingrowth into porous structures (Arabnejad et al., 2016),
because the lack of osteoinductivity of Ta determines the bone
ingrowth starting from the margin of the scaffold. In addition,
when the bone defect is large enough, the ingrowth bone around
may inhibit the vasculature from reaching the center of the scaffold,
thus the nutrition supply is insufficient for the bone regeneration
(Luo et al., 2015). In this case, the early osteoinduction is important
for the successful bone healing of the large-volume bone defect
(García-Gareta et al., 2015). To meet the requirements,
osteoinductive surface modification of the Ta scaffold is
important for the successful bone regeneration in the large defect.

There are many ways to modify the surface characteristics of
the Ta metal to optimize osteoinduction in vivo, including
calcium phosphate coating (Barrère et al., 2003), alkaline-heat
treatment (Miyazaki et al., 2000), anodic oxidation (Liu et al.,
2015a; Liu et al., 2015b), and surface modification (Shah et al.,
2019). Among these methods, chemically stable compounds are
more suitable for the clinical translation. In our previous work,

FIGURE 3 | In vitro biocompatibility and osteogenesis of Ta–GelMA–BG scaffolds: (A) SEM images of mBMSCs’ attachment and spreading at day 2; (B) CCK-8
assay indicating the cell proliferation at day 1, 3, and 7; (C) Alizarin red of mBMSCs cultured with the scaffolds at 14 days; (D)mRNA expression of osteogenesis-related
genes (OCN, OPN, RUNX2, COL1, and ALP) incubated with various groups for 7 days. (*) p < 0.05 vs Ta group; (#) p < 0.05 vs Ta–GelMA group.
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mineralized collagen, made of hydroxyapatite (HAp)
nanocrystals and collagen fibers, was combined with 3D-
printed porous Ti6Al4V scaffold to improve the properties of
vascularization, osteointegration, and osteogenesis (Ma et al.,
2018). Numerous in vivo studies have also showed that
bioceramic/bioglass scaffolds promote bone formation (Huang
et al., 2020). In this study, our experiments showed that the
successful loading of BG in the GelMA coating on the surface of
Ta scaffold. The significantly improved osteogenesis is consistent
with the previous reports of the surface modification of BG.

The possible mechanism of promoting early osteogenesis for
Ta–GelMA–BG is that after Ta–GelMA–BG was implanted into
the femoral condyle, Si, Ca, and P are quickly released from the
GelMA coating. The Si, Ca, and P ions have the effect to directly
stimulate osteogenesis. Meanwhile, the improved cell adhesion and
proliferation benefit the osteointegration. Due to the excellent early
osteoinduction ability of Ta–GelMA–BG in vtro and in vivo, the

significantly improved bone regeneration in vivo was observed.
Further studies should be carried out to investigate the molecular
mechanism of BG-related host response for the osteogenesis and
vascularization, as well as themechanism of influence of directional
mechanical stimulation on bone reconstruction.

CONCLUSION

In summary, we successfully fabricated the 3D-printed
Ta–GelMA–BG scaffold by loading BG in Ta scaffolds
through a chemical crosslinking approach. In vitro research
found that the scaffolds had the ability to promote cell
adhesion and proliferation. In addition, the incorporation of
BG significantly promoted osteogenesis differentiation abilities.
In vivo results showed that the Ta–GelMA–BG scaffolds had
significantly enhanced the osteointegration during the early stage

FIGURE 4 | In vivo osteointegration after implantation in femurs defect for 8 weeks by H&E staining. The yellow arrows indicate the newly formed bone.
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after implantation. Thus, Ta–GelMA–BG scaffold is a promising
platform for the bone regeneration field.
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