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Concrete mixtures are complex material systems with a multitude of characteristics that
decision-makers may deem important. These characteristics can include economic,
environmental, mechanical, and durability-related properties of a concrete mixture.
However, traditional concrete mixture design typically employs long-standing
heuristics, which satisfy requirements for physical characteristics but are unable to
minimize specific characteristics, such as the cost or carbon footprint of the concrete
mixture. This work considers these performance characteristics by implementing
simulation-optimization as a new paradigm for designing concrete mixtures. The utility
of the simulation-optimization framework is tested for several concrete design case studies
that simultaneously consider compressive strength, embodied carbon, service life, and
cost. Results from these scenarios demonstrate that the local conditions of the case study
dictate the most important parameters of the simulation-optimization (i.e., relative
constituent costs, in situ service-life conditions). Out of all other parameters,
constituent cost and service-life conditions impact the set of optimal concrete mixture
designs in terms of the types and quantities of mixture ingredients that are utilized. We
present a simulation-optimization framework that is demonstrated herein to be a holistic
design tool that allows designers to quantify and visualize tradeoffs between critical
concrete performance metrics. Such a tool can be used to precision-tailor low-carbon
concrete mixtures to the exact preferences of the designer.
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INTRODUCTION

Concrete is a complex, heterogeneous composite material, and a myriad of properties must be
considered in determining appropriate concrete mixture proportions. For instance, for a given
application, a concrete mixture must provide sufficient compressive strength, and oftentimes must
resist degradation from multiple environmental factors. In addition, due to concerns about climate
change, there is increasing pressure for the cement and concrete industry to produce concrete with
lower upfront embodied carbon, namely the carbon dioxide emissions associated with manufacture
and transportation of concrete (“Making Concrete Change”; Rodgers, 2018). Note that the term
“embodied carbon” or “carbon emissions” refers to the carbon dioxide emissions associated with
material manufacture. Low-carbon materials, therefore, refer to materials with low carbon dioxide
manufacturing emissions. Finally, project budgets and profitability concerns require finding the least
expensive concrete that meets all design criteria. Finding a concrete mixture design that can satisfy all
of these requirements is thus quite challenging.
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The vast majority of current concrete mixture design
methodologies, such as the American Concrete Institute’s
Standard Practice for Selecting Proportions for Normal,
Heavyweight, and Mass Concrete (ACI 211.1–91), rely on
engineering heuristics in order to determine the quantities of
each concrete constituent (American Concrete Institute, 1991).
Such proportioning methods have the benefit of simplicity but
have several disadvantages. First, these heuristics used do not
capture the true complexity of the relationship between mixture
design and desired properties. For example, in the ACI method,
one achieves the appropriate 28-days compressive strength with a
heuristic in which the target compressive strength is mapped to
the necessary water-to-cement (w/c) ratio. Compressive strength
is indeed influenced by the w/c ratio; however, it is also strongly
affected by other variables including the total cement content and
the type, quantity, and composition of any supplementary
cementitious materials (SCMs) (Toutanji et al., 2004; Khatri
et al., 1995). Other relationships are similarly simplified, such
as the heuristics for slump and durability, meaning that true value
of these variables often differs from the target value. Another
drawback of traditional concrete design methods is that it is not
currently possible to truly optimize (i.e., minimize or maximize)
properties of interest, while meeting design considerations related
to the fresh-state, hardened-state, durability, economic, and
environmental properties of concrete. For instance, traditional
mixture design methods lack the ability to identify the mixture
design with the lowest cost or lowest embodied carbon, given a set
of performance requirements (e.g., required strength, slump,
sufficient resistance to chloride-induced corrosion).

To address these challenges, this study proposes multi-
objective optimization as a method for designing concrete
mixtures with multiple design considerations. Application of
multi-objective optimization to concrete mixture design
requires the use of property models which link a concrete
mixture design to the values of critical concrete properties,
such as cost, compressive strength, expected service life, and
embodied carbon dioxide emissions of the concrete mixture.
Application of this technique to concrete mixture design
would enable designers 1) to better predict the properties of a
given mixture design with these advanced property models and 2)
to simultaneously optimize multiple concrete properties of
interest.

The use of multi-objective optimization for proportioning
concrete mixtures is relatively underutilized in the literature.
What literature exists can be generally grouped into two
categories. The first category uses multi-objective optimization
to address generalized concrete mixture design using two or three
property-related objectives. For instance, Young et al. selected
cost and compressive strength as objectives and elected to
constrain the optimal solutions by their embodied carbon
values. However, a simplified model for embodied carbon was
utilized in which the embodied carbon was approximated as a
linear function of the quantity of cement; this linear function
ignores the impact of other concrete constituents and life cycle
stages of concrete manufacturing (e.g., constituent transportation
and use phase carbonation) (Young et al., 2019). The outcome of
optimizing a design problem is only as good as the property

models it uses. The use of more advanced property models for
predicting economic, environmental, service life, and mechanical
properties may lead to more accurate and trustworthy mix design
solutions. The second category of studies in the literature uses
multi-objective optimization for analyzing highly specialized
concrete applications such as concrete that has very high
strength (Baykasoğlu, 2009) or concrete that incorporates
uncommon agricultural (Madurwar et al., 2015) or industrial
waste products (Promentilla et al., 2017); however, it is difficult to
extend such studies to more broad applications since the
simulation models they use are developed using specialized
datasets.

