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Identifying and quantifying the biological concentrations of certain biomolecules such as
dopamine, glucose, tyrosine, and cholesterol, etc. has become the basis for medical
diagnosis in the treatment of a number of related diseases. In most cases, the
concentrations of these biomolecules in biofluids like blood acts as a biomarker and
becomes crucial in the treatment of diseases. On the other hand, advanced ceramics
refers to oxides (alumina, zirconia), non-oxides: (carbides, borides, nitrides, silicides),
Composites (particulate reinforced combinations of oxides and non-oxides), etc. This
review article discusses recent developments in the field of electrochemical sensors
developed using metal and metal oxide based advanced ceramics with an emphasis
on developments in the field over the past five years. The article presents the key results,
important findings, and interesting chemistry of biosensing advanced ceramic based
electrochemical biosensors for some important biomolecules such as acetaminophen,
glucose, and dopamine, etc.

Keywords: advanced ceramics, electrochemical biosensors, cyclic voltammetry, chronoamperometry,
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INTRODUCTION

The development of electrochemical sensors for chemical and biological sensing has made
remarkable advantages in recent years with various applications (Worsfold, 1995). The
electrochemical detection mechanism has played a vital role in medical applications such as
disease diagnosis. Due to the highly sensitive and selective nature of electrochemical sensors, the
real-time analysis of various analytes is possible with the help of portable and simple operated design
equipment (Veloso et al., 2012).

Sensors detect a given input signal and convert it into different combinations of output readings.
These sensors are typically operated with specified analytes and certain sample types with other
environmental conditions (Worsfold, 1995) Electrochemical sensors have been widely used in
various applications, for example in the quality control of industrial products, human health activity
monitoring, predicting emissions, medical diagnostics, home safety alarms, and many other
applications. The design of electrochemical sensors is based on the parametric nature of sensor
devices. Typically, the parameters are electronic, either current, voltage, or reactance change affected
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by varying analyte configuration. Electrochemical sensors can be
extensively used for any form of solid, liquid, and gaseous
analytes. The information captured from electrochemical
sensors which are generally due to an interaction between
analyte and electrode elements is converted into a qualitative
or quantitative electrical signal (Vinay et al., 2020).

Electrochemical biosensors also play a vital role in many
applications such as in medical diagnostics, monitoring
environmental gases, and improving oxygen levels. They are
also extensively used to monitor bioactivity in various
compounds and organic materials. The working principle of
bio-sensors is based on the use of a biomolecule to detect the
concentration of a target bio-molecule. Biosensors are generally
considered a subcategory of chemical sensors due to the
transduction methods they employ (Joseph et al., 2003). A
combination of electrochemical transducers, an electrode is
attached, and a biomolecule is identified by the
electrochemical biosensors. The dual nature of
electrochemical biosensors can be used for applications such
as real-time monitoring of the environment or subjects or
targets in the form of selectivity and sensitivity. The major
advantages of electrochemical biosensors over traditional
analytical methods are that these materials could lead to
various new features in chemical and biomedical applications
in the future (Ruano, 2016). In General, biosensors are devices
which convert a biological event or reaction into a readable
output signal for analysis purpose (Hernandez-Vargas et al.,
2018).

The biosensor’s basic principle can be described as follows; it is
sensitive to nucleic acids, cells, antibodies, enzymes, and other

biological activities. The working principle is based on acquiring
the target reaction between base elements and exhibiting
sensitivity through a physical or chemical transducer. The range
of reactive conditions acquired by the discrete or continuous nature
of the signals is the basic information for the biosensor device’s
analysis purpose. Electrochemical biosensors are composed of
sensitive filament and electrochemical signal converter. The
sensitive film is mainly used to identify the analytes and the
electrochemical signal converter is to convert biomass activity to
electrical signals. The basic working principle of biosensors is
described in Figure 1.

