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This study investigated the tensile properties and deformation behavior of an aged Fe-
26Mn-6Al-1C (mass%) alloy with a stacking fault energy of approximately 60mJ·m−2. The
results show that an ordered phase with a “short-range ordering” (SRO) structure formed
after aging at 550°C for 10 h, further increasing the aging time to 48 h. Lamellar second-
phase precipitates appeared at the austenitic grain boundaries. The aged sample at 550°C
for 10 h exhibited an enhanced tensile strength (∼898MPa) without notably sacrificing
uniform elongation (∼46.3%), which was mainly attributed to the relatively high strain
hardening in the entire plastic deformation due to the synergistic effects of planar slip,
twinning-induced plasticity (TWIP), microband-induced plasticity (MBIP), and especially
the formation of short-range ordering.
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INTRODUCTION

Fe-Mn-Al-C steels have been extensively researched over the past several decades due to the high
specific strength and stiffness of this material, which is a good trade-off between high ultimate tensile
strength and good tensile ductility (Frommeyer and Brüx, 2006; Li et al., 2015; Klimova et al., 2017;
Sarkar et al., 2019; Choi et al., 2020; Li et al., 2020) when compared with conventional high strength
steels. The composition of the light high-Mn steel is mainly based on the traditional high-Mn steel
composition, by increasing the content of carbon and manganese and adding a certain amount of
aluminum. As a main alloying element, Mn has the function of enlarging the austenite region and
stabilizing the austenite structure. The addition of Al to highMn austenitic steels not only reduces the
weight of the automotive body due to its lower density but also varies the deformationmechanisms of
steels from either transformation-induced plasticity (TRIP) or twinning-induced plasticity (TWIP)
(Grässel et al., 2000; Sohn et al., 2014; Yuan et al., 2015; Huang et al., 2017; Luo and Huang, 2018) to
dislocation slip due to the increased stacking fault energy (SFE) (Frommeyer and Brüx, 2006; Li et al.,
2015; Choi et al., 2020; Li et al., 2020). Microband-induced plasticity (MBIP) was also discovered by
Frommeyer and Brux (Frommeyer and Brüx, 2006) in high Mn-Al austenitic alloys with the
relatively high SFE value of 110 mJ·m−2 suppressing the formation of martensitic or severe
mechanical twinning.

There has been dramatically growing interest in high Mn-Al austenite alloys containing carbon
due to the presence of κ-carbide ((Fe,Mn)3AlC) particles (James, 1969; Kayak, 1969; Choo and Han,
1985; Han et al., 1986; Ishida et al., 1990; Choo et al., 1997; Frommeyer and Brüx, 2006; Choi et al.,
2020; Li et al., 2020). In the late 1970s, the (Fe,Mn)3A1C κ-carbide precipitates with an ordered L’l2
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crystal structure were first observed in high Al and C Fe-Mn-Al-C
alloys by James (1969); Kayak (1969); Ishida et al, (1990)
established the relationship between different α, γ and κ
phases based on the phase constitutions of Fe-(20-30)Mn-Al-C
alloys. Choo et al. (Choo and Han, 1985; Han et al., 1986)
described the κ-carbides with a face-center cubic (fcc) based
phase with an ordered L’l2 structure, which was similar to that of
Ll2. Frommeyer and Brux Choi (Frommeyer and Brüx, 2006)
reported that the nanosized κ-carbides with a perovskite structure
in a Fe-28Mn-10Al-0.5C alloy were accompanied by shear bands,
which was also verified by Choi et al., (2010). Accordingly, the
tensile ductility was enhanced by the nanosized (Fe,Mn)3AlC
κ-carbide precipitates in the austenitic Fe-Mn-Al-C alloys
(Frommeyer and Brüx, 2006; Choi et al., 2020; Li et al., 2020)
due to the so-called MBIP effect, which was comparable to the
loss of ductility resulting from the unfavorable morphology of
κ-carbides in ferrite or ferrite-austenite duplex lightweight Fe-
Mn-Al-C steels.

The better strengthening effect of high-Mn steel could be
obtained by examining the composite treatment of aging and
deformation, which not only improves the ductility but also the
strength of the steel. The stress flow behavior of alloys with
various hot forming conditions greatly affects the evolution of
their microstructure (Fang et al., 2016). At present, the discussion
on the microstructure evolution of hign-Mn Fe-Mn-Al-C steels
via aging treatment is still ongoing, and the influence of
microstructure on the deformation mechanism also needs to
be further studied, for optimizing the properties of the
experimental steel.

