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The bolted connection is widely utilized in engineering to practically and rigidly couple
structural components. The integrity of the connection is paramount to the safety of the
structure and has prompted the development of many monitoring methods, including the
piezoelectricity-based active sensingmethod. However, the active sensingmethod cannot
quantify bolt looseness due to the unclear relationship between bolt looseness and the
single monitoring index typically used in the active sensing method. Thus, the authors
propose the unique combination of a one-dimensional convolutional neural network
(1DCNN) and multichannel active sensing for quantitative monitoring of bolted
connections. In an experiment, piezoelectric ceramic transducer (PZT) patches are
bonded on steel plates connected by a bolt. Each patch is wired to a multichannel
active sensing monitoring system. After obtaining multichannel stress wave signals at
different looseness levels, a looseness vector is calculated to generate training and
validation datasets. A baseline 1DCNN model and a novel model improved using the
convolutional block attention module (CBAM) are used to monitor the bolt looseness.
Finally, the authors verify that the multichannel active sensing method combined with the
1DCNN model can accurately perform quantitative monitoring of bolt looseness, and the
monitoring accuracy of the baseline 1DCNN model is above 91.07% in three different
specimens. Compared with the baseline 1DCNN model, the monitoring accuracy of the
CBAMCNN model improved by approximately 5%. Overall, the method proposed in this
article offers a new and highly accurate approach for quantitative monitoring of bolted
connections.

Keywords: bolt looseness, quantitative monitoring, multichannel active sensing method, convolutional neural
network, convolutional block attention module

INTRODUCTION

The bolted connection has been extensively applied across many types of steel structures, such as
large stadiums, steel-framed residences, and high-speed railways. Bolted connections are
advantageous in terms of simple construction, convenient installation and replacement, safe
operation, and reliability. However, since bolts are often used to couple dissimilar structural
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components, the connection is likely to introduce dynamic
nonlinearities when under the action of unfavorable forces
such as cyclic and vibration loads (Lacayo and Allen, 2019;
Lacayo et al., 2019). This introduction of nonlinear behavior is
difficult to solve, and it can also degrade structural performance
and eventually induce structural failure if not addressed in a
timely manner. Therefore, the state of the bolted connection
should be closely monitored in real time to improve the safety of
engineering structures (Xu et al., 2018).

Methods to monitor bolt looseness are based mainly on
structural health–monitoring principles, which include, but are
not limited to, the vibration-based method (Amerini et al., 2010;
Li and Jing, 2020), the optical fiber sensing–based method
(Guarino and Hamilton, 2017; You et al., 2020), the
percussion-based method (Wang et al., 2019; Wang et al.,
2020b; Wang and Song, 2020), the electromechanical
impedance (EMI) method (Ritdumrongkul et al., 2003; Huo
et al., 2017b; Wang et al., 2017), and methods based on the
contact acoustic theory. Each of the methods mentioned above
have unique limitations. Vibration-based monitoring approaches
have difficulty detecting bolt looseness because low-order
frequency responses of the connection are not sensitive to the
local structural damage and high-frequency vibrations easily
dissipate (Amerini et al., 2010). Percussion-based methods are
highly dependent on human skill, while the accuracy of EMI
methods is susceptible to unexpected changes in the surrounding
environment. Methods based on contact acoustic theory include
the active sensing method (Tao et al., 2016; Zhao et al., 2020), the
high-order harmonics method (Li and Jing, 2017; Li et al., 2019),
and the sideband modulation method (Meyer and Adams, 2015;
Zhang et al., 2018). The analysis of high-order harmonics and
spectral sidebands can shed light on nonlinear mechanisms of
bolt loosening, but damping and instrumental noise can
obfuscate information carried in high-frequency stress waves.
On the other hand, the active sensing method provides superior
performance due to the advantages of convenient
implementation, fast response, and availability of a wide
spectral bandwidth to perform monitoring. A concept of
“smart washers” was proposed to monitor bolt looseness
through a normalized wavelet energy index (Huo et al., 2017).
Taking into account the aging of piezoceramic materials, the
tracking of normalized coda wave energy helped to monitor the
tightness of a single bolt (Hei et al., 2020). However, these
methods are inadequate for conducting quantitative
monitoring because they fail to accurately and quantitatively
correlate bolt looseness states with a single monitoring index.