The electrochemical biosensors are classified based on the
nature of the transducer into potentiometric, amperometric, and
impedimetric transducers. These individual transducers convert
the chemical information into measurable resistive,
amperometric, and reactive signals, respectively.
Electrochemical biosensors have been used in extensive ways,
with various applications, for over fifty years. Generally, the
materials used for electrochemical sensors are categorized into
the electrode and supporting substrates for electroanalytical
performances and the recognition of the biological elements.
Figure 2 shows the scheme of an electrochemical biosensor.
Here biological sensing elements are coupled to the electrodes.
Transducers used in the electrode elements convert the electric
signal into a readable output to the processing circuit for
monitoring purposes (Hernandez-Vargas et al., 2018). The
advancement and adaptation of electrochemical biosensors
seem to possess great potential for the future. The
technological gains in electrochemical biosensors with a range
of practical uses, through a combination of selective biochemical
detection methods, have led to a new era in the field of chemistry
(Pohanka and Skladal, 2008).

ADVANCED CERAMICS

The design strategies that have driven biosensor development
include detecting and measuring the parameters, transducer
working mechanism, the technology, materials used for sensor
fabrication, and finally, applications (Hernandez-Vargas et al.,
2018). Various materials have been explored in recent years for
their electrochemical sensing and biosensing applications in
various fields. Advanced ceramic materials are one such
material used for the fabrication of electrochemical and
biosensors. Researchers have emphasized the utilization of
advanced ceramic materials for selecting, sensing, and
detecting certain materials. These are summarized in
Table 1 below.

Advanced ceramics are becoming a more attractive option in
modern technological applications with maximum focus on
material properties. This focus on material properties has led
to a significant expansion in research and development, and in
optimizing the properties of ceramics and their matrix
composites. Traditionally ceramics either inorganic or non-
metallic solids are prepared from powdered materials by
applying heat and possess characteristic properties, including
hardness, strength, low electrical conductivity, and brittleness.

FIGURE 1 | Schematic of sensing by biosensors.
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Advanced ceramics represent a modern class of materials which
are generally new materials or a combination of traditional
ceramic materials designed to exhibit surprising variations in
the properties traditionally ascribed to ceramics. As a result of
these modern synthetic approaches to advanced ceramics, we
now have new ceramic products that are as tough and electrically
conductive as some metals. This is a very important characteristic
property for any material used in electrochemical biosensors.
Developments in advanced ceramics continue at a rapid pace
constituting what can be considered a revolution in the kind of
materials and properties obtained.

In 1993, the Versailles Project on Advanced Materials and
Standards (VAMAS), described advanced ceramics as “an
inorganic, non-metallic (ceramic), basically crystalline
material of rigorously controlled composition and
manufactured with detailed regulation from highly refined
and/or characterized raw materials giving precisely specified
attributes.” The distinguishing features of advanced ceramics
from the above definition is that they lack a glassy component,
i.e., they are “basically crystalline.” and their microstructures
such as grain sizes, grain shapes, porosity, and phase
distributions are carefully planned, engineered and
controlled. This planning requires detailed monitoring of
composition and processing with “clean-room” processing
being the norm. Pure synthetic compounds, rather than
naturally occurring raw materials, are used as precursors in
manufacturing. As a result of these manufacturing conditions,
the final advanced ceramics tend to exhibit unique or superior
functional attributes. Examples include unique electrical
properties such as superconductivity or superior mechanical
properties such as enhanced toughness or high-temperature
strength.

ALUMINUM OXIDE BASED BIOSENSORS

The search for metal oxides that can be used in electrochemical
sensors to detect various analytes has recently started to focus on
aluminum oxide, which has become a prominent candidate.
Al2O3 has been widely used as a good gate dielectric for the
future of nano electronic devices due to its high dielectric
constant, remarkable hardness, thermal stability, uniform pore
size, and high pore density together with the potential low cost
and relatively simple preparation procedure. Among different
phases of Al2O3 viz. γ, η, δ, θ, and χ phases, the α-Al2O3 possess
thermodynamic stability. Each form of the Al2O3 has its specific
band gap value, particularly, α, β, and γAl2O3 phases have 8.8 eV,
7.0–8.7 eV, and 5.1–7.1 eV, respectively. Al2O3 NPs have been
prepared by various methods like laser ablation, sol-gel,
hydrothermal reactions, pyrolysis, sputtering, and pyrolysis, etc.

