
Static and Kinetic Friction From
Nanoscale Slip—A Multiscale
Approach Using a 2D Binary Hierarchy
of Nodes
Jeffrey L. Streator*

George W. Woodruff School of Mechanical Engineering, Georgia Institute of Technology, Atlanta, GA, United States

A local, elastic deformation model is combined with a dynamic simulation to investigate
nanoscale slip between a rigid, curved pin and an elastic slab, and its influence on static
and kinetic friction. The elastic deformation model utilizes a novel multiscale grid based on
a binary hierarchy. To maximize accuracy, bi-quadratic functions are introduced to
interpolate the stresses on the boundaries of the nodal elements. The onset of slip is
based on a maximum allowable nodal shear stress to nodal pressure ratio. A nanoscale
friction function is developed by translating the pin quasistatically across the slab. The
effect of the nanoscale friction profile on a dynamic system is investigated by integrating the
equations of motions governing the pin as it is pulled by a stage via a coupling spring. A
direct connection is found between the nanoscale slip characteristics and macroscopically
observed static and kinetic coefficients of friction.
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1 INTRODUCTION

Friction has been investigated for many years and early published work on the subject includes
that of Amontons (Amontons, 1699), and Coulomb (Coulomb, 1785). Amontons was probably
the first to formally state the laws of friction (for dry contact). The first of these states that the
friction force is proportional to the normal load, while the second asserts that the friction force is
independent of the apparent area of contact. Despite these relationships being referred to as
“laws”, it is recognized that they are only approximately held. Nevertheless, it is found for a given
material pair, that the ratio of friction force to normal load remains nearly constant over a wide
range of load, apparent contact area and sliding speed, leading to the concept of assigning a
coefficient of friction (COF) to an interface of given material type. Another important
experimental observation is that the friction force required to initiate sliding is almost
always greater than that required to sustain sliding. Therefore, one can readily identify two
distinct friction coefficients: 1) a static COF, µs, defined as the ratio of friction force to normal
load at the threshold of sliding and 2) a kinetic COF, µk, defined as the ratio of friction force to
normal load during the sliding process. The existence of two friction coefficients gives rise to the
well-known phenomenon of stick-slip motion in mechanical systems with sufficient compliance,
whereby the interface cycles between modes of sticking and slipping. Stick-slip behavior can be
detrimental to the operation of machines by inducing undesirable vibration and/or noise
(Stewart and Hunt, 1970; Kato et al., 1974; Ioannidis et al., 2002). On the other hand, stick-
slip motion may be harnessed to generate desired sounds as done, for example, by certain insects
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for communication (Haskell, 1961; Patek, 2001), and by
violinists in playing music (Helmholtz and Ellis, 1954;
Smith and Woodhouse, 2000).

From a macroscopic perspective, sliding means that the
contacting surface of one body has a velocity in the plane of
the interface that is different from that of the contacting surface of
the opposing body. Moreover, when an idealized rigid block slides
without rotation across a stationary table, the surface points of the
block have the velocity of the block while the surface points of the
table are at rest. This simple picture makes the question of sliding
clear cut: If the block is moving, there is sliding; otherwise the
opposing surface points have no relative motion and are “stuck”
together. Yet, reality is more complex. When a body can deform,
its surface points can take on velocities that are different from the
overall translational velocity of the body. In this scenario, at any
given instant, some interfacial regions may be experiencing stick
while others are experiencing slip. Additionally, since nearly all
solid surfaces possess greater than atomic scale roughness, the
actual contact between bodies occurs on some (typically small)
fraction of the apparent or nominal contact area. Thus, the sliding
process depends upon the way in which the various contact
regions engage and disengage. In this work, we are interested in
the interfacial conditions governing the onset of macroscopic
sliding as well as the behavior of the interface during the sliding
process. Specifically, we wish to demonstrate how interactions at
micro and nano scales give rise to macroscopic observations. In
doing so we hope to provide insight into the ubiquitous
phenomenon of friction.

Over the years, various papers have investigated interfacial slip
and its impact upon sliding. One early model that has been widely
cited is the Burridge-Knopoff (BK) model (Burridge and Knopoff,
1967), which was developed to better understand the behavior of
earthquakes. The BK model involves the dynamic motion of a
linear array of blocks, each of which is coupled by a leaf spring to a
horizontally translating support, as well as coupled to its two
nearest neighbors by linear springs, with each block interacting
with a stationary surface via frictional contact. The interaction of
each block with the counter surface is governed by a prescribed
friction law that includes a maximum static friction force limit as
well as a sliding-speed-dependent kinetic friction force. The
support is translated at a constant low speed and the
equations of motions are numerically integrated to provide
time histories of displacement. Initially, all blocks are held
stationary via static friction by the fixed counter surface.
(Alternatively, and equivalently, the support could be held
fixed whilst the counter surface is translated.) For each block,
the friction force required to keep it motionless increases with
increasing horizontal displacement of the support as the leaf
spring that couples it to the moving support increases its
deflection. Eventually, the required friction force reaches the
block’s static friction limit, causing the block to slip against
the counter surface. At the same time, the friction forces
experienced by both nearest-neighbor blocks are increased due
to their coupling with the slipping block. These enhanced friction
forces may induce slip in one or both neighbors, which may, in
turn, cause slip in their neighbors, and so on. The totality of slips
from the first slip until the re-establishment of the condition

whereby no blocks experience a friction force above the static
friction limit is considered an “avalanche” or an “earthquake”.
Despite its simplicity, this and similar models have enjoyed
success in capturing important experimentally-observed
phenomena, such as the Gutenberg-Richter law (Gutenberg
and Richter, 1955), which relates the energy released in an
avalanche of slips to the frequency of occurrence.

The dynamic model of BK, as well as closely-related two-
dimensional quasistatic versions (Brown et al., 1991; Olami et al.,
1992) have been used in the study of sliding friction (Persson,
1995; Braun and Röder, 2002; Braun and Peyrard, 2008; Braun
et al., 2009; Braun, 2010; De Moerlooze et al., 2010; Filippov and
Popov, 2010). In the quasistatic approach, the process starts with
each block displaced a random amount along the axis of support
motion. Each block is assigned a maximum attainable static
friction force (which may be drawn randomly from a chosen
distribution), which, when exceeded, gives rise to block slip, while
are all other blocks are held fixed. Typically, a slipping block is
then given a new position corresponding to a (temporary) total
loss of friction. The friction forces felt by all adjoining blocks are
updated in accordance with changing forces in the associated
coupling springs. The resulting friction force at each new block
(i.e., that required to keep it stuck) is assessed to see if it exceeds
the block’s static friction force limit. If no contacts have exceeded
their limits, the step is complete. If, on the other hand, at least one
block is found to exceed its force limit, then the “most offending”
block is allowed to slip and thereby reposition itself to a place of
zero friction force, while all other blocks (including the first
slipped block are held fixed). The process continues until a state is
reached whereby every block experiences a contact force that is
less than its static friction force limit. Then the support is
displaced again to initiate the next slip. One advantage of the
quasistatic approach is that it avoids the computational effort
associated with numerically integrating equations of motion.
Moreover, as detailed previously (Avlonitis et al., 2014), it is
possible to determine, at the end of each step, the precise support
displacement (or countersurface displacement) required to
initiate the next slip event.

