AUTHOR=Marmiroli Benedetta , Sartori Barbara , Kyvik Adriana R. , Ratera Imma , Amenitsch Heinz TITLE=Structural Study of the Hydration of Lipid Membranes Upon Interaction With Mesoporous Supports Prepared by Standard Methods and/or X‐Ray Irradiation JOURNAL=Frontiers in Materials VOLUME=8 YEAR=2021 URL=https://www.frontiersin.org/journals/materials/articles/10.3389/fmats.2021.686353 DOI=10.3389/fmats.2021.686353 ISSN=2296-8016 ABSTRACT=
Mesoporous materials feature ordered tailored structures with uniform pore sizes and highly accessible surface areas, making them an ideal host for functional organic molecules or nanoparticles for analytical and sensing applications. Moreover, as their porosity could be employed to deliver fluids, they could be suitable materials for nanofluidic devices. As a first step in this direction, we present a study of the hydration of 1-palmitoyl-2-oleoyl-sn-glycero-3-phosphocholine (POPC) model lipid membranes on solid mesoporous support. POPC was selected as it changes the structure upon hydration at room temperature. Mesoporous films were prepared using two different templating agents, Pluronic P123 (PEO–PPO–PEO triblock copolymer where PEO is polyethylene oxide and PPO is polypropylene oxide) and Brij 58 (C16H33(EO)20OH where EO is ethylene oxide), both following the conventional route and by X-ray irradiation via deep X-ray lithography technique and subsequent development. The same samples were additionally functionalized with a self-assembly monolayer (SAM) of (3-aminopropyl)triethoxysilane. For every film, the contact angle was measured. A time resolved structural study was conducted using