During the past few years, Al2O3 NPs have been synthesized
and there has been increasing attention on applications in several
fields such as photocatalysts, sensors, capacitors, and
semiconductors. An electrochemical biosensor was fabricated
(Mekawy et al., 2018) for the detection of NADH using a
nanocomposite of alumina with GO. In another work, PANI
with γ- Al2O3 nanocomposite was synthesized (Parvin et al.,
2018) via in situ electro polymerization method on gold
electrodes for detection of vitamin-E which exhibited good
lowest detection limit (LOD) of 0.06 µM. A ternary ZnO/NiO/
Al2O3 nanoparticles were prepared by Alam et al. (2020) for the
detection of L-Glutamic acid using a glassy carbon electrode as a
non-enzymatic electrode. Sivasankar et al. (2018) introduced a
new hierarchical mesoporous graphite oxide (HMGO) with
Al2O3 for the identification of caffeic acid in red wine samples
using a modified GCE. For the detection of glycine, Alam et al.

FIGURE 2 | Scheme of an electrochemical biosensor.

TABLE 1 | Examples of advanced ceramic materials and their various applications.

Sl.No Ceramic materials Applications Reference

1 Alumina Identification of environmental gas Joseph et al. (2003)
2 Pyro electric Vapors identification Joseph et al. (2003)
3 Alpha sense oxidative gas NO2 and O3 Concentration identification Gorska et al. (2020)
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(2018a) developed a non-enzymatic electrochemical sensor of
modified GCE using low dimensional ternary ZnO/Al2O3/Cr2O3

nanoparticles, where it exhibited a good limit of detection of
82.25 pM. Interestingly Malikova et al. (2015) developed a
biomimetic electrode using catalase on TPhPFe(III)/Al2O3/Pb
and TPhPFe(III)/Al2O3/Si for the detection of low amounts
of H2O2.

To find out a polyphenol analyte of guaiacol in food samples,
the research group of Sun et al. (2015a developed an
electrochemical sensor using Pt–γ–Al2O3 modified GCE that
exhibits good results. An electrochemical immunosensor was
developed by Miao et al. (2019) taking Cu doped Al2O3 with
graphite carbon nitride (g-C3N4) to generate CueAl2O3-g-C3N4 for
the detection of amyloid β-protein (Aβ). Giarola et al. (2017)
identified that graphite-SiO2/Al2O3/Nb2O5-methylene blue (GRP-
SiAlNb-MB) composite was suitable for the detection of dopamine,
DA, in real and pharmaceutical samples with good detection limit.
Other works by (Ganjali et al., 2017a; Ganjali et al., 2017b; Ganjali
et al., 2018) have also reported the detection of DA by modifying a
glassy carbon electrode (GCE) using ZnO/Al2O3 nanocomposite.
The same group of workers suggested that ZnO/Al2O3

nanocomposite can also be used for the determination of
salicylic acid and ascorbic acid in pharmaceutical samples. In
another study by Zheng et al. (2018) brain serotonin 5-hydroxy
tryptamine was detected using a modified screen-printed electrode
(SPE) based on MWCNTs/Al2O3/Chitson composite. In addition
to the above electrochemical studies, Wang et al. (2018) developed
a novel disposable sensor modified with MWNTs/Al2O3/poly-l-
lysine film for the detection of clinical 17β-estradiol (17β-E2) urine
samples. Alam et al. (2018b) have studied a chemical sensor based
on ZnO/Al2O3/Cr2O3 nanocomposite, which is used for
modification of GCE for sensing xanthine with good sensitivity
and limit of detection. A TiO2-Al2O3 nanocomposite was
synthesized by Rakib et al. (2019) and was used for the
modification of GCE as a chemical sensor for sensing
hazardous chemical 3,4-diaminotoluene. It is clearly understood
from the above findings and developments that the dominant

properties of alumina particles can be unraveled in the form of
nanocomposite with various other metal oxides, metals, polymers,
and carbon materials like graphene, graphene oxide. Table 2
provides a summary of the electrochemical biosensor properties
of Al2O3 based sensors for the detection of various biomolecules.

ZIRCONIUM OXIDE BASED BIOSENSORS

The ZrO2 exists in various structures including monoclinic,
tetragonal, cubic lattice imbibe with unique thermal, structural,
electronic properties. It has a fine natural color, high stability,
high toughness, high chemical strength, desirable resistance to
corrosion, chemical, and microbial action that have made it a
highly significant advanced ceramic in terms of its technological
aspects (Sagadevan et al., 2016).