In addition to the above formulations, there has been some
relatively recent work applying mean field theory (MFT) to
analyze the statistics of interfacial slip, which has been
supported by experimental observations (Dahmen et al., 2017;
Zhang et al., 2017; Cao et al., 2018; Zheng et al., 2020). In
particular, it has been observed that interfaces covering a wide
range of length scale show a similar behavior as it relates to
magnitude of energy release and frequency of occurrence.

The current work is motivated by the desire to improve the
model of interfacial slip by replacing the typical array of
harmonically coupled blocks with a linear-elastic slab; i.e., one
that satisfies the equations of elastostatics. Additionally, to
achieve horizontal and vertical body dimensions that are
orders of magnitude larger than the nodal spacing, the model
is comprised of a binary-hierarchy of nodes that get increasingly
coarse as one moves vertically away from the interface. To
optimize computational accuracy with such a nodal
configuration, bi-quadratic interpolating functions are
implemented to capture the local character of the
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displacement fields. This interfacial model is used to simulate the
sliding of a rigid curved body (“pin”) across an elastic slab under
conditions of controlled displacement, which is used to generate a
force-displacement curve. Here a “typical” pin-on-flat contact
geometry is considered, whereby the contact width is on the order
of microns. As will be shown, the characteristic slip distance for
such a contact is on the scale of nanometers, giving rise to rapid
fluctuations in the friction force as a function of distance. The
force-displacement curve, in turn, is used with a spring-mass-
damper system to simulate macroscopic observations of static
and kinetic friction.

2 MATHEMATICAL MODELING

2.1 Nanoscale Friction Model
2.1.1 General Considerations
Figure 1 shows the interface of interest. A rigid, curved pin indents a
linear elastic slab, which is prescribed to deform under plane-strain
conditions (i.e., there is uniformity normal to the plane of the figure).
A constant load is applied to the bottom surface of the slab, while the
pin is translated to the right under conditions of prescribed
displacement. Outside of the contact zone, the upper surface of
the slab is stress free. A restraint is used to prevent lateral
displacement of the slab, which experiences lateral forces from
frictional contact with the pin. Aside from the restraint, the sides
of the slab are stress free. Within the interface, only non-negative
pressures are allowed. Additionally, at any given point, the shear
stress is not allowed to exceed a fixed factor (µi), which is assumed to
be an intrinsic or local coefficient of friction. This assumption is
applied for convenience and in the absence of an established
fundamental relationship operating at the local level. In general,
interactions at the atomic scale are rich and varied (Dong et al., 2013;
Streator, 2019), and are determined by the details of the
intermolecular potentials within each body and across the

interface. Here we implement a condition that is based on a
popular approach to modeling local friction for a continuum
(Johnson, 1985). Now the deformation of the elastic slab is
governed by,

(λ + 2G) z
2u

zx2
+ G

z2u

zz2
+ (λ + G) z

2w

zxzz
� 0 (1)
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with the surface stresses given by
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zz

+ λ
zu

zx

(3)

where λ is the Lamme constant and G is the shear modulus.
To initiate a simulation, the equilibrium normal contact

configuration is first established. An initial guess is made for
the equilibrium interference (the geometric overlap between the
pin and the undeformed slab). For the given applied load, the
vertical position of the slab along with its contact configuration is
iterated through successive static equilibrium configurations and
the following interfacial constraints are imposed:

I. All contact pressures are non-negative
II. The ratio of shear stress to pressure within the contact zone

does not exceed µi.
III. The height of the slab surface never exceeds the height of the

pin surface at a given value of the x-coordinate.

Once the normal contact configuration is established, the
sliding simulation is initiated by prescribing the minimum

FIGURE 1 | Schematic of the interface under investigation.
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lateral displacement to initiate a triggering event, which is defined
to be the temporary violation of one of the interfacial constraints
listed above. Themost common violation is the ratio of shear stress
to pressure exceeding the prescribed intrinsic friction coefficient
(µi). In any case, the contact configurationmust be iterated through
successive provisional equilibrium configurations until each of the

interfacial constraints is satisfied, thereby establishing the
equilibrium configuration associated with the given pin
displacement. This iteration process often results in multiple
instances of slip for each displacement step of the rigid pin. Of
particular interest in the current work is the dependence of friction
force on lateral pin displacement.

FIGURE 2 | Grid structure base on a binary hierarchy. Broken lines show the control volume associate with each node.

FIGURE 3 | Interpolating points for a typical control volume (shaded).
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2.1.2 Binary Hierarchy of Nodes
Figure 2 shows an illustration of the binary, hierarchical nodal
network used in the present study. Each of the top two nodal
layers contains nx � 2N + 1 nodes, where N is an integer. (N � 4
in Figure 2). The remaining rows are populated with 2N−1 + 1,
2N−2 + 1, 2N−3 + 1 nodes, respectively, for the desired number of
rows, with three being the minimum possible number of nodes
for the bottom row of nodes. For all the simulations in the present
work we choose the maximum possible number of rows for the
chosen value of nx. The broken lines in Figure 2 indicate the
boundaries of the control volumes associated with each node. As
detailed in the next section, a force balance is applied to each
nodal control volume to develop the equations of equilibrium.
The binary structure is designed to optimize the computational
accuracy for a given level of computational effort.

2.1.3 Nodal Volume Elements and Interpolating
Functions
Consider a representative control volume, as shown in Figure 3,
whose corresponding node is in nodal row j and where (xij, zj)
denotes the location of the node. Static equilibrium dictates that
the net force in both the x- and z-directions (per unit length in the
y-direction) must vanish. Assuming that there are no external
forces applied to the nodal control volume, it means that the net
force exerted upon it due to normal and shear stresses at its four
boundaries must equal zero. To establish a force balance on the
control volume of Figure 3, we develop an approximation to the
force per unit depth acting on each of the control volume
boundaries by implementing interpolating functions that
describe the local displacement field. For the typical nodal
control volume, this formulation can be written as:

fS
x � ∫zj+Δzj

zj−1
2Δzj

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎣σx|xij+1
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2Δxj
⎤⎥⎥⎥⎥⎥⎥⎥⎥⎦dz + ∫xij+1
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where fS
x and fS

z denote the net “spring” forces in the horizontal
and vertical directions, respectively, exerted on the element in
question by the surrounding material. It is noted that these are
really forces per unit length normal to the page, but for
convenience, we will refer to them simply as “forces.” Also, in
the above equation, Δxj denotes horizontal spacing in nodal row j
while Δzj is the vertical distance between a nodal row j and nodal
row j−1. The particular set of limits of integration in Eq. 4 and Eq.
5 for integrating in x and z are valid only for those nodal control

volumes that are not adjacent to either left, right or bottom slab
boundaries and for which j ≥ 3 (different sets of integration limits
apply in other cases).