In recent years, research on piezoelectricity-based monitoring
methods (i.e., including the impedance and active sensing
methods) combined with machine learning have gradually
attracted widespread attention. The methods combined EMI
and back propagation neural networks (BPNNs) to inspect the
looseness of bolted ball joints (Xu et al., 2019). Their method used
the RMSD value of the EMI sub-band signal as the input and the
torque level of the bolt joint as the expected output of the model.
The LibSVM model in conjunction with the EMI method was
used to identify the position of loose bolts (Zhang et al., 2017). An
algorithm-based least square support vector machine was used to

realize bolt state recognition (Wang et al., 2020). In their study,
multivariate, multiscale fuzzy entropy from the stress wave
signals was obtained and subsequently employed as the input
for training the genetic algorithm and least squares support vector
machine (GA-LSSVM). The output is the number of loose bolts.
In a similar manner, the stacking-based ensemble learning
classifier was employed to determine the looseness state of the
bolt group (Wang et al., 2021). Compared with traditional
machine learning algorithms, deep learning is more powerful
andmore adaptable, especially in solvingmore complex problems
that are data driven. With the rapid development and widespread
application of artificial intelligence, a variety of deep learning
architectures have been developed, such as the convolutional
neural network (CNN) (Avci et al., 2017), long short-term
memory (LSTM) (Huang et al., 2015; Luo et al., 2019), and
generative adversarial networks (GANs) (Lei et al., 2020; Liu et al.,
2020). In particular, the convolutional neural network is often
used in structural health–monitoring tasks due to its ability to
share weights, form local connections, and down-sample
(Goodfellow et al., 2016). The Bayesian model and modal
strain energy were used to determine the bolt looseness (Hu
et al., 2018). The simultaneous use of CNNs and the analysis of
guided waves helped to identify the location of the damage in a
pressure vessel (Hu et al., 2020), in a steel plate structure (Lim and
Sohn, 2020), and in aerospace structural material (Xu et al., 2019).
The above discussion of the literature shows that significant
research activity is currently centered around the use of CNNs
to identify surface damage of structures by extracting structural
damage information from monitoring data; however, there are
limited reports regarding the use of CNNs to quantify bolt
looseness based on active sensing signals.

Therefore, this article presents the development and
implementation of a one-dimensional (1D) CNN model that is
integrated with multichannel active sensing to detect the
looseness of bolted connections in steel structures. Through
the active sensing method, multichannel stress wave signals
are obtained under different levels of torque. Multi-domain
looseness indicators from different channels are then
calculated and concatenated into a one-dimensional index
vector based on the order of the channels. The mixture of
data from different channels enables a comprehensive
evaluation of bolt looseness severity. The 1DCNN model is
trained using these vectors to perform bolt looseness
identification. Moreover, spatial and channel attention
mechanisms are introduced into the baseline 1DCNN model
to improve the recognition accuracy. Finally, the feasibility of the
proposed method is demonstrated through experiments. It
should be noted that this article presents the first attempt to
combine the active sensing method with a 1DCNN improved by
the CBAM to explore the quantitative monitoring of bolt
looseness. The findings of this research have a great potential
to open the door to the use of machine learning and active sensing
in future monitoring applications for steel structures. Moreover,
the findings can promote further development of automatic
monitoring techniques that are based on the piezoelectric
active sensing method. The rest of this article consists of four
sections and is organized as follows: section two provides a
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detailed background of the methods proposed in this article,
including the 1DCNN model, the spatial channel attention
mechanism, the active sensing method, and the looseness
index. Section three presents the experimental setup, while
section four discusses the experimental results. Section five
closes with the conclusions.

THEORETICAL BACKGROUND

Figure 1 presents the fundamental framework of the method
presented in this article. In step 1, a multichannel active sensing
monitoring system is set up, and the data acquisition for training
and validation is carried out. In step 2, multi-domain looseness
indices for different torque levels are calculated and are later
combined into a one-dimensional looseness index vector based
on the order of the channels. In step 3, the training and validation
datasets are input to the baseline 1DCNN model and the

improved CBAMCNN model for determining the final model.
In step 4, a new test dataset is fed into the finalized model for
quantitatively monitoring the looseness of the bolt. In this
study, seven degrees of looseness are recognized and labeled
L1, L2...L7.