The primary research gap our work addresses is that the
existing literature has not considered economic,
environmental, mechanical, and durability-related properties
simultaneously using multi-objective optimization; this
research gap is discussed extensively in (DeRousseau et al.,
2018). We seek to expand upon the existing research by
incorporating these properties in a simulation-optimization (as
illustrated in Figure 1) that can be used for a variety of concrete
applications and types. In this framework, concrete properties
(i.e., compressive strength, embodied carbon, cost, and service
life) are simulated using modeled relationships (i.e., equations or
predictive models) that link mixture proportions to material
performance. Subsequently, optimal mixture designs are found
in an iterative fashion using a state-of-the-art multi-objective
evolutionary algorithm called Borg. We apply the simulation-
optimization framework to three location-based case studies in
order to illustrate how input parameters, such as concrete
constituent costs, transportation distances, and chloride
exposure conditions affect optimal mixture designs. Three
location-based scenarios are selected to represent very different
possible design cases in 1) Miami, FL; 2) San Francisco, CA; and
3) Anchorage, AK. The purpose of the case studies is to apply the
simulation-optimization framework to possible design situations
and to illustrate that resultant optimal mixture designs are highly
dependent on input parameters related to individual constituent
costs, environmental exposure conditions, temperature, and
constituent transportation distances.

METHODS

Problem Formulation
To conduct multi-objective optimization, one must define the
problem formulation, which is composed of decisions, objectives,
constraints, and modeled relationships for the problem. Decisions
are a set of variables (xi) related to the concrete mixture design
that the decision-maker can vary. Note that the multi-objective
optimization method employed herein requires explicitly defined
upper and lower bounds on the decisions, which limit the search
space. In this problem, the decisions relate to the type and
quantity of mixture ingredients. The decisions include: the
total quantity of cementitious materials (i.e., cement and any
SCMS), the water-to-binder (w/b) ratio (where binder content
includes the quantity of both Portland cement and
supplementary cementitious materials), the coarse aggregate to
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total aggregate ratio (c/a), SCM choice, and SCM replacement
percentage.

Each of the decision variables allow for the calculation of the
quantities of each mixture ingredient (i.e., cement, fly ash, slag,
water, coarse aggregate, fine aggregate, water-reducer, air-
entraining admixture), and the absolute volume method is
used to quantify the mixture ingredient quantities from the
decision variables (American Concrete Institute, 1991).
Table 1 provides the allowable range of values for the decision
variables, which are selected using engineering judgement and the
limits imposed to avoid issues associated with degradation or
concrete setting. For instance, limits are placed on the w/b ratio to
avoid segregation and bleeding (for high w/b values) and to
ensure full cement hydration (for low w/b values). Similarly, to
avoid low values of early-age strength, limits are placed on the
maximumpercent replacement that is allowed for fly ash and slag,
which are 30 and 50%, respectively, (Alabama Standard
Specifications, 2012).

Objectives (fi(x)) are the performance characteristics of a
mixture design that should be minimized (or maximized,
calculated via a functional relationship with the set of decision
variables. In this analysis, we select three potentially competing
objectives (minimize cost, minimize embodied carbon, and
maximize compressive strength), which allows us to
understand tradeoffs between the objectives. For instance, for
each cost level, there will likely be tradeoffs between minimizing
embodied carbon and maximizing compressive strength
objectives, since both compressive strength and embodied
carbon generally increases with total cement content. Table 2
provides information on the objectives selected for this study;
justification for the inclusion of each objective function is
provided in Modeled Relationships.

Constraints place limits on the values of the decisions or objectives
of the problem. The difference between constraints and objectives is
distinct; a constraint must be met for the design to be successful. In
contrast, an objective is a design target where a lower value (or higher)
is considered better. This analysis poses a constraint on concrete
service life and requires that concrete must resist corrosion for a set
number of years as specified inTable 3). Note that for the case studies

proposed in Case Studies, the dominant degradation mechanism is
assumed to be chloride-induced corrosion. An additional constraint
relates to water-reducing admixture dosage, which is required when
the w/b ratio is less than 0.40 so that the concrete remains workable
(Domone, 1998).

Lastly, the modeled relationships are equations (i.e., models)
that relate the decision variables to quantifiable values of the
objectives and constraints. This analysis employs four modeled
relationships which have been developed in other research for
quantifying compressive strength, embodied carbon, cost, and
chloride-induced corrosion. These modeled relationships are
further discussed in Modeled Relationships.

Multi-Objective Optimization With
Evolutionary Algorithms
Assuming minimization of all objectives, multi-objective
optimization is formalized as the equations below (Coello
et al., 2007).

Minimize:

F(x) � (f1(x), . . . , fk(x)) (1)

Subject to:

gi(x) � 0, i � {1, . . . ,m} (2)

and:

hj(x)≥ 0, j � {1, . . . , p} (3)

where each f(x) is an objective to be optimized and x is the
n-dimensional decision space. gi(x) and hj(x) represent the
inequality and equality constraints, respectively, and a
solution, x, is feasible if it meets all constraints. If there are
conflicts between the objectives, a single solution cannot
simultaneously optimize objectives. Thus, the goal of multi-
objective optimization is to generate a tradeoff set of solutions
to the problem using the concept of Pareto-optimality. A vector of
decision variables, x, is Pareto-optimal if no other feasible vector
can minimize some objective without causing a simultaneous
increase in one or more other objectives. The result of multi-
objective optimization is, therefore, the values of decision
variables from the Pareto optimal solutions, with their
corresponding objective function values.