Using the expressions for stress from Eq. 3, leads to
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To approximate the value of each of the terms above, we
introduce bi-quadratic interpolation functions according to:

ϕu(x, z) ≡ γT(η)[u2(i−1),j−1αTL(ξ) + u2(i−1)+1,j−1αTM(ξ) + u2i,j−1αTR(ξ)]
+ γM(η)[ui−1,jαML(ξ) + ui,jαMM(ξ) + ui+1,jαMR(ξ)]
+ γB(η)

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣
ui

2,j
λL(ξ) + ui+2

2 ,j
λR(ξ) if i is even

ui−1
2 ,j+1αBL(ξ) + ui+1

2 ,j
αBM(ξ) + ui+3

2 ,j
αBR(ξ) if i is odd

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦ (8)

ϕw(x, z) ≡ γT(η)[w2(i−1),j−1αTL(ξ) + w2(i−1)+1,j−1αTM(ξ) + w2i,j−1αTR(ξ)]
+ γM(η)[wi−1,jαML(ξ) + wi,jαMM(ξ) + wi+1,jαMR(ξ)]
+ γB(η)

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣
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λL(ξ) + wi+2

2 ,j
λR(ξ) if i is even

wi−1
2 ,j+1αBL(ξ) + wi+1

2 ,j
αBM(ξ) + wi+3

2 ,j
αBR(ξ) if i is odd

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
(9)

where ϕu(x, z) and ϕw(x, z) represent the approximate behavior
of the functions u(x, z) and w(x, z), respectively, in the vicinity
of the node having row index j and, within that row, horizontal
index i, where the first node (starting at the left) begins with an
index value of 1 (Figure 2). Now γT(η), γM(η) and γB(η) are the
three Lagrange interpolating polynomials associated with the set
of three z-values equaling zj−1, zj and zj+1, where η ≡ z−zj−1

Δzj .
Similarly, for row indexes j−1, and j, there is a set of three
Lagrange interpolating polynomials (α′s) associated with the
three x-values nearest the (i, j) node with ξ ≡ x−xi−1,j

Δx , where xi−1,j
denotes the x coordinate of node i−1 of row j. (The subscript
nomenclature on the individual interpolating functions is such
that T, M, B denote top, middle and bottom, respectively, while
L, M, R denote left, middle and right, respectively.) For the row
index j + 1, there is either a set of two or three interpolating
polynomials, depending upon whether node i is even or odd.
The highlighted nodes (in blue) of Figure 3 show the set of nodal
points used to establish the interpolating functions for a typical
interior node with index i,j for odd i. It is clear, for even i, only

Frontiers in Materials | www.frontiersin.org January 2022 | Volume 8 | Article 6975655

Streator Friction Coefficients From Nanoscale Slip

https://www.frontiersin.org/journals/materials
www.frontiersin.org
https://www.frontiersin.org/journals/materials#articles


the two nearest nodes in the row below are used as interpolating
points. Note that ϕu(x, y) and ϕw(x, y) are formulated to take
on precisely the corresponding nodal displacement values at
each of the nodal locations.

For a typical interior node, it can be shown that the Lagrange
interpolating polynomials are given by:

γT(η) � 1
3
(η − 1)(η − 3) γM(η) � −1

2
η(η − 3) γB(η) � 1

6
η(η − 1)

αTL(ξ) � 2(ξ − 1)(ξ − 3
2
) αTM(ξ) � −4(ξ − 1

2
)(ξ − 3

2
) αTR(ξ) � 2(ξ − 1)(ξ − 1

2
) (10)

αML(ξ) � 1
2
(ξ − 1)(ξ − 2) αMM(ξ) � −ξ(ξ − 2) αMR(ξ) � 1

2
ξ(ξ − 1)

αBL(ξ) � 1
8
(ξ − 1)(ξ − 3) αBM(ξ) � −1

4
(ξ + 1)(ξ − 3) αBR(ξ) � 1

8
(ξ + 1)(ξ − 1) (i odd)

λBL(ξ) � −1
2
(ξ − 1) λBR(ξ) � 1

2
(ξ + 1) (i even)

Now, using these interpolating functions, the relationship
between “spring” forces (Eq. 6 and Eq. 7) and nodal
displacements can be determined via analytical integration,
differentiation and evaluation. For a control volume element
that is not typical, such as one situated in the second row
of nodal elements and/or one having at least one of its
boundaries coinciding with part of the slab boundary, the
approach is the same, but with modified forms for the
interpolating functions.

2.1.4 Matrix Formulation
The foregoing interpolation procedure gives rise to the following
set of matrix equations:

{fx} � [Ku]{u} + [Cuw]{w}{fz} � [Cwu]{u} + [Kw]{w} (11)

where: {fx} is the vector of all the externally applied nodal forces
in the x-direction.

{fz} is the vector of all the externally applied nodal forces in
the z-direction.

{u} is the vector of all nodal displacements in the x-direction.
{w} is the vector of all nodal displacements in the z-direction.
[Ku] is the stiffness matrix relating applied nodal forces in the

x-direction to the displacements in the x-direction.
[Cuw] is the stiffness matrix relating applied nodal forces in the

x-direction to the displacements in the z-direction.
[Kw] is the stiffness matrix relating applied nodal forces in the

z-direction to the displacements in the z-direction.
[Cwu] is the stiffness matrix relating applied nodal forces in the

z-direction to the displacements in the x-direction.
The above system of Eq. 11 contains two equations for each

node, one for each of its two degrees of freedom. A contact problem
is formulated by specifying, at each node, a value for either fx or u
and a value for either fz orw. The system of equations can then be
solved for all unknown (i.e., un-prescribed) forces and
displacements. In fact, in a manner previously described
(Avlonitis et al., 2014) the equations can be re-ordered so that
all of the equations involving prescribed displacements appear first.
Then the matrices can be partitioned accordingly, so that the
solutions for the unknown forces and unknown displacementsmay
be written explicitly in terms of matrix operations.