Multichannel Piezoelectric Active Sensing
The principle of active sensing being applied to monitoring
bolt looseness is depicted in Figure 2. Considering the
symmetry of the steel plate, four PZT patches labeled
PZT1–4 are employed in the experiment. PZT1 serves as an
actuator, while the rest are sensors (i.e., PZT2, PZT3, and
PZT4). The stress wave is generated by PZT1 after being
excited by a frequency sweep signal. The stress wave
propagates through the contact surface of the steel plates to
reach the sensors. A close relation between the propagating
energy of the stress wave and the bolt connection state can be
observed (Zhang et al., 2016). When the steel plates are tightly

FIGURE 1 | Quantitative monitoring method of bolt looseness.

FIGURE 2 | Diagram illustrating the active sensing approach to monitor bolt looseness.
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connected, the stress wave can propagate to the bottom plate
efficiently. Otherwise, the stress wave dissipates rapidly.

Multichannel and Multi-Domain Feature
Extraction
In order to gauge the efficiency of the model and its recognition
accuracy, multi-domain looseness indices are calculated to
analyze the stress wave signals, which carry bolt looseness
information. The looseness indices used in this experiment
include the following: time-domain signal energy, the
maximum value of the average periodogram, and three-layer
wavelet packet decomposition energy. These indices are
described below.

Time Domain Signal Energy
The process of stress wave propagation is accompanied by
energy dissipation, so the signal energy can be used to
characterize the bolt looseness. The signal energy refers to
the sum of the squares of the time-domain amplitude, as
shown below:

D1 � ∑N
i�1

X2
i , (1)

whereN represents the length of the received signal; Xi represents
the i − th data of the received signal.

The Maximum Value of the Average Periodic Diagram
In this study, the average periodic diagram method proposed by
Welch is used to perform spectral analysis on the received signals.
By using the windowing and averaging processing techniques,
random fluctuations of the signal can be reduced to ensure
sufficient spectral resolution (Bartlett, 1950). The average
periodic diagram method provides a new perspective for
analyzing the stress wave signal. The steps to the method are
as follows:

a) Divide the received signal X into K segments, with each
segment possessing L points. Two adjacent segments
overlap over length P (usually, P � L/2). K is expressed as
follows:

K � N − P
L − P

, (2)

where N represents the length of the received signal X.

b) Apply the windowing function wd(n) to each subsection to
obtain the values in segments ias shown below:

Xi(n) � X(i · P + n)wd(n), (3)

where n represents the length of the windowing function, and i
represents the i − th segment of the signal.

c) Perform the discrete Fourier transform of each signal
sequence as shown below:

Xi(k) � ∑M−1

n�0
Xi(n)exp(−j 2πknM

), (4)

where M represents the period of the discrete Fourier transform,
k represents the i − th data point of the signal, and j represents the
unit of the complex.

d) Calculate the average value of the power spectrum and
estimate for each signal sequence as shown below:

Si(2kπM ) � 1
KU

∑k−1
i�0

|X(k)|2, (5)

where U � ∑L−1
n�1

w2
d(n) represents the estimated mean value of the

power spectrum of the windowing function.

e) Obtain the maximum value of the average periodic diagrams
through the following relation:

D2 � max[Si(2kπM )]. (6)

Wavelet Packet Decomposition Energy
Wavelet packet decomposition is a multi-resolution analysis
method, which has been widely used in structural damage
research (Toliyat et al., 2003; Teotrakool et al., 2009; Liu et al.,
2018). It can perform multilevel and adaptive decomposition of
the original signal through the wavelet tree.

In this study, l � 3 is adequate for an accurate representation
of the bolt loosening information while minimizing
computational costs. For every looseness condition, stress wave
signals derived from PZTs 2–4 are simultaneously received. Their
signals form the set S � {X1, X2, X3}. Subsequently, ten looseness
indices are calculated from each signal and concatenated into a
looseness vector with elements organized by the order of the
channels. The formula of the looseness vector is as follows:

D � [D1
d ,D

2
d ,D

3
d]

� [D1
1,D

1
2,/D1

d ,D
2
1,D

2
2,/,D2

d ,D
3
2,/,D3

d](d � 1, 2,/, 10).
(7)

In order to accelerate model training and increase recognition
accuracy, the looseness index vector above is standardized to
Dnorm to acquire a similar data distribution (Grus, 2019).