In the present study, a lightweight Fe-26Mn-6Al-1.0C
(mass, %) austenitic alloy with a stacking fault energy
(SFE) value of approximately 60 mJ·m−2 was used to
investigate the formation of a new strengthening phase
with a “short-range ordering” (SRO) structure. The present
study also clarifies the influence of aging temperature and
time on microstructural evolution, tensile properties, and
deformation behavior of Fe-26Mn-6Al-1.0C.

EXPERIMENTAL PROCEDURES

A Fe-26Mn-5.84Al-1.0C (mass, %) alloy was designed. Its SFE
value was estimated to be approximately 60 mJ·m−2 based on the
thermodynamic models reported by several researchers (Grassel
et al., 1997; Dumay et al., 2008; Song et al., 2017). The alloy was
prepared in an induction furnace by induction melting and then
cast into small rectangular ingots. The ingots were homogenized
at 1,200°C for 2 h and hot-rolled at around 1,050°C to 3 mm in
thickness with a total reduction of 85%.

Tensile specimens, whose gauge width and length are 10 and
40 mm, respectively, were taken from the hot-rolled strip with the
tensile axis parallel to the rolling direction. The tensile specimens
were solution-treated at 1,100°C for 1 h, followed by water
quenching to room temperature. Meanwhile, the solution-
treated tensile specimens were further aged at temperatures
ranging from 450 to 550°C for 10 h to study the precipitation
behavior of experimental steel. Uniaxial tensile tests were carried

out on an Instron 5,967 30 kN machine at an initial strain rate of
1 × 10–3 s−1.

The microstructural characterization was performed using an
optimal microscope (OM, Olympus DSX500) and transmission
electron microscope (TEM, Tecnai G220) operated at 200 kV.
TEM specimens were prepared as thin foils by mechanical
grinding and twin-jet electropolishing in a mixture of 8%
perchloric acid and 90% alcohol at −35°C with an applied
potential of 50 V. The phase constituents were determined by
an X-ray diffractometer (XRD, D/Max-Ra) with CuKα radiation
in the range of 40 to 120°.

RESULTS AND DISCUSSIONS

The hot-rolled Fe-26Mn-5.84Al-1.0C alloy shows a single fcc-
structured γ phase with an average grain size of about 20 μm,
together with dislocation tangle, stacking fault, and annealing
twins. After solution treatment at 1,100°C for 1 h, the grain size of
γ was measured at around 130 μm with some amount of
annealing twins (Figure 1A), and only γ phase peaks were
detected by XRD patterns (Figure 2). In addition, there
existed a relatively large number of dislocations in the
solution-treated alloy (Figure 3A). These dislocations were
periodically arranged in a plane, as schematically illustrated in
Figure 3B.

After aging treatment at temperatures ranging from 450 to
550°C for 10 h, the optical micrographs (Figures 1B–D) appeared
no significant change, when compared with that of the solution-
treated sample (Figure 1A). The intensities of both (200)γ and
(220)γ peaks increased with increasing aging temperature, while
that of (111)γ decreased, as shown in Figure 2. It should be noted
that no second-phase particles could be observed by TEM under
all experimental conditions. It has been reported that the coarse
second-phase particles could be observed along the austenitic
grain boundaries by optical microscopy for the Fe-(28–31.5)Mn-
(8.0–9.0)Al-(0.8–1.05)C alloys aged for 120–129 h (Hwang et al.,
1993), which was different from the present short-time aged Fe-
26Mn-5.84Al-1.0C alloy.

Table 1 shows the tensile properties of the solution-treated Fe-
26Mn-5.84Al-1.0C alloy, in conjunction with the aged samples at
450–550°C for 10 h. As a whole, the austenitic Fe-26Mn-5.84Al-
1.0C alloy exhibited yield strength (YS) of 378–480 MPa, UTS of
727–898 MPa, and total elongation (δ) of 47–53.2%. The values of
UTS × δ ranged from 36.0 to 45.0 GPa·% for the present alloys,
which were smaller than those (67.7–84.6 GPa·%) of the Fe-
28Mn-9Al-0.8C alloy fabricated by cold rolling and heating
treatment studied by Yoo et al. (Choi et al., 2020). This
difference was likely associated with the larger size of
austenitic grains, ∼130 μm for the present alloys, while that
was only 5–38 μm for the Fe-28Mn-9Al-0.8C alloy (Choi
et al., 2020). It was worth noting that the aged Fe-26Mn-
5.84Al-1.0C alloy at 550°C for 10 h exhibited an extremely
high UTS value with no loss of ductility, compared with the
other solution-treated or aged samples in this study (Kayak et al.,
1969; Kalashnikov et al., 2000). To investigate the reason for the
enhanced ultimate tensile strength and ductility, the precipitation
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behavior during aging treatment was clarified, together with
further analysis of deformation mechanisms during tensile tests.