For the past 2 decades, a large amount of attention has been
focused on zirconium oxide nanoparticles due to their particle size-
dependent properties. Outstanding properties like a high surface
area to volume ratio, surface activity, catalytic efficiency, strong
adsorption affinity, biocompatibility, facile electron transfer rate,
and chemical inertness make the nanostructured zirconium oxide
particles an interesting material in the field of electrochemical
sensors. This has led to many researchers exploring its
applications. It also offers a great affinity for proteins like
enzymes, which lead to immobilization of enzyme activity, the
finest feature of bio-sensing applications as well as non-toxicity, low
thermal conductivity, and high isoelectric point. Due to the
availability of plenty of oxygen vacancies on its surface and a
wide band gap for that p-type semiconductor, it is also used as
an insulator in transistors and as a dielectric material. The high ion
exchangeability and redox movement make it useful in many
catalytic processes as a catalyst. Different approaches have been
used to synthesize the ultrafine ceramic powders of ZrO2, such as
sol-gel, hydrothermal, spray pyrolysis, salt-assisted aerosol
decompositions, carbon nanotube templated technique, and
reflux and emulsion precipitation, etc.

TABLE 2 | Al2O3 nanoparticles as ceramic sensors for detection of biomolecules.

Sl. No Nanomaterial/Composite Analyte LOD Sensitivity References

1 Al2O3-GO NADH 4.5 μM – Mekawy et al. (2018)
2 PANI with γ-Al2O3 Vitamin E 0.06 μM – Parvin et al. (2018)
3 Ternary ZnO/NiO/Al2O3 L-Glutamic acid 95.35 pM – Alam et al. (2020)
4 Hierarchical mesoporous graphite oxide/Al2O3 Caffeic acid 0.004 μM 429 μA mM−1cm−2 Sivasankar et al. (2018)
5 ZnO/Al2O3/Cr2O3 Glycine 82.25 pM 2.09 × 102 Alam et al. (2018a)

–

6 TPhPFe(III)/Al2O3/Pb and TPhPFe(III)/Al2O3/Si H2O2 – – Malikova et al. (2015)
7 Pt–γ– Al2O3 composite Guaiacol 17.9 nM – Sun et al. (2015a)
8 Cu– Al2O3-g–C3N4–Pd Amyloid β-Protein 3.3 fg ml−1 – Miao et al. (2019)
9 Graphite-SiO2/Al2O3/Nb2O5-methylene blue Dopamine 1.49 μmol L−1 – Giarola et al., 2017
10 ZnO/Al2O3 Nanocomposite Dopamine 2.0 × 10–6 M – Ganjali et al. (2018)
11 ZnO/Al2O3 nanocomposite Salicylic acid 0.25 μM – Ganjali et al. (2017a)
12 ZnO/Al2O3 nanocomposite Ascorbic acid 0.6 μM – Ganjali et al. (2017b)
13 MWNTs/Al2O3/chitosan Serotonin 0.005 μM – Wu et al. (2018)
14 MWNTs/Al2O3/Poly-L-Lysine Composite Salicylic acid 0.25 μM – Wang et al. (2018)
15 ZnO/Al2O3/Cr2O3 Xanthine 1.34 pM 70.8861 mA μM−1 cm−2 Alam et al. (2018b)
16 TiO2-Al2O3Nanocomposite 3,4-diaminotoluene 0.19 pM 0.5024 × 103 μA μM−1 cm−2 Rakib et al. (2019)
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Malhotra et al. (2016a) have developed a non-invasive biosensor
of serine/nZrO2 to detect the oral cancer biomarker (CYFRA-21–1)
that is highly efficient, with a sensitivity of 0.295mAmLng−1. The
same group of researchers, Malhotra et al. (2015) have continued with
bovine serum albumin (BSA)/anti-CYFRA-21-1/3-aminopropyl
triethoxy silane (APTES)/ZrO2/ITO immunoelectrode for the
detection of CYFRA-21-1 biomarker for oral cancer. An
electrochemical immunosensor, BSA/anti-cTnI/APTES/nZrO2/ITO,
was developed by an earlier research group Malhotra et al. (2017),
for the identification of cardiac troponin I biomarker (acutemyocardial
infarction) detection, which exhibits a good sensitivity of 3.9 μAml/(ng
cm2). Uzungolu (2018) worked on the development of CeO2-ZrO2