One-Dimensional Convolutional Neural
Network Model
Inspired by the human visual nervous system, the CNN, a state-
of-the-art deep learning model, has demonstrated excellent
performance in a wide variety of classification tasks. Local
connections and shared weights are prominent features of
CNNs. These unique features effectively decrease the number
of weights and accelerate training.

In this study, a baseline 1DCNN model was established to
monitor the bolt looseness more efficiently. Its framework is
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presented in Figure 3. As seen in the figure, the baseline 1DCNN
model is composed of an input layer, a convolutional layer (CL), a
flattening layer (FL), a fully connected layer (FC), and a SoftMax
layer. In this model, a convolutional layer consists of three
convolution kernels of different sizes (i.e., 1 × 3, 1 × 4, and
1 × 5). The kernels can extract advanced features and fuse the
information of bolt looseness from different stress wave signals at
the same time. Then, the flattening layer expands the looseness
information extracted by the convolutional layers and maps the
information onto the fully connected layer. Finally, a SoftMax
function presents the probability of each class. Tanh activation
functions are used in the model in order to improve the fidelity of

the input information and encourage rapid convergence.
Furthermore, dropout (Fraser-Thomas et al., 2008) operations
are employed to mitigate overfitting. The Adam optimizer (β1, β2,
and ε are, respectively, set to 0.9, 0.999, and 1e-8) is used during
training to minimize the cross-entropy. The model learning rate
is 1.5e-4, and the maximum number of iterations is 400 (i.e., with
a mini-batch size of 280). The procedure for training the
convolutional neural network is illustrated in Figure 4.

Convolutional Block Attention Module
The convolutional block attention module (CBAM) was
implemented in this study to improve the monitoring accuracy

FIGURE 3 | Architecture diagram of the baseline 1DCNN model.

FIGURE 4 | Training process of the baseline model (1DCNN) and the improved model (CBAMCNN).
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of the model. As shown in Figure 5, the CBAM consists of the
channel attention mechanism and the spatial attention
mechanism (Ban et al., 2020; Zhao et al., 2020). The
overall computational process of the CBAM can be
summarized as follows. The feature F of the CNN first
passes through the channel attention mechanism in order
to generate the corresponding channel attention weight Mc;
then, element-wise multiplication between Mc and F is
performed to generate a new feature F′. The refined
feature F″ is generated by subjecting F′ to a similar process
with the spatial attention mechanism weight Ms. The
improved network framework using the channel and
spatial attention mechanisms is illustrated in Figure 6.
The operations performed using the spatial attention
mechanism is described by the following:

F′ � Mc(F)⊗ F,
F″ � Ms(F′)⊗ F′,

(8)

where ⊗ refers to element-wise multiplication, Ms refers to
the spatial attention mechanism weight, Mc refers to the
channel attention weight, F′ represents the channel
attention mechanism, and F″ represents the spatial attention
mechanism.

For the sake of conciseness, the computational operations of
the channel attention weight Mc(F) and the spatial attention
weight Ms(F) are summarized as follows:

Mc(F) � σ(W1(W0(Fs
avg)) +W1(W0(Fc

avg))),
Ms(F) � σ(f 1×7(Fs

avg ; F
c
avg)), (9)

where σ represents the sigmoid function, W0 and W1,
respectively, represent the parameters in the multilayer
perceptron model, Fc

avg denotes the average-pooled features,
Fc
max denotes the max-pooled features, and f 1×7 refers to the

convolutional layer for which the convolution kernel size is 1 × 7.