To search for the Pareto-optimal solutions, this analysis uses a
multi-objective evolutionary algorithm (MOEA) called Borg,
which was selected due to its auto-adaptive features and high
performance on challenging multi-objective problems. (Reed
et al., 2013; Zatarain; Salazar and Jazmin, 2016). For each

TABLE 1 | Decision variables upper and lower limits.

Decision variable Lower limit Upper limit Units

Total cementitious materials 200 450 kg
Water-to-binder (w/b) ratio 0.20 0.75 kg/kg
Coarse-aggregate-to-total-aggregate ratio 55 75 kg/kg
SCM choice n/a (categorical variable) n/a (categorical variable) n/a
SCM replacement percentage 0 30% for fly ash, 50% for slag %

TABLE 2 | Objective functions.

Objective Minimize/maximize Type of model

Compressive strength Maximize Machine learning
Embodied carbon Minimize LCA model
Cost Minimize Linear combination
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function evaluation, Borg stochastically generates and evaluates a
new solution (i.e., potential mixture design). A solution is non-
dominated if none of the objectives can be improved in value
without degrading one or more of the other objective values when
compared to other existing solutions. During the search, the goal
is to continue finding non-dominated solutions until a close
approximation to the set of Pareto-optimal solutions is found.
In this study, each scenario involved 50,000 function evaluations
and incorporated five random seeds. Using some number of
random seeds greater than one ensures that solutions were not an
artifact of Borg’s initial parameterization.

Modeled Relationships
In the following sections, each of the modeled relationships for
calculating cost, compressive strength, embodied carbon, and
chloride-induced corrosion are discussed in detail. Note that the
cost, compressive strength, and embodied carbon models require
the mass of the mixture ingredients as input variables. To
calculate these values, we use the absolute volume method
(American Concrete Institute, 1991) applied to the decision
variables, since the decision variables are quantities such as the
w/b ratio and SCM replacement percentage.

Cost Model
To quantify the cost of a unit volume of concrete, the costs of
each mixture ingredient are simply summed as shown in Eq. 4,
where Ctotal is the total cost of 1 m3 of concrete, Ci are the
costs per tonne of each mixture ingredient, and xi are the
quantities of each mixture ingredient per unit of concrete
(tonne/m3). This linear cost model is adapted by identifying
unit costs of each individual mixture constituent in bulk in
the location of each case study. The cost coefficients also
include cost of transportation to the ready-mix plant.
However, additional costs due to construction, maintenance,
and end-of-life are not included here because it is assumed
that for a given application, these costs will be equivalent
for all alternatives. Note that the simulation-optimization
framework allows for mixture constituent costs to vary
geographically, which is one reason why the set of Pareto-
optimal solutions varies for each case study.

Ctotal � Cixi (4)

Compressive Strength Model
The 28-days compressive strength of concrete is a critical design
parameter for reinforced concrete structures. Accurate numerical
estimation of the 28-days compressive strength of concrete is
desirable because more precise prediction provides assurance of
concrete quality, reduces the number of concrete batches that are

needed to be tested to meet strength targets, and enables a
reduction in factors of safety.

In this study, we utilize a validated machine learning model for
predicting the 28-days compressive strength, which was
formulated by the authors and reported in (Mikaela
DeRousseau et al.). In the study it was found that the random
forest model performs best compared to all other models tested in
a machine learning pipeline in terms of root mean squared error,
mean absolute error, and coefficient of determination.
Consequently, this Python-based model is utilized in the
simulation-optimization framework as the objective function
for compressive strength. The inputs to the random forest
model are quantities of the mixture ingredients, which are
within the bounds of ingredient quantities found in the
training data. Since the decision variables are quantities such
as the w/b ratio, c/a ratio, percent replacement of SCMs, etc., we
use the absolute volume method to calculate the quantity of
mixture ingredients and subsequent compressive strength
prediction (Wilson and Kosmatka, 2011). Choosing
compressive strength as an objective rather than a constraint
allows us to quantify tradeoffs made with the other objectives for
each incremental increase in compressive strength.

Embodied Carbon Model
The purpose of the upfront embodied carbonmodel is to quantify
the embodied carbon emissions for a functional unit of concrete
as a function of the mixture ingredient quantities. The embodied
carbon model accounts for the life cycle modules of A1-A3 and
B1 (i.e., emissions from raw material supply, transport,
manufacturing of products, and concrete carbonation). In this
study, we utilize a model formulated and published by the authors
in (MA DeRousseau et al., 2019) in which the embodied carbon
was modeled as the sum of the material processing,
transportation, and manufacturing emissions, minus the sum
of the emissions due to carbonation during use and end-of-life for
all ingredients for 1 m3 of concrete, as shown in Eq. 5.