2.2 Dynamic Simulation
2.2.1 Governing Equation
In many practical situations, one body is sliding over another
while being driving by a spring (i.e., via a connection with a
finite stiffness). Suppose, as illustrated in Figure 4, that the
pin of Figure 1 is being driven horizontally by a stage that
couples to the pin via a spring of stiffness, k, and that the
system experiences linear viscous damping with damping
coefficient c. Thus, the spring and damper exert the driving
force on the pin, which has mass m and experiences a
displacement xp relative to the origin. The macroscopic
concept of static friction says that the pin will be “stuck” to
the counter surface until there is sufficient driving force to
initiate sliding of the pin across the surface. Now suppose the
stage displacement is given by xS � Vot and the pin starts at
rest at x � 0 at t � 0. The governing equation for the pin
position is given as

m €xp � k(Vot − xp) + c(Vo − _xp) − F(t) (12)

where the time varying friction force F(t) is based on the results of
the simulation of nanoscale friction from the first part of the
mathematical modelling (Section 2.1), the details of which are
described in the next section.

It is well known (Thomson, 1972) that a one degree-of-
freedom spring-mass-damper system can be categorized as
underdamped, critically damped, or overdamped depending
on the damping ratio, ζ , which is given as ζ � c/(2mωn) where
ωn is the (undamped) natural frequency and is equal to

����
k/m

√
.

In this paper we consider an underdamped system, which
means that the damping ratio is less than unity.

2.2.2 Friction Force Determination
Whereas, during the quasistatic nanoscale simulation, the pin
translates in a single direction, there is, within the dynamic
simulation, the freedom for the pin to assume negative
velocities. Thus, the friction force is not a true function of
position. Rather, because of slip, there is hysteresis. In fact, one
expects the behavior to be similar to what happens to a
specimen in a simple tension test (Dowling, 1993). In the
simplest case, the stress grows in proportion to the strain
and then a stress plateau is reached. During unloading the
stress immediately decreases below the value of the stress
plateau. Hence, there will be more than one value of strain

FIGURE 4 | Configuration of system considered in dynamic simulation.
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corresponding to a particular value of stress, depending
upon whether the point is part of the loading curve or the
unloading curve. In anticipation of such hysteresis, we
construct the nanoscale friction force function in the
following manner:

F(t) � ⎧⎨⎩ min(K(x(t) − xR), ~F(x(t))) x>xR

−min(K(|x(t) − xR|), ~F(x(t))) x<xR

(13)

where K is the lateral surface stiffness (which may be
determined from the stiffness matrices in Eq. 11, or through
analysis of the force response in the absence of slip), xR is the
“relaxation point,” which is defined as the lateral position of the
pin corresponding to zero friction force being exerted by the
elastic slab, ~F(x) is the friction force profile arising from the
nanoscale friction simulation. Note that xR changes whenever
there is a slip event and is analogous to the change in
permanent strain whenever there is plastic deformation in a
simple tension test. Therefore, we can define the relaxation
point according to:

xR � x(t) − F(t)/K (14)

While the connection between Eq. 13 and Eq. 14, appears to
be circular, the proper interpretation is as follows: xR starts out
with a particular value, which is used in Eq. 13. So long as the
first argument to the “min” function is less than or equal to
~F(x(t)), the RHS of Eq. 14 yields F(t) � K(x(t) − xR) and the
use of this result in Eq. 14 assigns xR � xR. Hence, in this case,
there is no change in the value of the relaxation point. On the
other hand, as soon as K(x(t) − xR) exceeds ~F(x(t)) at a
particular time step, we get from Eq. 13 that F(t) � ~F(x(t))
so that Eq. 14 leads to xR � x(t) − ~F(x(t))/K. Therefore, the
relaxation point changes. Now the surface stiffness, K, may be
expressed as,

K � d~F(δp)
dδp

(15)

where the derivative is evaluated by considering, in the nanoscale
simulation, changes in friction force during sufficiently small
displacements that no slip occurs.

It is of interest to incorporate the nanoscale friction results,
which involve total pin translation distances that are hundreds of
nanometers, into dynamic simulations that involve sliding
distances that are several orders of magnitude larger. To do
this, we make the assumption of spatial periodicity in the
“steady-state” portion of the nanoscale friction function ~F(x),
with the spatial period being about the size of the sliding distance
used for the nanoscale simulation, its particular value dependent
on the form of ~F(x).

2.2.3 Numerical Integration
The motion of the pin as well as the friction and spring forces are
determined from numerical integration of Eq. 12. For this
purpose, we employ the well-known fourth order Runge-Kutta
integration scheme. The pin is assumed to be initially at rest x � 0
at t � 0.

3 RESULTS AND DISCUSSION

Simulations were performed to obtain nanoscale force vs
displacement curves (Figure 1) and to investigate the static
and kinetic friction behavior of the interface when the pin is
driven dynamically by way of a constant-velocity stage and
coupling spring (Figure 4).

3.1 Model Validation
To investigate the computation accuracy of the numerical
approach, we simulated the normal contact of a rigid flat
punch. Figure 5 shows the comparison between the analytical
solution for the pressure distribution, given by p(x) �
po/

���������
1 − (x/a)2

√
(Johnson, 1985) within the contact zone, and

that from the current work for the case of nx � 129 (i.e., 129 nodal
points along the slab surface). For the numerical simulation, the
bottom surface of the test slab was prescribed to be fixed in its
vertical position and to exert no friction, while the contact points
in the interface (within radius a) were prescribed to have uniform
downward displacement and also be frictionless. As observed,
there is excellent agreement between the numerical solution and
the exact result.

3.2 Friction Force vs
Displacement—Nanoscale Friction
3.2.1 Friction Force Profile
Figure 6 shows the friction force, F, normalized by the
compressive load W, vs dimensionless pin displacement for
two values of intrinsic static friction coefficient (µi). For this
simulation, we used nx � 129, a slab aspect ratio (Lz/Lx) equal to
unity and a normalized pin radius R/Lx equal to 200. For µi �0.5,
it is observed that the friction increases nearly linearly with
increasing pin displacement for the first portion of the force
record until reaching a value of around 0.28, after which the
friction hovers “noisily” about this value for increasing pin
displacement. Qualitatively similar results occur for the lower
value of µi but with a lower “steady-state” value and a thinner
band of variation within the steady-state region. As observed in
Figure 6, the mean values of the plateaus in F/W are about 56%
of their respective values of the intrinsic static friction
coefficient.

Each of the friction records in Figure 6 corresponds to
2000 “events”, an event corresponding to the minimum pin
displacement that triggers one of three occurrences: 1) a node
is forced to be released (i.e., remaining in contact would violate
pressure non-negativity at that node) 2) a node is slipped
(i.e., remaining stuck would violate τ ≤ μip), or 3) a node must
be moved from non-contact to contact (i.e., remaining at zero
pressure would violate non-interpenetration). It should be noted
that the overwhelming majority of events are slips. For example,
in the case of µi �0.5, 1,952 of the 2,000 events were associated
with nodal slip, while 44 were associated with nodal release, with
the remaining four corresponding to nodes coming into contact.
It is also noted that it was necessary to define a lower bound for
the minimum pin displacement to avoid getting trapped in a
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never-ending loop of ever diminishing pin displacements. For the
results shown in the present work, the threshold for recognizing
an event was a pin displacement equal to the minimumhorizontal
grid spacing [i.e., Lx/(nx −1)] divided by 106.