Figure 4 reveals the true stress (σ) and strain hardening rate
(dσ/dε) with respect to true strain (ε) in the solution-treated Fe-
26Mn-5.84Al-1.0C alloy, in conjunction with the aged samples at
450, 500 and 550°C for 10 h. All tensile samples exhibited
continuous yielding and extensive strain hardening behaviors,
which was similar to the conventional high Mn austenitic steels
(Yuan et al., 2015; Huang et al., 2017). In the entire plastic
deformation region, the aged Fe-26Mn-5.84Al-1.0C samples
exhibited the three-stage strain-hardening behavior, regardless

of aging temperature. The dσ/dε value rapidly decreased at stage I,
remained a constant at stage II, and then decreased again at stage
III as the true strain increased. The significant difference between
the solution-treated and aged samples was that the dσ/dε value of
the former gradually decreased with ε at stage II; whereas the aged
sample at 550°C for 10 h showed the relatively higher strain
hardening capability during the whole plastic deformation.
According to the true strain value (ε) when the peak value of
dσ/dε appeared, the plastic instability had been delayed after
aging. This could be responsible for high UTS with no loss of
ductility in the aged Fe-26Mn-5.84Al-1.0C alloy at 550°C for 10 h.

To support the dominant deformation mechanisms of an aged
Fe-26Mn-6Al-1C alloy at 550 °C for 10 h, the representative TEM
morphologies were supplemented. As displayed in Figure 1D, the
initial microstructure prior to tensile testing was the coarse
austenite grains and annealing twins. As the tensile strain was
about 5%, microbands were observed, implying the dominant
deformation mode was MB at the early stage of plastic
deformation. Upon further straining, the dislocations made
equal spacing arrays along the two principal directions and the
dislocation densities increased without altering the slip directions
(Ding et al., 2013). After a tensile fracture, the well-developed
microbands and deformation twins (Figure 5B) became
dominant, indicating that both TWIP and MBIP effects
occurred in the aged Fe-26Mn-5.84Al-1.0C alloy with a
relatively high SFE value of 60 mJ·m−2. The formation of
microbands and deformation twins would give rise to a
remarkable difference in strain hardening phenomena as both
of them acted as effective obstacles to dislocation glide (Urrutia
and Raabe, 2011; Ding et al., 2013). In contrast, only a large
number of microbands were observed in the solution-treated

FIGURE 1 | Optical micrographs of the Fe-26Mn-5.84Al-1.0C alloy subjected to (A) solution treatment at 1,100°C for 1 h and ageing treatment for 10 h at three
different temperatures: 450 °C (B), 500°C (C) and 550°C (D).

FIGURE 2 | XRDpatternsof theFe-26Mn-5.84Al-1.0Calloysubjected tosolution
treatment at 1,100°C for 1 h and aging treatment at 450, 500, and 550°C for 10 h.
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sample (Figure 3C), implying that MBIP was a dominant
deformation mechanism.

An island-like phase within the γ matrix was found (Figure 5C),
which was also called an ordered phase with a “short-range ordering”
(SRO) structure, as verified by the SAD pattern (see an inset at the
upper right of Figure 5C). It was also revealed that the SRO phase

exhibited a coherent orientation relationship with γ matrix [100]
SRO/[100]γ, which was similar to that of SRO in AuCu3 superalloys
(Hiraga et al., 1982). In the preliminary work, Choo et al. reported
such an ordered structure in an aged Fe-30Mn-7.8Al-1.3C alloy,
which contains a carbon atom at the body center site, three Fe/Mn
atoms randomly at the face center sites, and an Al atom at the corner

FIGURE 3 | Dislocation alignment in planar (A) and the corresponding schematic diagram of Fe-26Mn-5.84Al-1.0C alloy at 1,100°C for 1 h (B). (C) shows the
micro-bands after interrupted tensile deformation up to 30%.