EXPERIMENTAL SETUP

As shown in Figure 7, in order to verify the method introduced in
this study, a set of benchtop experiments was conducted on two
steel plates connected by one M12 bolt. Each specimen is
equipped with four PZT patches. PZT1, serving the role of the
actuator, is installed on the upper steel plate. PZT2–PZT4, serving
as sensors, are installed on the bottom steel plate. The epoxy
adhesive used to bond the PZTs to the steel plates also electrically
insulated the PZTs from the steel plate. The type of piezoelectric
patch used in this experiment is the compression type, and its size
is 10°mm3 × 10°mm3 × 0.5°mm3. The dimensions of the specimen
are shown in Figure 8. As shown in Figure 9, a multifunction
data acquisition system (NI USB-6363) with multichannel
capacity collected data and transmitted excitation signals. The
data acquisition system was connected to a laptop that ran
LabVIEW. A power amplifier (Trek model 2100 HF)
magnified the excitation signals. During the experiments,
PZT1 generated a stress wave excited by a swept sine signal
transmitted by the data acquisition system. After propagating and
being modulated by the steel plate interface, the stress wave is
captured by the three sensors at a sampling rate of 2 MHz.
Subsequently, the received signals in different channels are

FIGURE 5 | Calculation principle of the convolution block attention module.

FIGURE 6 | Architecture diagram of the CBAMCNN model.
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used to calculate the looseness indices. The frequency of the swept
sine signal in this study ranges from 100 Hz to 300 kHz with a
duration of 0.5 s and an amplitude of 1 V. The loading of the
specimen consisted of increasing the torque level from 0 Nm to
30 Nm at increments of 5 Nm, as listed in Table 1. Different
torque values lead to different degrees of looseness. The
experiments are repeated on specimen A, specimen B, and
specimen C. For every looseness condition, the active sensing
method is executed 100 times to construct an experimental
dataset. The dataset has 560 and 140 samples for training and
validation. Then, the baseline 1DCNN model and the improved
model (CBAMCNN) using the attention mechanism are
established to monitor the bolt looseness. In the training
process, the model hyperparameters are adjusted and
determined according to the loss function value and accuracy

between the training dataset and the validation dataset. Finally,
140 test signals have been re-collected to achieve bolt looseness
identification.

RESULTS

Experimental Results and Analysis Based
on Wavelet Packet Analysis
Figure 10 shows the stress wave signals and wavelet packet
energy of different torque levels, measured during the
experiment with specimen A. The amplitudes of the received
stress wave signals corresponding to different torque levels vary
between –1 and 1 V. The amplitude of the received signal is
therefore related to the bolt looseness. When the torque level

FIGURE 7 | Multichannel active sensing sensor layout scheme. (A) Sensor layout scheme of the upper steel plate. (B) Sensor layout scheme of the bottom
steel plate.

FIGURE 8 | Detailed geometry of the specimen. (A) Front view. (B) Side view. (C) Up view. (D) Bottom view.
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reached 30 Nm, the maximum value of the stress wave signal
reached 0.8 V. As the bolt loosened, the amplitude of the received
signal decreased but followed a different path than when the bolt
was tightened, thus making it difficult to quantitatively monitor

the bolt looseness based solely on the amplitude. The presence of
multiple peaks in each stress wave can be attributed to the
different frequency components and the reflections of the
stress wave within the connection assembly (Wang et al.,

FIGURE 9 | Experimental setup of monitoring the bolt looseness using the piezoelectric active sensing method.

TABLE 1 | Torque values of different degrees of looseness.

Looseness degree First Second Third Fourth Fifth Sixth Seventh

Torque (Nm) 30 25 20 15 10 5 0

FIGURE 10 | Stress wave signals and wavelet energy received in the three channels under different torque levels.
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2021). On the other hand, the wavelet packet energy method can
provide a clearer analysis of the received signals. As the torque
level decreased, the wavelet packet energy was reduced in
proportion to the dissipated energy of the stress wave. Thus,
analysis based on wavelet packet energy can characterize the bolt
looseness to a certain extent, but the characterization is not fully
quantitative due to the undefined relationship between wavelet
packet energy and the torque level.

Looseness Indicators
In order to provide more looseness information, some indicators are
extracted from the stress waves to characterize the bolt looseness.
Indicators include the energy of the time-domain signal, themaximum
value of the average periodogram (MVOMP), and the three-layer
wavelet packet decomposition energy. For convenience, the authors
only show the first four wavelet packet energy components. As shown
in Figure 11, all the indicators can effectively represent the looseness of
the bolt. As the torque decreases, the looseness indicators of different
sensor channels decrease, which provides the looseness information
from different perspectives. These diversified looseness indicators
furnish a basis for data fusion with the CNN. Therefore, the
looseness feature vectors of multi-domain indicators are
concatenated to construct the corresponding dataset.