3.2.2 Nanoscale Pin Displacement
It should be noted, that for a given choice of Poisson’s ratio (we
have selected a value of 1/3), the ratio of friction force to normal
load (F/W) is independent of the elastic modulus. Moreover, as

FIGURE 5 | Comparison of the shape of the pressure distribution for current model with that of the exact solution p(x) � po/
���������
1 − (x/a)2

√
for a rigid flat punch

indenting a half-space. (Infinite values in the exact solution at |x| � a are omitted.)

FIGURE 6 | Normalized, nanometer-scale friction force (friction force over normal force) as a function of dimensionless horizontal pin displacement.
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can be demonstrated from dimensional analysis, for a given value
of Poisson’s ratio and choice of µi, the relationship between F/W
and δp/Lx depends only the slab aspect ratio Lz/Lx, the normalized
pin radius R/Lx and the number of nodes applied to the top
surface of the slab. Therefore, to interpret the results of Figure 6
as corresponding to the nanoscale we must first define
appropriate lateral dimensions for the slab. In this vein, we
choose Lx � Lz � 1 mm, so that the total pin displacements of
Figure 6 become about 0.9 and 1.3 µm for µi � 0.5 and µi � 0.25,
respectively. Considering that each force record corresponds to
2000 incremental displacements of the pin, we see that the
average plate displacement per triggering event would be
smaller than 1 nm. Along these lines, Figure 7 shows the
dimensionless pin displacement for each event as well as the
cumulative pin displacement for the case of µi � 0.5. As observed,
a square slab with a side length of 1 mm gives rise to many sub-
nanometer pin displacements that induce slip.

3.2.3 Effect of Grid Resolution
Figure 8 shows how the mean dimensionless pin displacement
varies with increasing the number of nodes comprising the
contacting surface of the slab. Here we show results for two
values of pin radius. It is observed that increasing the number
of nodes results in an overall power law trend of reducing mean
plate displacement per triggering event. Based on these results, it
seems plausible that, in the limit of infinite resolution (i.e., the
continuum limit), the average slip distance will be zero, suggesting
that the interface will slide smoothly at a single kinetic force value.
However, this mathematical result is unlikely to match reality,
owing to the physical length scale associated with atomic lattice
positions. That is, two opposing surface regions are “stuck”

together when there is a significant energy barrier to relative
lateral motion. Such an energy barrier arises from the atoms of
one surface interacting with the electrostatic field of the other. Such
a field almost invariably has spatial fluctuations in force that
correspond to characteristic lattice dimensions (Binnig, 1987;
Mate et al., 1987; Mate et al., 1988; Meyer et al., 1988; Kaneko,
1989; Singer, 1994; Harrison et al., 1995; Krim, 1996; Sorensen
et al., 1996; Zhang and Tanaka, 1997; Bennewitz et al., 1999;
Bennewitz et al., 2001; Streator, 2019). Therefore, it may not be
meaningful to increase the grid resolution beyond that which
induces average slip distances below around 0.5 nm.

3.3 Macroscopic Static and Kinetic Friction
We now simulate the sliding process, by integrating Eq. 12
subject to the rules expressed by Eq. 13 and Eq. 14. Recall
that, whereas the nanoscale friction function ~F(x(t)) is
obtained over a short distance (e.g., ∼1 µm), we impose
periodicity on the steady-state portion of the friction record,
with a spatial period equal to the length of this portion. This
extension of the nanoscale force response enables much larger
sliding distances to be studied. For this dynamic simulation, the
following parameter values are used (see Figure 4):

• spring stiffness, k � 200 kN/m
• damping ratio, ζ � 0.1
• stage velocity, Vo � 2 mm/s
• pin mass, m � 0.5 kg
• integration time step, Δt � 100 ns

To convert the normalized results for the nanoscale friction
into physical quantities, the following parameters were assigned:

FIGURE 7 | Incremental and cumulative pin displacement as a function of event number. An event is defined as a slip, release or re-establishment of contact at a node.

Frontiers in Materials | www.frontiersin.org January 2022 | Volume 8 | Article 6975659

Streator Friction Coefficients From Nanoscale Slip

https://www.frontiersin.org/journals/materials
www.frontiersin.org
https://www.frontiersin.org/journals/materials#articles


• width of slab (Lx) � 1 mm
• vertical thickness of slab (Lz) � 1 mm
• depth of slab (Ly) � 1 cm
• intrinsic coefficient of friction (µi) � 0.25, or 0.5
• radius of curvature of pin tip (R) � 50 cm or 200 cm
• normal load (W) � 100 N
• elastic constants for slab: G � 10 GPa, ] � 1/3

Figure 9 shows how the spring force varies over time when the
system of Figure 4 experiences the force profile defined by extensions
of the nanoscale force records of Figure 6. The spring force is of
particular interest because that is the usual quantity from which the
static and kinetic coefficients of friction are determined experimentally.
Precisely speaking, the static friction forcemust balance the sum of the
spring force and the force of the damper. In many practical situations

FIGURE 8 | Scaling of average pin displacement per event step as a function of the grid resolution.

FIGURE 9 | Force in coupling spring as a function of time while pin is being driven by a stage that translates at a constant velocity of 2 mm/s, for two
different intrinsic static coefficients of friction. In each case pin experiences a position-dependent friction force defined by the nanometer-scale friction function
per Figure 6.
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the contribution from damping can be ignored in determining the
static coefficient of friction. For the chosen parameters of the
spring-mass-damper system and with an intrinsic friction coefficient
of 0.5, the damping force exerted on a stationary pin is given
by Fdamping � cVo � (2ζ ���

mk
√ )Vo � 2(0.1)

���������������
(0.5kg)(2 × 105Nm)

√
(.002 m

s ) � 0.13N,

which is less than 1% of the peak spring force. As observed, for
both values of intrinsic coefficient of static friction, the spring
force grows linearly until giving way to a damped sinusoidal
variation. In the case of µi � 0.5, the pin exhibits two clear stick
phases, whereas, for µi � 0.25, only one stick phase is observed.
Also displayed in Figure 9 are the results of an analytical model
arising from a closed form solution of Eq. 12, using a single

kinetic coefficient of friction throughout (µk � 0.267), along with
two static coefficients of friction (µs � 0.282 for t ≤ 89 ms and µs
� 0.272 for t > 89 ms). The spring force calculated from this
model is found to agree remarkably well with the results of the
more extensive numerical solution, which incorporates the
nanoscale friction force profile. The particular set of friction
coefficient values was chosen to provide the best match with the
numerical solution. For clarity, the analytical result for the
spring-mass-damper system is now presented. During a stick
phase, we have,

xp(t) � xstick ≡ xp(tstick)

FIGURE 10 | Motion of the pin during dynamic simulation.