ECtot � ∑
n

i

(cix)i +∑
n

i

(xidit) +m + s (5)

In this equation, ci are the embodied carbon coefficients for each
constituent due to material processing (in kgCO2e/tonne), xi is
the quantity of each mixture ingredient, di is the transportation
distance for each mixture constituent, t is the transportation
emissions factor (in kgCO2e/tonne/km) for the method of
transportation, m is the embodied carbon associated with
concrete manufacturing (in kgCO2e/m

3), and s is the quantity
of CO2 sequestered during the use and end-of-life stages of a
concrete in kgCO2e/m

3 of concrete, which is a function of the
quantity and CaO content of cementitious materials in the

TABLE 3 | Constraints.

Constraint Limit Type of model

Chloride-induced corrosion Must resist cracking for 50 or 150 years (depending on the scenario) Diffusion model
Water-reducing admixture If w/b ratio <0.40, use 0.703 ml superplasticizer per kg cementitious materials Heuristic
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concrete and therefore dependent on the SCM content.
Subsequently, this model is used for quantifying concrete
embodied carbon in the simulation-optimization framework
where minimizing embodied carbon is an objective.

DeRousseau et al. (MA DeRousseau et al., 2020) analyze the
variability in emissions using statistical distributions and the
mean values of the life cycle inventory distributions in the
study are utilized, except for transportation distance. For
transportation distances, we use values relevant for each case
study location as inputs for calculating embodied carbon.

Chloride-induced Corrosion Model
Chloride-induced corrosion occurs when chloride ions from the
environment (often due to de-icing salts or proximity to marine
environments), diffuse into concrete. When a high enough
concentration of chloride ions reaches the concrete
reinforcement, the reinforcement corrodes, which produces
expansive rust products and subsequent concrete cracking and
spalling.

Modeling of chloride-induced corrosion has been discussed
extensively in the literature (Srubar, 2015; Sohanghpurwala, 2006;
Liu and Weyers, 1998; Bentz, 2003; Cusson et al., 2003). In
previous research, expected service life (ts) with regard to
corrosion-induced cracking (t) can be estimated using a two-
part damage model first proposed by Tuutti in which the time to
rebar cracking is the sum of the time to corrosion initiation plus
the time to concrete cracking (Tuutti, 1982). Life-365™ is
advanced chloride corrosion modeling software, which
accounts for both time and temperature-dependent changes in
the rate of chloride diffusion. In addition, it uses the Crank-
Nicolson finite difference method to solve for t. In this study, we
utilize the same methodology as Life-365™ in the simulation-
optimization framework (Ehlen et al., 2009). For a full discussion
of the service life model equations and parameters used in this
analysis, see the Supplementary Information.

Case Studies
In this work, we apply the simulation-optimization framework
described in the previous section to three case studies to illustrate
how it can be applied to specific concrete design problems. For
comparability, certain aspects of the problem formulation are

kept constant among all three case studies, including the decision
variables, objectives, and constraints described in Problem
Formulation. In addition, we assume a set of input parameters
representing the constituent qualities (e.g., aggregate size, specific
gravity) and the concrete design (e.g., rebar cover depth). These
parameters are consistent for all case studies and provided in
Table 4.

Other parameters, deemed the variable input parameters, are
different for each case study, because they reflect three different
location-based concrete design scenarios. The variable input
parameters include: the relative costs of ingredients,
transportation distances, chloride exposure conditions, and
monthly average temperatures. These parameters all vary
based on project location, with the potential to impact the set
of optimal mixture designs. Table 5 provides a summary of the
variable input parameters that change between each of the case
studies, which are based in Miami, FL; San Francisco, CA; and
Anchorage, AK. Cost parameters were estimated via expert
interviews and transportation distances were estimated based
on the existence of local material production. Note that monthly
average temperature data for Anchorage is reported in the table
along with the predicted monthly average temperature for the
150th year of service life to simulate climate change effects, as
discussed for Case 3b in the following section (Alaska Regional
Climate Projections, 2009). Table 6 provides a qualitative
summary of these parameters.

For the Miami case study (Case 1), the purpose is 1) to
investigate a concrete design scenario in which there is a high
chloride exposure condition and low cost of SCMs and 2) to
determine how the Pareto-optimal results are determined by this
design scenario. For instance, due to high chloride exposure, it is
expected that the Pareto-optimal solutions may exhibit relatively
high SCM replacement percentages or low w/b ratios in order to
generate concrete mixes that resist chloride diffusion for 50 years.
Specifically, the concrete structure being analyzed is assumed to
be near the coastline with exposure to marine spray, which
involves a maximum chloride boundary condition of 23.5 kg/
m3 and a 10-years ramp up to this value (see supplementary
information) (Ehlen et al.). This case study is considered a high
chloride exposure scenario. In addition, temperatures in Miami
are relatively high, which facilitates rapid chloride diffusion. In
Miami, fly ash is significantly cheaper than slag or cement at a
price of $80 per tonne. Slag is $110 per tonne, while cement is
$120 per tonne. Transportation of fly ash and slag is highly local
as is shown in Table 5, meaning that emissions due to
transportation of SCMs will be low compared to other case
studies.

In the San Francisco case study (Case 2), the purpose is to
investigate a scenario in which the availability of SCMs is low. San
Francisco has a high demand but a low local supply of SCMs,
which drives up the cost of fly ash and slag to that of cement. In
addition, in this scenario, we mimic the low supply of fly ash and
slag by assuming that these materials are imported from
international suppliers (Indian Bureau of Mines, 2010; The
Morning Call, 2017). Thus, the carbon dioxide emissions
contributed by fly ash and slag is expected to be higher
compared to the Miami case study. In addition, the concrete

TABLE 4 | Material design parameters (constant throughout case studies).