nanoparticle modified lactate oxidase enzyme, an enzymatic sensor in
an oxygen-depleted environment. The fabrication of Au electrodes
functionalized with ZrO2 thin film has been developed by Raileanu
et al. (2018) for the determination of enzymatically produced thiocoline
(Tch). Triglyceride tributyrin was detected using a bi-enzymatic
biosensor of Chit-nano-ZrO2/ITO electrode and was developed by
Solanki et al. (2016), with a good LODof 155 μgmL−1. A novelGa2O3/
lignin and ZrO2/lignin hybrid materials have been developed by
Jędrzak et al. (2019) for the immobilization of glucose oxidase

which acts as a biosensor for the detection of glucose. An
amperometric choline biosensor was introduced by Ouiram et al.
(2020) based on zirconium dioxide decorated gold nanoparticles
(ZrO2@AuNPs), copper (I) oxide at manganese (IV) oxide (Cu2O@
MnO2), and immobilized choline oxidase (ChOx) onto a glassy carbon
electrode (GCE) (ChOx/Cu2O@MnO2-ZrO2@AuNPs/GCE) for the
detection of choline in blood samples.

ZRO2-CARBON BASED BIOSENSORS

In the family of nanocarbon graphene oxide (GO), reduced
graphene oxide (rGO), graphene, and carbon nanotubes are
prominent new candidates in electrochemical sensors (Pumera,
2010). Graphene material has sp2 hybridized carbon atoms that
possess a high electron transfer rate, surface area, good electrical
conductivity, and act as a functional material to modify the bare
electrode surfaces (Unwin et al., 2016). For the synthesis of
graphene materials, different methods are proposed. However,
each method has its advantages and limitations. Graphene oxide
is a layered material where the oxygen content is high in the form

TABLE 3 | Properties of metal carbide and nitride materials through carbothermic reduction approach.

Precursor Product Shape Particle size Surface area
(m2/g)

Reference

Fe2(C2O4)3 C-Fe Sphere 20–50 nm 38–95 Hoch et al. (2008)
Fe(C6H5O7)
Fe(C2H3O2)2)
F3O4 Fe3C Sphere 20 nm – Schnepp et al. (2010)
Fe (CO)5 Fe-Fe3C Core-shell 30–50 nm – Wang et al. (2007)
Ferrocene Fe3C – 18–23 nm – Huo et al. (2006)
Ferrocene Fe3C Sphere 50–100 nm 15–39.8 Sajitha et al. (2007)
SiO2 SiC Sphere – – Weimer et al. (1993)
TiCl4 TiC Whiskers 150 µm – Kim and Kumta (2003)
TiCl4, ZrCl4 TiN, ZrN Whiskers – – Kato et al. (1980)
TiO2 TiC Whiskers 1–10 µm Wokulski (1987)
TiO2 TiC Whiskers – – Krishnarao et al. (2001)
Nb2O5 NbC Whiskers 0.1–0.5 µm – Johnsson (2000)
TiCl4 TiN Whiskers 30 µm – Bojarski et al. (1981)
Ta2O5 TaC Whiskers 0.5–1 µm – Johnsson (2004)
TiO2 TiC Nanowire 20–50 μm – Huo et al. (2007)

TABLE 4 | Metal carbide, Metal Nitride based electrochemical sensors for detection of various species.