FIGURE 11 | Instantaneous friction force experienced by the pin as it is being driven the by stage for the case of µi � 0.5.
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Vp(t) � 0 (16)

Fspring � k(Vot − xstick)
while during a slip we get,

xp(t) � Vot − μkW

k
+ exp[ − ζωn(t − tslip)]{[μkWk + xstick

− Votslip][cosωd(t − tslip) + ζ
ωn

ωd
sinωd(t − tslip)]

− Vo

ωd
sinωd(t − tslip)}

Vp(t) � Vo + exp[ − ζωn(t − tslip)]{ − Vo cosωd(t − tslip)
+ (Votslip − xstick − μkW

k
) ωd

1 − ζ2
sinωd(t − tslip)}

(17)

Fspring � μkW − exp[ − ζωn(t − tslip)]{[μkW + k(xstick − Votslip)]
×[cosωd(t − tslip) + ζ

ωn

ωd
sinωd(t − tslip)]

− kVo

ωd
sinωd(t − tslip)}

where ωn is the undamped natural frequency, ωd is the damped

natural frequency (� ωn

�����
1 − ζ2

√
), tslip is the time of slip onset from

themost recent stick phase, and xstick is the (constant) position of the
pin during the most recent stick phase. Since, during stick, the
friction force reacts to the driving force to prevent pin motion, slip
onset occurs when the friction force reaches its limit:

μsW � k(Votslip − xstick) + cVo (18)

tslip � μsW

kVo
− c

k
+ xstick

Vo
(19)

Finally, re-sticking from a slip phase occurs if and when the
pin speed vanishes.

Figure 10 shows some details of the motion for the case of µi �
0.5. For the first 70ms or so of stagemotion, the pin remains stuck to
the slab, as evidenced by the essentially zero pin displacement. The
pin velocity, on the other hand reveals that there is some activity even
from the very beginning, as low-amplitude, high-frequency
fluctuations are observed. Then, at the point of macroscopic slip
(≈70ms), there is a sudden increase in the velocity of the pin. The
velocity record reveals that there are actually two re-sticks (as
opposed to the apparent single re-stick shown by the record of
spring force). Ultimately the pin speed tends toward a value of
2 mm/s which is the value of the stage velocity. Also displayed in
Figure 10 are the analytical curves based onEq. 16. Both pin velocity
and pin displacement show strong agreement with the extensive
numerical simulation.

Additional insight as to the interplay between nanoscale effects
and macroscale observations can be gained from Figure 11, which
shows the actual (instantaneous) friction force exerted on the pin. At
the beginning of the process, there are fluctuations in the force due to
elastic vibrations of the slab as the slab responds to sudden lateral

loading on the pin (i.e., the stage motion begins impulsively). These
oscillations largely die out after 15 ms or so. For the remaining
macroscopic stick phase, which extends until about 70 ms, there are
intermittent, small-amplitude “bursts” of friction force oscillation.
Each of these bursts is triggered by a sudden (but small) drop in the
instantaneous friction force, which arises from local, nanoscale slip
in the interface. The sudden drop in friction force causes the pin to
translate forward, inducing a vibratory response of the slab. At low
lateral loads, pin sliding is quickly arrested as the interface can exert
an overall increasing friction force as the pin traverses the slab.
Ultimately, a nanoslip occurs at a sufficiently high force level that the
overall trend of the friction is flat with respect to relative
displacement. At this point, the pin experiences macroscopic slip.
As seen in Figure 11, the slip phase is characterized by high-
frequency fluctuations in the friction force. This result is to be
expected because, as demonstrated in Figure 6, significant variations
in friction can occur over sub-nanometer length scales. Therefore,
sliding speeds of a few mm/s mean that nanometer length scales are
traversed in microseconds.

The results depicted in Figures 9–11 provide a simple,
plausible explanation for the ubiquitous existence of static and
kinetic friction coefficients, the latter generally being smaller than
the former: The static coefficient of friction corresponds to a
major peak in the nanoscale friction force profile, while the
kinetic coefficient of friction corresponds to the average
nanoscale friction force during its steady-state phase.

4 CONCLUSION

A two-part numerical simulation was performed to
investigate the sliding behavior of a rigid, curved pin
against a stationary elastic slab, which experienced plane
strain deformation. For the nanoscale friction model, a
multi-scale grid based on a binary hierarchy was
implemented on the elastic slab to account for its
deformation. Bi-quadratic interpolating functions were
used to determine the four stiffness matrices relating
deformation to force. The pin was given a prescribed position,
which was changed incrementally in accordance with the
minimum displacement needed to cause either a nodal slip, a
nodal release, or a new nodal contact. Slip was imposed at a
node whenever the nodal shear stress would otherwise be greater
than the product of an assumed intrinsic static coefficient of friction
and the nodal pressure. Nodal release was imposed whenever a node
would otherwise develop a negative pressure and new nodal contact
was established whenever a node would otherwise penetrate the pin.
A nanoscale friction function was developed by computing the
equilibrium friction force as a function of pin displacement.

In the second part of the simulation, the pin was coupled via a
spring to a stage that moved at a constant velocity, and a dynamic
simulation of the pin motion was conducted. The instantaneous
friction force was determined by the nanoscale friction force vs
displacement function. Key findings of the study are that:

1) The stick phase of classic stick-slip behavior is characterized
by many micro-slips of short duration.
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2) Sliding is characterized by high frequency fluctuations in
instantaneous friction force.

3) Both the macroscopic static and kinetic coefficients of friction
are much less than the intrinsic static friction coefficient.

4) The static coefficient of friction is associated with a major peak
of the nanoscale friction function.

5) The kinetic coefficient of friction is associated with the
average of the steady-state phase of the nanoscale friction
function.

DATA AVAILABILITY STATEMENT

The raw data supporting the conclusion of this article will be
made available by the authors, without undue reservation.

AUTHOR CONTRIBUTIONS

JS is the sole author.

REFERENCES

Amontons, G. (1699). On the Resistance Orignating in Machines. Mem. Acad.
Roy., 206–227.