Parameter Value Units

Concrete type Structural concrete —

Cover depth 70 mm
Coarse aggregate specific gravity 2.50 kg/m3

Coarse aggregate transportation distance 27.5 km
Coarse aggregate cost 30 $/tonne
Fine aggregate (sand) specific gravity 2.63 kg/m3

Fine aggregate transportation distance 21.0 kg
Fine aggregate cost 30 $/tonne
Cement transportation distance 105.0 km
Cement specific gravity 3.15 kg/m3

Water reducer cost 0.29 $/kg
Slag specific gravity 0.38 kg/m3

Fly ash specific gravity 0.27 kg/m3
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building is assumed to be 1.5 km from the coast and thus receives
a mild chloride exposure boundary condition of 14.1 kg/m3 and a
10-years ramp up to this value (Ehlen et al.). San Francisco also
has lower average temperatures than Miami. Consequently, less
rapid chloride diffusion is expected over 50 years.

Finally, in the Anchorage scenario (Case 3), the goal is to
investigate the impact of accounting for the predicted increase in
average temperatures related to climate change over a longer
service life. In this case study, we analyze the Pareto optimal
concrete mixture designs for a scenario in which historical
monthly average temperatures are used (Case 3a) compared to
a scenario that uses predictions for increases in monthly average
temperature using a regional climate prediction model for Alaska
(Case 3b) (Alaska Regional Climate Projections, 2009). Note that
temperatures linearly increase from 2020 to the predicted
temperature for 2,100 in the diffusion model and continue to
increase linearly throughout the 150-years service life. Since the
diffusion model accounts for monthly average temperatures as an
input to calculate the rate of chloride diffusion, the expected

increased temperatures due to climate change will increase
chloride diffusion rates compared to the “base case” This
specific temperature data is included in Table 5. We
hypothesize that increases in temperature will increase
chloride diffusion rates and cause more rapid chloride-induced
corrosion. In this case study, the concrete structure is assumed to
be on the coast exposed to a marine spray exposure condition
(i.e., 23.5 kg/m3, 10-years ramp up period). As seen in Table 5 the
high costs and transportation distances for SCMs are due to the
lack of local supply.

RESULTS

As anticipated, the Pareto-optimal solutions for each case
study vary significantly due to the different design
parameters in each location. In the parallel axis plots,
values of the objectives and the decision variables are
provided to illustrate their connection. All three objectives

TABLE 5 | Summary of input parameters specific to each case study.

Input parameter
group

Parameter Case 1 -Miami, FL Case 2-San
Francisco, CA

Cases 3a—Anchorage, AK Case 3b-
Anchorage, AK

Costs Cement $115 $120 $180 $180
Fly ash $80 $116 $210 $210
Slag $110 $112 $210 $210

Chloride boundary Exposure scenario Marine spray 1.5 km from shore Marine spray Marine spray
Condition (Ehlen et al.) Maximum concentration 23.5 kg/m3 14.1 kg/m3 23.5 kg/m3 23.5 kg/m3

Time to max 10 years 30 years 10 years 10 years
Transportation Primary transportation method Truck Ship + truck Ship + truck Ship + truck

Fly ash distance 62 km 9,997 km, 20 km 2,642 km, 40 km 2,642 km, 40 km
Slag distance 15 km 8,671 km, 20 km 2,642 km, 40 km 2,642 km, 40 km
Cement distance 124 km 124 km 124 km 124 km

Average monthly January 19.6 °C 9.3 °C −9.5 °C −4.0 °C
Temperature February 20.4 °C 11.2 °C −7.4 °C −2.2 °C

March 22.1 °C 11.8 °C −3.5 °C 0.6 °C
April 24.0 °C 13.1 °C 2.1 °C 5.6 °C
May 25.9 °C 14.5 °C 8.1 °C 11.1 °C
June 27.4 °C 16.4 °C 12.4 °C 13.1 °C
July 28.2 °C 17.1 °C 14.7 °C 16.1 °C
August 28.2 °C 17.6 °C 13.5 °C 16.1 °C
September 27.7 °C 18.1 °C 9.1 °C 11.7 °C
October 25.7 °C 16.1 °C 1.4 °C 5.0 °C
November 23.1 °C 12.7 °C −6.0 °C 0.3 °C
December 20.6 °C 9.7 °C −8.7 °C 2.2 °C

Service life Service life requirement 50 years 50 years 150 years 150 years
Climate change Accounting for climate change? No No No Yes

TABLE 6 | Qualitative summary of input parameters specific to each case study.

Input parameter Case 1-Miami, FL Case 2-San Francisco, CA Case 3—Anchorage Alaska

Relative cost of cementitious materials Low cost of fly ash High cost of both fly ash and slag Very high cost of both fly ash and slag
Chloride exposure scenario Severe chloride exposure Mild chloride exposure Severe chloride exposure
SCM transportation Short distance for SCM transport Far distance for SCM transport Far distance for SCM transport
Average monthly temperature Hot Mild Cold
Service life requirement 50 years 50 years 150 years
Climate change accounting No No Yes
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are oriented such that preferred values of each objective are in
the downward direction.