Electrode Analyte Detection method Detection limit Detection range Reference

Hb/Ti3C2-GO/gold foil electrode H2O2 Amperometry 1.95 µM 2 µM–1 mM Zheng et al. (2018)
LO/CNTs/Ti3C2Tx/Pb/CFMs Lactase Chronoamperometry 0.67 µM 10–22 µM Lei et al. (2019)
Ti3C2-ATP-Mn3(PO4)2/GCE Superoxide anion Amperometry 0.5 nM 2.5 nm–14 µM Zheng et al. (2019)
Ti3C2Tx/Pt NP/GCE ACOP, AA, UA, DA DPV 0.048 µM 0.25–2000 µM Lorencova et al. (2018)
Nafion/Ti3C2Tx/GCE Bromate DPV 41 nM 50 nm–5 µM Rasheed et al. (2018)
Alk-Ti3C2/GCE Cd(II), Pb(II) SWASV 0.098 µm, 0.041 µm 0.1–1.5 µM Zhu et al. (2017)

Cu(II), Hg(II)
Ti3C2Tx-MXene Carbendazim DPV 10.3 nM 50 nM–100 µM Wu et al. (2019)
TiN/GCE UA, AA DPV 1.52 and 0.28 µM 10–300 µM Liqin et al. (2017)

50–1500 µM
Ni3NNS/Ti Glucose Amperometry 0.06 µM 0.2 μM Fengyu et al. (2018)
(rGO)/(g-C3N4) (GCN) Cd2+ DPASV 0.337 nM 1 nM to 1 µM and from 1 µM to 1 mM Wang et al. (2018)
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of functional groups like hydroxyl, carboxyl, and epoxy groups
for specific target molecules. On the reduction of graphene oxide
through different methods, reduced graphene oxide (rGO) was
obtained, which has good electrical conductivity and acts as a
current enhancer in electrochemical sensors (Russo et al., 2011).

Devnani et al. (2017) synthesized ZrO2/graphene/chitosan
nanocomposite coupled with carbon paste electrode for the
detection of dopamine in the presence of ascorbic acid and uric
acid. A nanocomposite of zirconia with graphene for the detection of
label-free exon-19mutations has been developed by Lin et al. (2019).
A novel Au-ZrO2-graphene electrochemical sensorwas fabricated by
Tao et al. (2020) for the detection of methyl parathion. Earlier, Sun
et al. (2015b) developed a nanocomposite of ZrO2 with graphene
that was electrodeposited on the surface of a carbon ionic liquid
electrode (CILE) to act as an electrochemical DNA sensor for the
Staphylococcus aureus nuc gene sequence. In this succession, a novel
biosensing electrode of ZrO2/rGO immobilized acetylcholinesterase
(AChE) was developed by Mogha et al. (2016) for the detection of
chlorpyrifos. Later, an efficient biosensing platform was designed by
Malhotra et al. (2016b) using ZrO2/rGO for sensing the oral cancer
biomarker (CYFRA-21-1). Chen et al. (2020) fabricated an
electrochemical DNA sensor for the detection of nucleic acid
using zirconia-reduced graphene oxide-thionine (ZrO2-rGO-Thi)
nanocomposite for integral DNA recognition. An anticancer drug
(regorafenib, REG) was detected selectively along with other analytes
of ascorbic acid and uric acid, using an electrochemical sensor made
with ZrO2/rGO nanocomposite by a group of researchers (Venu
et al., 2018), where it exhibits a good limit of detection 17 nM.

In another work, an immune sensor was fabricated using ZrO2/
rGO nanocomposite functionalized with L-Methionine as BSA/
antiOTA/Meth/ZrO2-rGO/ITO was used for specific target
detection of ochratoxin A (OTA) by (Gupta et al., 2017a).
Puangjan et al. (2016) reported that ZrO2/Co3O4 reduced
graphene oxide for the simultaneous detection of gallic acid
(GA), caffeic acid (CA), and protocatechuic acid (PA). In other
studies, reduced graphene oxide-zirconium dioxide-thionine (rGO-
ZrO2-Thi) nanocomposite was synthesized by (Chen et al., 2018) for
electrochemical assay of protein kinase activity. The other carbon
materials like amorphous carbon along with zirconia as an immune-
sensor for ochratoxin A (OTA) by (Solanki et al., 2016) and graphitic
carbon nitride with zirconia, ZrO2/g-C3N4, nanocomposite were
developed by Zarei (2020) as an aptasensor for the detection of
tetracycline.