Avlonitis, M., Kalaitzidou, K., and Streator, J. (2014). Investigation of Friction
Statistics and Real Contact Area by Means of a Modified OFCModel. Tribology
Int. 69, 168–175. doi:10.1016/j.triboint.2013.07.018

Bennewitz, R., Gyalog, T., Guggisberg, M., Bammerlin, M., Meyer, E., and
Güntherodt, H.-J. (1999). Atomic-scale Stick-Slip Processes on Cu(111).
Phys. Rev. B 60 (16), R11301–R11304. doi:10.1103/physrevb.60.r11301

Bennewitz, R., Meyer, E., Bammerlin, M., Gyalog, T., and Gnecco, E. (2001).
“Atomic-scale Stick Slip,” in Fundamentals of Tribology and Bridging the Gap
between the Macro-and Micro/Nanoscales. Editor B. Bhushan (Dordrecht:
Springer), 10, 53–66. doi:10.1007/978-94-010-0736-8_4

Binnig, G. K. (1987). Atomic-Force Microscopy. Phys. Scr. T19a, 53–54.
doi:10.1088/0031-8949/1987/t19a/008

Braun, O. M., Barel, I., and Urbakh, M. (2009). Dynamics of Transition from Static
to Kinetic Friction. Phys. Rev. Lett. 103 (19), 194301. doi:10.1103/
PhysRevLett.103.194301

Braun, O. M., and Peyrard, M. (2008). Modeling Friction on a Mesoscale: Master
Equation for the Earthquakelike Model. Phys. Rev. Lett. 100 (12), 125501.
doi:10.1103/PhysRevLett.100.125501

Braun, O. M., and Röder, J. (2002). Transition from Stick-Slip to Smooth Sliding:
An Earthquakelike Model. Phys. Rev. Lett. 88 (9), 096102. doi:10.1103/
PhysRevLett.88.096102

Braun, O. M. (2010). Bridging the Gap between the Atomic-Scale andMacroscopic
Modeling of Friction. Tribol Lett. 39 (3), 283–293. doi:10.1007/s11249-010-
9648-7

Brown, S. R., Scholz, C. H., and Rundle, J. B. (1991). A Simplified Spring-Block
Model of Earthquakes. Geophys. Res. Lett. 18 (2), 215–218. doi:10.1029/
91gl00210

Burridge, R., and Knopoff, L. (1967). Model and Theoretical Seismicity.
Bull. Seismological Soc. America 57 (3), 341–371. doi:10.1785/
bssa0570030341

Cao, P., Dahmen, K. A., Kushima, A., Wright, W. J., Park, H. S., Short, M. P., et al.
(2018). Nanomechanics of Slip Avalanches in Amorphous Plasticity. J. Mech.
Phys. Sol. 114, 158–171. doi:10.1016/j.jmps.2018.02.012

Coulomb, C. A. (1785). The Theory of Simple Machines. Mem. Math. Phys. Acad.
Sci. 10, 161–331.

Dahmen, K. A. (2017). “Mean Field Theory of Slip Statistics,” in Avalanches in
Functional Materials and Geophysics. Editors E. Salje, A. Saxena, and A. Planes
(Cham: Springer), 19–30. doi:10.1007/978-3-319-45612-6_2

De Moerlooze, K., Al-Bender, F., and Van Brussel, H. (2010). A Generalised
Asperity-Based Friction Model. Tribol Lett. 40 (1), 113–130. doi:10.1007/
s11249-010-9645-x

Dong, Y. L., Li, Q. Y., and Martini, A. (2013). Molecular Dynamics Simulation of
Atomic Friction: A Review and Guide. J. Vacuum Sci. Technol. A 31 (3), 030801.
doi:10.1116/1.4794357

Dowling, N. E. (1993).Mechanical Behavior of Materials : Engineering Methods for
Deformation, Fracture, and Fatigue. Englewood Cliffs, N.J.: Prentice-Hall,
xxiv, 773.

Filippov, A. E., and Popov, V. L. (2010). Modified Burridge-Knopoff Model with
State Dependent Friction. Tribology Int. 43 (8), 1392–1399. doi:10.1016/
j.triboint.2010.01.010

Gutenberg, B., and Richter, C. F. (1955). Magnitude and Energy of Earthquakes.
Nature 176 (4486), 795. doi:10.1038/176795a0

Harrison, J. A., White, C. T., Colton, R. J., and Brenner, D. W. (1995). Investigation
of the Atomic-Scale Friction and Energy Dissipation in diamond Using
Molecular Dynamics. Thin Solid Films 260 (2), 205–211. doi:10.1016/0040-
6090(94)06511-x

Haskell, P. T. (1961). “Insect Sounds,” in Aspects of Zoology Series (Chicago:
Quadrangle Books), viii, 189.

Helmholtz, H. V., and Ellis, A. J. (1954). On the Sensations of Tone as a
Physiological Basis for the Theory of Music. 2d English ed. New York: Dover
Publications, xix, 576.

Ioannidis, P., Brooks, P. C., Barton, D. C., and Nishiwaki, M. (2002). “Brake System
Noise and Vibration - A Review,” in Braking 2002: From the Driver to the Road
(Leeds, United Kingdom: Transportation Research Laboratory), 53–73.

Johnson, K. L. (1985). Contact Mechanics. Cambridge Cambridgeshire; New York:
Cambridge University Press, xi, 452.

Kaneko, R. (1989). Scanning TunnelingMicroscopy and Atomic Force Microscopy
- Approach to Micro-Tribology. J. Jpn. Soc. Tribologists 34 (1), 19–22.

Kato, S., Yamaguch, K., and Matsubay, T. (1974). Stick-Slip Motion of Machine-
Tool Slideway. Mech. Eng. 96 (1), 56. doi:10.1115/1.3438365

Krim, J. (1996). Atomic-scale Origins of Friction. Langmuir 12 (19), 4564–4566.
doi:10.1021/la950898j

Mate, C. M., Erlandsson, R., McClelland, G. M., and Chiang, S. (1988). Summary
Abstract: Atomic Force Microscopy Studies of Frictional Forces and of Force
Effects in Scanning Tunneling Microscopy. J. Vacuum Sci. Technol. A: Vacuum,
Surf. Films 6 (3), 575–576. doi:10.1116/1.575167

Mate, C. M., McClelland, G. M., Erlandsson, R., and Chiang, S. (1987). Atomic-
Scale Friction of a Tungsten Tip on a Graphite Surface. Phys. Rev. Lett. 59 (17),
1942–1945. doi:10.1103/physrevlett.59.1942

Meyer, E., et al. (1988). Applications of the Atomic Force Microscope. Helvetica
Physica Acta 61 (1-2), 179.