Case 1: Miami, Florida
In the Miami scenario, we seek to determine the set of viable
mixture designs for a severe chloride exposure condition in a
SCM market with low costs and transportation distances.
Figure 2 illustrates the full set of Pareto-optimal designs
solutions for this case study with a 50-years service life
constraint. In the figure, red lines indicate a solution in
which fly ash is used, blue lines indicate a solution that

uses slag, and black lines indicate a solution that uses
no SCMs.

In Figure 3, the four axes on the left represent the decision
variables and the three axes on the right represent the objectives.
The axes for the objectives are oriented such that the preferred
direction is down. Note that there is no preferred direction for the
decisions. In addition, each solution is represented with a line
connecting all the axes. Finally, crossed lines indicate a conflict
between objectives for those two solutions. In other words, a
lower magnitude of one objective (better performance) is related
to a higher magnitude of a second objective (worse performance).
As an example, the crossed lines between, the cost and
compressive strength objectives indicate that for a given
solution, better performance with respect to one of the
objectives will mean worse performance in the other.

Looking at the objective space, there is a conflict between
compressive strength and the other two objectives (i.e., cost,
embodied carbon), as anticipated. High compressive strength
concrete mixtures also exhibit high costs and high embodied
carbon values; the reverse is also true. Cost and embodied carbon
tend to not conflict; in other words, low-cost solutions tend to
also have low embodied carbon, given that an increase in
Portland cement is the main driver for an increase in both
cost and embodied carbon. Other research and industry
groups have noted these tradeoffs previously (Fantilli et al.,
2009). In terms of decision variables, the low-cost solutions
tend to be associated with a high w/b ratio, high SCM
replacement percentages, and low total quantity of
cementitious materials. High strength solutions are associated
with the opposite. Low embodied carbon mixtures are most

FIGURE 2 | Selection of three possible mix designs to illustrate trade-offs.Set of optimal mixture designs for Miami case study.

FIGURE 1 | Conceptualization of the simulation-optimization framework
for analyzing each scenario. The Borg MOEA is coupled with the simulation of
concrete properties to find Pareto-optimal mixture designs for different
scenarios.
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greatly affected by the overall quantity of Portland cement, so low
total cementitious content and high SCM replacement
percentages can provide low embodied carbon. Looking at the
decision variable space, it is apparent that the respective limits on
fly ash and slag (30 and 50%) are both reached. Recall from
Table 5 that fly ash is 27% cheaper than slag and 33% cheaper
than cement in the Miami scenario; the low cost of fly ash likely
contributes to its usage in the concrete mixtures with the lowest
cost. Alternatively, note that the mixture with the lowest
embodied carbon utilizes slag; this result is due to the fact that
a higher slag replacement is allowed (up to 50%). Finally, note
that all mixtures utilize some level of SCM. We hypothesize that
this result is due to the existence of severe chloride exposure
conditions and inexpensive, local SCMs, which are well known to
densify concrete microstructures and improve the chloride
resistance of concrete via the pozzolanic reaction.

In Figure 2 (and subsequently listed in Table 7) we illustrate
via three examples how a concrete designer might use these
results to select a Pareto-optimal concrete based on preferences
for the project. First, suppose that a concrete designer deemed the
embodied carbon objective as the most critical. In this case, Mix A
would be selected because it is a mixture that satisfies the problem
formulation constraints and has the minimum possible embodied
carbon. Second, suppose that the concrete designer required a
50 MPa mixture and that the most important objective was to
minimize cost. In this case, Mix B would be optimal because it
satisfies the requirement for compressive strength and among the
remaining feasible solutions, mix B has the lowest cost. Third,
consider a case where the most critical objective is cost. In this
case, Mix C would be selected because it has the absolute lowest
cost among the set of Pareto-optimal solutions. It is important to

note that, due to the inherent tradeoffs between these objectives,
that choosing a solution with a ‘desirable’ value for one objective
means that one (or more) of the other objectives necessarily
becomes less desirable.

Case 2: San Francisco, California
The goal of this case study was to elucidate optimal mixture designs
for a case study location that has 1) a mild chloride exposure
condition and 2) high costs and transportation distances for
SCMs. Figure 4 illustrates the set of optimal solutions for this
case study. One key result from this scenario is that none of the
optimal mixture designs reach the maximum allowable SCM
replacement percentages. Moreover, unlike the Miami case
studies, there are several solutions which utilize less than 10%
SCM replacement for both fly ash and slag and several that use
no SCMs whatsoever. These results are likely due to two
compounding factors. First, fly ash and slag are nearly the same
cost as cement and have high transportation emissions, which
reduces their utility for reducing cost or embodied carbon.
Second, Case 1 does not incentivize the use of SCMs as much as
Case 2 due to the mild chloride exposure conditions.