FIGURE 4 | Changes in true stress (σ) and strain hardening rate (dσ/d & epsi) with true strain (& epsi) in the solution-treated Fe-26Mn-5.84Al-1.0C alloy, along with
the aged samples at 450, 500, and 550°C for 10 h.
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positions in its fcc-structured unit cell, as schematically illustrated in
Figure 5D. The formation of a unit cell of SRO structure involved as
follows: Al atomoccupies two opposite face centers; Fe andMn atoms
are located on other face centers and each corner; C atom is placed at
the center of the unit cell. Because of the ordered arrangement of Al
atoms, the SRO patterns of the aged Fe-26Mn-5.84Al-1.0C alloy at
550°C for 10 h were characterized by satellite spots around the
fundamental reflections in juxtaposition with superlattice
reflections. Furthermore, there existed a certain small tilt angle
between the [010] directions of the satellites and fundamental
reflections from the [100] superlattice spot. The arrangement of
the unit cell in the SRO zone indicates that the short range ordering
(SRO) happened after aging treatment at 550°C for 10 h.

The transformation from the γ matrix to SRO caused the
formation of short range ordering with an average size of

30–200 nm separated by anti-phase boundaries (APBs). This
might be one of the most important factors to obtain the
dramatically improved UTS and δ (Table 1), owing to the
continuously increased strain hardening behavior (Figure 3)
caused by the precipitation and grain boundary strengthening
(Figure 5). However, as the Fe-26Mn-5.84Al-1.0C alloy was aged
at 550°C for 48 h, the short range ordering disappeared, and the
lamellar second-phase precipitates along the grain boundaries
were observed in Figure 6A. These precipitates were identified as
carbide precipitates (Fe, Mn)3Cx by energy dispersive X-ray
spectroscopy (Figure 6B), which were also observed previously
in Fe-Mn-Al-C alloys (Choo and Han, 1985). Their grain
boundary phases were characterized by the ordered κ carbide
and a disordered body centered cubic (bcc) α ferrite, significantly
deteriorating the tensile ductility of Fe-26Mn-5.84Al-1.0C alloy.

TABLE 1 | Room temperature tensile properties of the hot rolled Fe-26Mn-5.84Al-1.0C alloy subjected to various aging treatments.

Methods AGS (μm) YS (MPa) UTS (MPa) δu (%) δf (%) UTS ×
δf (GPa%)

ST (1,100°C, 1 h) 130 378 764 42.2 47.1 36.0
ST + AT (450°C, 10 h) 375 727 45.1 51.0 37.1
ST + AT (500°C, 10 h) 430 770 49.7 53.2 41.0
ST + AT (550°C, 10 h) 482 898 46.3 50.1 45.0

ST, solution treatment; AT, aging treatment; AGS, average grain size of austenite; YS, yield strength; UTS, ultimate tensile strength; δu, uniform elongation; δf, elongation to failure.

FIGURE 5 | TEMmicrographs of Fe-26Mn-5.84Al-1.0C alloy at 550°C for 10 h: (A) showsmicroband and deformation twins as well as the corresponding selected-
area diffraction (SAD) patterns; (B) shows an ordered island-like phase with a “short-range ordering” (SRO) structure and the corresponding SAD patterns. (C) and (D)
show schematic diagrams of the ordered SRO structure in the Fe-Mn-Al-C quaternary alloy.
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CONCLUSION

In summary, a lightweight Fe-26Mn-6Al-1C (mass%) austenitic
alloy with a stacking fault energy (SFE) value of approximately
60 mJ·m−2 was subjected to solution treatment at 1,100°C for 1 h
and various aging treatments at 450–550°C for 10 h. The main
conclusions involved as follows:

1) The solution-treated alloy exhibited a relatively large number of
dislocations, which were periodically arranged in a plane; whereas
an ordered phase with a “short-range ordering” (SRO) structure
was observed in the aged sample at 550°C for 10 h. With further
increasing aging time to 48 h, the lamellar second-phase
precipitates were distributed along grain boundaries.

2) The enhanced ultimate tensile strength (UTS � 898MPa) and
ductility (δu � 46.3%) of Fe-26Mn-6Al-1C alloy at 550°C for 10 h
was closely associated with relatively high strain hardening in the
entire plastic deformation, which was mainly attributed to the
formation of an ordered short range ordering.

3) The aged Fe-26Mn-6Al-1C samples at 450–550°C for 10 h
exhibited a three-stage strain-hardening behavior and
constant strain hardening rate (dσ/dε) at stage II, which
was significantly different from the decreased dσ/dε value
at stage II for the solution-treated sample.
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