Olami, Z., Feder, H. J. S., and Christensen, K. (1992). Self-organized
Criticality in a Continuous, Nonconservative Cellular Automaton
Modeling Earthquakes. Phys. Rev. Lett. 68 (8), 1244–1247. doi:10.1103/
physrevlett.68.1244

Patek, S. N. (2001). Spiny Lobsters Stick and Slip to Make Sound. Nature 411
(6834), 153–154. doi:10.1038/35075656

Persson, B. N. J. (1995). Theory of Friction: Stress Domains, Relaxation, and Creep.
Phys. Rev. B 51 (19), 13568–13585. doi:10.1103/physrevb.51.13568

Singer, I. L. (1994). Friction and Energy Dissipation at the Atomic Scale: A Review.
J. Vacuum Sci. Technol. A: Vacuum, Surf. Films 12 (5), 2605–2616. doi:10.1116/
1.579079

Smith, J., and Woodhouse, J. (2000). The Tribology of Rosin. J. Mech. Phys. Sol. 48
(8), 1633–1681. doi:10.1016/s0022-5096(99)00067-8

Sorensen, M. R., Jacobsen, K. W., and Stoltze, P. (1996). Simulations of Atomic-
Scale Sliding Friction. Phys. Rev. B Condens Matter 53 (4), 2101–2113.
doi:10.1103/physrevb.53.2101

Stewart, D. G., and Hunt, J. B. (1970). Relaxation Oscillations in a Machine Tool
Slideway. Ind. Lubrication Tribology 22 (8), 208.

Streator, J. L. (2019). Nanoscale Friction: Phonon Contributions for Single and
Multiple Contacts. Front. Mech. Eng. 5, 23. doi:10.3389/fmech.2019.00023

Thomson, W. T. (1972). Theory of Vibration with Applications. Englewood Cliffs,
N.J.: Prentice-Hall, x, 467.

Zhang, D., Dahmen, K. A., and Ostoja-Starzewski, M. (2017). Scaling of Slip
Avalanches in Sheared Amorphous Materials Based on Large-Scale

Frontiers in Materials | www.frontiersin.org January 2022 | Volume 8 | Article 69756513

Streator Friction Coefficients From Nanoscale Slip

https://doi.org/10.1016/j.triboint.2013.07.018
https://doi.org/10.1103/physrevb.60.r11301
https://doi.org/10.1007/978-94-010-0736-8_4
https://doi.org/10.1088/0031-8949/1987/t19a/008
https://doi.org/10.1103/PhysRevLett.103.194301
https://doi.org/10.1103/PhysRevLett.103.194301
https://doi.org/10.1103/PhysRevLett.100.125501
https://doi.org/10.1103/PhysRevLett.88.096102
https://doi.org/10.1103/PhysRevLett.88.096102
https://doi.org/10.1007/s11249-010-9648-7
https://doi.org/10.1007/s11249-010-9648-7
https://doi.org/10.1029/91gl00210
https://doi.org/10.1029/91gl00210
https://doi.org/10.1785/bssa0570030341
https://doi.org/10.1785/bssa0570030341
https://doi.org/10.1016/j.jmps.2018.02.012
https://doi.org/10.1007/978-3-319-45612-6_2
https://doi.org/10.1007/s11249-010-9645-x
https://doi.org/10.1007/s11249-010-9645-x
https://doi.org/10.1116/1.4794357
https://doi.org/10.1016/j.triboint.2010.01.010
https://doi.org/10.1016/j.triboint.2010.01.010
https://doi.org/10.1038/176795a0
https://doi.org/10.1016/0040-6090(94)06511-x
https://doi.org/10.1016/0040-6090(94)06511-x
https://doi.org/10.1115/1.3438365
https://doi.org/10.1021/la950898j
https://doi.org/10.1116/1.575167
https://doi.org/10.1103/physrevlett.59.1942
https://doi.org/10.1103/physrevlett.68.1244
https://doi.org/10.1103/physrevlett.68.1244
https://doi.org/10.1038/35075656
https://doi.org/10.1103/physrevb.51.13568
https://doi.org/10.1116/1.579079
https://doi.org/10.1116/1.579079
https://doi.org/10.1016/s0022-5096(99)00067-8
https://doi.org/10.1103/physrevb.53.2101
https://doi.org/10.3389/fmech.2019.00023
https://www.frontiersin.org/journals/materials
www.frontiersin.org
https://www.frontiersin.org/journals/materials#articles


Atomistic Simulations. Phys. Rev. E 95 (3), 032902. doi:10.1103/
PhysRevE.95.032902

Zhang, L., and Tanaka, H. (1997). Towards a Deeper Understanding of Wear and
Friction on the Atomic Scale-A Molecular Dynamics Analysis. Wear 211 (1),
44–53. doi:10.1016/s0043-1648(97)00073-2

Zheng, S., Urueña, J. M., Dunn, A. C., Uhl, J. T., and Dahmen, K. A. (2020).
Similarity of Internal and External Friction: Soft Matter Frictional Instabilities
Obey Mean Field Dissipation through Slip Avalanches. Phys. Rev. Res. 2 (4),
042016. doi:10.1103/physrevresearch.2.042016

Conflict of Interest: The author declares that the research was conducted in the
absence of any commercial or financial relationships that could be construed as a
potential conflict of interest.

Publisher’s Note: All claims expressed in this article are solely those of the authors
and do not necessarily represent those of their affiliated organizations, or those of
the publisher, the editors and the reviewers. Any product that may be evaluated in
this article, or claim that may be made by its manufacturer, is not guaranteed or
endorsed by the publisher.

Copyright © 2022 Streator. This is an open-access article distributed under the
terms of the Creative Commons Attribution License (CC BY). The use,
distribution or reproduction in other forums is permitted, provided the
original author(s) and the copyright owner(s) are credited and that the
original publication in this journal is cited, in accordance with accepted
academic practice. No use, distribution or reproduction is permitted which
does not comply with these terms.

Frontiers in Materials | www.frontiersin.org January 2022 | Volume 8 | Article 69756514

Streator Friction Coefficients From Nanoscale Slip

https://doi.org/10.1103/PhysRevE.95.032902
https://doi.org/10.1103/PhysRevE.95.032902
https://doi.org/10.1016/s0043-1648(97)00073-2
https://doi.org/10.1103/physrevresearch.2.042016
https://creativecommons.org/licenses/by/4.0/
https://www.frontiersin.org/journals/materials
www.frontiersin.org
https://www.frontiersin.org/journals/materials#articles

	Static and Kinetic Friction From Nanoscale Slip—A Multiscale Approach Using a 2D Binary Hierarchy of Nodes
	1 Introduction
	2 Mathematical Modeling
	2.1 Nanoscale Friction Model
	2.1.1 General Considerations
	2.1.2 Binary Hierarchy of Nodes
	2.1.3 Nodal Volume Elements and Interpolating Functions
	2.1.4 Matrix Formulation

	2.2 Dynamic Simulation
	2.2.1 Governing Equation
	2.2.2 Friction Force Determination
	2.2.3 Numerical Integration


	3 Results and Discussion
	3.1 Model Validation
	3.2 Friction Force vs Displacement—Nanoscale Friction
	3.2.1 Friction Force Profile
	3.2.2 Nanoscale Pin Displacement
	3.2.3 Effect of Grid Resolution

	3.3 Macroscopic Static and Kinetic Friction

	4 Conclusion
	Data Availability Statement
	Author Contributions
	References