Furthermore, we see that the objective values of the solutions can be
broadly classified into two groups. The first group includes solutions
that use fly ash, which tend to have relatively high embodied carbon,
high strength, and high cost. Looking at the corresponding decision
variables, these solutions use relatively higher quantities of total
cementitious materials. In the other group are mixtures that use
lower quantities of cementitious materials and either slag or no
SCMs. In the objective space, these variables tend to be low cost
and low embodied carbon, but also lower strength than the group of
solutions that use fly ash. These trends are significantly different than

FIGURE 3 | Set of optimal mixture designs for Miami case study.
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the trends seen in theMiami case study, in whichmost Pareto-optimal
solutions employed fly ash replacement. We hypothesize that the
comparably high cost of both fly ash and slag in this case study
incentivized the smaller quantities of SCM replacement.

Another outcome that was unexpected is that the Pareto-
optimal mixture design with the lowest embodied carbon
does not utilize SCMs whatsoever in this case study. We
hypothesize that this result is due to the fact that this mixture
design uses the lowest allowable quantity of total
cementitious materials and because (compared to the other
case studies) fly ash and slag are actually associated with high
embodied carbon emissions due to the assumed
transportation distances.

Case 3: Anchorage, Alaska
The purpose of the Anchorage case study was to investigate
whether accounting for increased average temperatures due to
climate change alters the set of Pareto-optimal mixture designs.
In Case 3a we use historical monthly average temperatures to
quantify chloride ingress. In Case 3b, we employ predicted
average temperatures for Anchorage using the regional climate
model discussed in Case Studies. Since increased temperatures
cause increased rates of diffusion, it was expected that climate

change will cause a more rapid violation of the service life
constraint in Case 3b.

Figure 5Areports the set of optimal mixture designs for the
Case 3a. Notably, the total costs of these mixtures are significantly
higher than that of the Miami and San Francisco scenarios, due to
the high costs of cement, fly ash, and slag in the Anchorage market.
Regarding the decision variables, we see that the limits to fly ash
and slag replacement are not reached—a result attributable to the
fact that slag and fly ash are 10%more expensive than cement. Also
note the existence of several concrete mixture designs that use only
cement—again, an interesting, but expected, finding in this market
where the cost of cement is less than either fly ash or slag.

It appears that the more severe service life condition in Case 3b
(due to temperature rise) has caused a change in the set of optimal
mixture designs. Figure 5B illustrates the set of optimal mixture
designs when higher average temperatures are considered.
Looking at the objective space, we see that the MOEA was
unable to find a 35 MPa mixture that was feasible and non-
dominated because this solution uses a high w/b ratio and low
quantity of total cementitious materials. In addition, several
solutions which used only cement have become infeasible due
to the service life constraint. Despite the fact that cement is the
least expensive cementitious material in Case 3b, the amount of

TABLE 7 | Three example concrete mixture designs for the Miami case study.

Mix
name

Cost
($/m3)

Compressive
strength
(MPa)

Embodied
carbon

(kgCO2/m3)

Total
SCMs
(kg)

W/b
ratio

c/a
ratio

SCM
type

Percent
replacement

(%)

Mix A 87.4 45.1 174.0 200 0.53 65.8 Slag 39.3
Mix B 87.2 53.2 332.7 401.1 0.75 74.82 fly ash 17.6
Mix C 80.7 32.7 175.3 200 0.75 55.1 fly ash 30.0

FIGURE 4 | Set of optimal mixture designs for San Francisco case study.
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SCM use tends to increase due to the need to prevent accelerated
corrosion that can arise from increased temperatures.

Furthermore, it was found that an increase in the required
durability of a concrete appears to shift the balance between fly
ash and slag utility for this case study. Concrete mixture

designs with compressive strengths around the 55 MPa
utilize fly ash instead of slag (or only cement) in order to
meet the increased durability requirement. We see that these
mixtures use high cementitious materials quantities, which
leads to high values of embodied carbon, and moderately high

FIGURE 5 | Pareto-optimal solutions for (A) Case 3a and (B) Case 3b, which illustrates the importance of climate change accounting regarding prevention of
corrosion in chloride-laden conditions.
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cost. These results point to the sensitivity of the optimal
solutions for a given case study to increased temperatures.
However, it should be noted that this sensitivity will be
different for every design scenario.

DISCUSSION

General Trends
Due to their advantages for strengthening and densifying concrete,
SCMs (especially fly ash) are commonly used in scenarios where
prevention of chloride-induced corrosion is necessary. For
instance, in the two scenarios with extreme chloride exposure
conditions (Miami and Anchorage) Miami case study, there is a
prevalence of optimal mixture designs that employ SCMs.
Furthermore, comparing Case 3a to Case 3b, we see that the
increased durability concerns caused several concrete mixtures
without SCMs to become infeasible, despite the cost premium for
SCMs compared to cement in the Anchorage market.

Furthermore, we see a trend in the decision variables that are
used to design high-strength mixtures. In all cases, fly ash is the
SCM selected for high strength mixtures; specifically, all cases use
fly ash to design mixtures above 55 MPa. High strength concrete
mixtures also used high quantities (>340 kg) of cementitious
materials in all these cases. Relatively low w/b ratios were also
seen to be an important factor for designing high strength
concrete (0.30–0.55).

Another general trend is that the mixtures with the lowest
embodied carbon contained slag, which was observed in all case
study examples. This phenomenon is likely because slag
replacement was defined to be as high as 50%, compared to
30% for fly ash. This low-carbon trend was consistent, regardless
of whether slag was more expensive or had higher transportation
emissions than fly ash. Of course, this result would change if the
allowable replacement percentages were increased for fly ash.
Low-cost concrete mixtures tended to use low quantities of total
cementitious materials; however, these mixtures were not
consistent for all scenarios in terms of fly ash or slag use
because of the changing relative cost of cementitious materials.
It was found that both embodied carbon and cost conflict with the
compressive strength objective in all scenarios.