ZRO2-METALS/MO-BASED BIOSENSORS

A nanocomposite of ZrO2-ChCl-AuNPs/CPE was used to
construct a carbon paste electrode as an electrochemical sensor
by Shahamirifard et al. (2018) for simultaneous determination of
gallic acid (GA) and uric acid (UA). Solanki et al. (2016) prepared
aluminum-doped zirconium oxide nanoparticles for sensing
ochratoxin A with a good limit of detection of 0.14 ng ml−1. For
the detection of glucose in raw citrus aurantium var. Sinensis, a
ZrO2-Cu (I) material was used by (Parashuram et al., 2019) and
exhibits a very low limit of detection 0.25 mM (Gu et al., 2016).
conducted studies on a ternary and oxide NiO-TiO2-ZrO2/SO4

−2

which is a solid superacid catalyst for glucose oxidation.
Furthermore, ZrO2/ZnO nanocomposites act as sensing material
fabricated by (Wang et al., 2020) for the simultaneous detection of
epinephrine (EA), uric acid (UA), and folic acid (FA)
(Parthasarathy et al., 2019). introduced a method of detection of
uric acid using Urs-GLDH/TiO2-ZrO2/ITO electrode.

METAL CARBIDE AND NITRIDE BASED
BIOSENSORS

Metal carbides and nitride usage has increased in recent years
could potentially replace the conventional materials used in gas
sensing, environmental remediation, photocatalysis, medicine,
and ceramics. Moreover, a number of composites are made
using transition metal carbide and nitrides especially the
nanoform of various morphologies such as spheres, particles,
plates, fibers, whiskers possessing significant properties including
large surface area, high toughness, flexibility, low density, and
thin walls with enhanced conductivity with good electrical
properties (Donath et al., 2002; Cheng et al., 2006; Guo et al.,
2008; Zhao et al., 2008; Karan et al., 2009; Li et al., 2009; Ni et al.,
2009; Yu et al., 2009), which are summarized in Table 3. These
materials are quite promising in making electrochemical sensors.

Titanium based carbides (Ti3C2) with graphene oxide based
electrochemical sensors were synthesized and used as effective
sensors for H2O2 as reported by (Zheng et al., 2018). Lei et al.
reported wearable and stretchable biosensors for the quantification
of biomarkers like glucose and lactose in sweat and efficiently act as
monitors for non-invasive biomarkers (Lei et al., 2019). Mxene based
nanocomposite based biomimmetic enzyme was used for the
quantification of superoxide anion, which is considered to be a
significant biomarker in the diagnosis of cancer by Zheng et al.
(2019). In addition, Ti3C2TxePtNP composite derived from the Pt
precursor by reduction process on Mxene surface are used as an
effective electrochemical sensor for various biomolecules (Lorencova
et al., 2018).

Nafion based titanium carbides are used for the detection of
bromate in water resources (Rasheed et al., 2018). The detection
of heavy metals such as Cd (II), Pb (II), Cu (II), and Hg (II) at
trace level is essential due to the detrimental effects they have on
humans and the environment. (Zhu et al., 2017). Delaminated
Ti3C2TxeMXene was used as an electrode modifier for the
detection of fungicide carbendazim (Wu et al., 2019).
Titanium nitrite based electrochemical sensors were used for
the detection of ascorbic acid and uric acid (Liqin et al., 2017).
Metallic nickel nanosheets are efficiently used for selective
selection of glucose molecule as a non enzymatic sensor
(Fengyu et al., 2018). Wang et al. reported carbon nitide based
graphene incorporated carbon nanocomposites as selective
sensors for detecting cadmium ions (Wang et al., 2018).

CONCLUSION

The present study has reviewed the electrochemical biosensor
applications of advanced ceramics, particularly metal and
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metal oxide-based ceramics. The study discussed the
working mechanisms and methods used to modify the
base electrode with these advanced ceramics. ZnO/Al2O3/
Cr2O3 were found to show the lowest detection limit of
82.25 pM with a sensitivity of 2.09 × 102 μAμM−1 cm−2

compared to all other ceramic based electrochemical
biosensors. Similarly, among, metal carbides and nitrides,
Ti3C2-ATP-Mn3(PO4)2/GCE was found to show the lowest
detection limit of 0.5 nm. Table 4 gives a detailed summary

of of the electrochemical bio-sensing properties of metal
carbide and nitrides.
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