Future Opportunities
In the section that follows, we outline four ways that this research
could be advanced. First, the service life modeling should be
expanded. Recall that in this study, service life is predicted for
concretes in chloride-laden environments. Although chloride-
induced corrosion is the costliest degradation mechanism in the
U.S., there are other types of concrete degradation mechanisms,
which may be dominant under certain conditions. For instance,
when concrete is exposed to water containing sulfate ions (e.g., from
drainage, sewers), sulfate ions diffuse into concrete, react with
cement hydration products, and cause cracking. Other
degradation mechanisms can include freeze-thaw damage, alkali-
silica reaction, alkali-carbonate reaction, delayed-ettringite
formation, among many others. Equations should be
incorporated in the simulation-optimization framework for

modeling these mechanisms and how they are affected by the
quantity and types of mixture constituents used. Simulating
multiple degradation mechanisms will also provide concrete
designers with information about which mechanism is expected
to cause degradation first. For example, if a concrete is placed in an
environment in which both freeze-thaw conditions and chloride-
exposure conditions occur, modeling of both degradations can help
determine which mechanism is the most critical.

Second, future work should also consider how other types of
SCMs besides fly ash and slag (e.g., silica fume, metakaolin) impact
simulated concrete properties. Novel supplementary cementitious
materials have been the subject of increased research (Juenger and
Maria, 2019) given global decarbonization and decommissioning of
coal-fired power plants that produce large quantities of beneficial fly
ash at a time in which the demand for SCMs continues to increase.
However, to integrate alternative SCMs into this simulation-
optimization framework, first the impact of the type and quantity
of each SCM on cost, compressive strength, embodied carbon, and
service life must bemodeled. These additional models will need to be
developed using machine learning, life cycle assessment, and
physics-based service life modeling. Similarly, incorporating
models that assess the impacts of adding multiple SCMs to
concrete mixtures (i.e., ternary blends) would be beneficial for
deciding what SCMs to use for different types of mixture design
priorities (Khan, 2012). The use of alternative SCMs would have
similarly beneficial impacts on compressive strength and service life
do to their pozzolanic nature (Behnood and Ziari, 2008).

Thrd, as a greater variety of SCMs and degradationmechanisms
are incorporated into the simulation-optimization framework,
more data will be needed for modeling these relationships. For
instance, the development of machine learning models for
predicting compressive strength requires broad sampling of the
predictor variable space to make accurate predictions. Future
research should aim to develop publicly available databases that
contain mixture design information such as the quantities and
properties of the mixture constituents, as well as resultant
properties of the mixture such as compressive strength and
slump. As an example of this kind of database, the University
of California Irvine’s Machine Learning Repository houses a
dataset of 1,000 concrete mixture designs and the resultant
compressive strength (UCI Machine Learning Repository, 2020).
This dataset should be expanded to include mixture design
information including other types of SCMs and constituent
material properties.

Last, it would be beneficial for the optimization analyses to
directly consider uncertainty for each constraint and objective.
Currently, the compressive strength and embodied carbon
models quantify the average error, but the only way for
concrete designers to use this uncertainty information is to
build safety factors into final mixture designs. A direct method
for considering uncertainty could involve a technique called
many objective robust decision making in which multi-
objective optimization is used to determine a set of Pareto-
optimal solutions; then these solutions are evaluated under a
variety of scenarios to determine which solutions perform well
(i.e., are robust) under many circumstances (Kasprzyk andNataraj,
2013; Kasprzyk and Reed, 2012; Kasprzyk, Nataraj, et al.).
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CONCLUSION

This study presents the formulation and implementation of
a simulation-optimization framework in Python that integrates
predictive property models to design optimal concrete
mixtures under many design scenarios. The simulation-
optimization framework developed primarily improves upon
the existing literature because it enables designers to find
optimal concrete mixture designs while simultaneously
considering environmental, economic, durability, and
hardened-state performance.

The utility of the simulation-optimization framework
was tested for several concrete design case studies (based
in Miami, San Francisco, and Anchorage) and the objectives
of compressive strength, embodied carbon, and cost were
optimized. Results from these scenarios demonstrate that
the local conditions of the case study dictate the most
important parameters of the simulation-optimization
(i.e., relative constituent costs, in situ service-life
conditions). Out of all other input parameters, constituent
cost and service-life conditions most greatly impact the
set of optimal concrete mixture designs in terms of the
types and quantities of mixture ingredients that are
utilized. For instance, high costs for SCMs produced
Pareto-optimal mixture designs with significantly lower
SCM replacement percentages. Similarly, more aggressive
chloride exposure conditions caused optimal concrete
mixtures to have lower w/b ratios and higher SCM
replacement percentages to densify the concrete and
meet the service life requirement. The highly varying
solution sets for the case studies illustrate that the
simulation-optimization framework can be utilized to
quantify and visualize tradeoffs between critical concrete
performance metrics. Such a tool can be used to tailor
low-carbon concrete mixtures to the exact preferences of
the designer.
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