Quantitative Monitoring Results of the
Convolutional Neural Network Model
In consideration of the drawbacks of traditional methods, both a
baseline 1DCNN model and one improved by the attention

mechanism are trained to quantitatively monitor the bolt
looseness. The accuracy is set as the metric by which to
evaluate the classification performance of the presented
method. The accuracy is the ratio between the number of
correct predictions and the total number of test datasets.

In order to observe the influence of channel availability on the
recognition capabilities of the 1DCNN model, seven different
scenarios of channel availability are used to train the baseline
1DCNN model. Single-channel, dual-channel, and multichannel
scenarios, respectively, refer to cases where there are one, two,
and three PZT sensors being used to monitor bolt looseness.
According to the sensor layout scheme, the three cases of single-
channel testing are the sole use of PZT2, PZT3, or PZT4.
Likewise, the three cases of dual-channel testing include using
the following PZT pairs: PZTs 2 and 3, PZTs 2 and 4, and PZTs 3
and 4. Finally, in multichannel testing, all three PZTs (i.e., PZTs
2–4) are used. Taking specimen A as an example, the evaluation
indices for the different scenarios are listed in Table 2. As seen in
the table, the use of all three channels yielded the best
performance, and the accuracy is approximately 92.85%. The
evaluation indices for the dual-channel scenario ranged from
88.57 to 90.71% and are higher than those for the single-channel
scenario. Compared with the baseline 1DCNN model, the
CBAMCNN model performed better for the multichannel (5%
improvement) and the dual-channel (5.9% improvement)
scenarios. However, the performance is similar when only one
channel is used, likely because data from one channel is
insufficient despite the improvements offered by the attention
mechanism.

FIGURE 11 | Looseness indicators of different channels under different torque levels. (A) Indicator of signal energy. (B)Maximum value of the mean periodogram.
(C) First component of the wavelet packet energy. (D) Second component of the wavelet packet energy. (E) Third component of the wavelet packet energy. (F) Fourth
component of the wavelet packet energy.
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In order to better understand the whole process of the 1DCNN
model, PZT2 (single-channel), PZTs 2 and 4 (dual-channel) and
PZTs 2–4 (multichannel) are selected to describe the training,
validation, and testing processes according to the accuracy. The
accuracy and loss curves during training and validation are shown
in Figures 12A–C. In general, the model training is stable and
convergent without overfitting. Model training is completed at 600
iterations, upon which the accuracy of the validation rose above
90%. The result of the test dataset is shown in the form of a
confusion matrix. As shown in Figures 12D,E, the recognition
errors of themultichannel scenario are less than those of the single-
channel and dual-channel scenarios. Of the 140 test samples, there
are, respectively, 18 and 15 misrecognitions for the single-channel

and dual-channel scenarios and only 10 misrecognitions for the
multichannel method.

Similarly, Figures 13A–C show the loss and accuracy curves for
the CBAMCNN trained using data from PZT2 (single-channel),
PZTs 3 and 4 (dual-channel), and PZTs 2–4 (multichannel). The
CBAMCNNmodel surpassed the baseline model by reaching 95%
validation accuracy when the training converged. In addition,
compared with the 1DCNN model, the CBAMCNN model
yielded fewer incorrect recognitions. The multichannel scenario
had the least instances (i.e., only three misrecognitions out of 140
samples) of incorrect recognitions, followed by the dual-channel
and the single-channel scenarios. The specific misrecognition is
summarized by the confusion matrices in Figures 13D–F.

TABLE 2 | Recognition result of the 1DCNN and CBAMCNN models.

Method Single-channel Dual-channel Multichannel

PZT2 (%) PZT3 (%) PZT4 (%) PZTs 2 and
3 (%)

PZTs 2 and
4 (%)

PZTs 3 and
4 (%)

PZTs 2–4 (%)

1DCNN 82.85 80.71 87.14 89.28 88.57 90.71 92.85
CBAMCNN 84.29 88.57 87.85 93.57 95.71 97.14 97.85

FIGURE 12 | Training/validation process of the 1DCNN and the confusion matrix of the test dataset. (A) Accuracy and loss curves of the single-channel method
(PZT2). (B) Accuracy and loss curves of the dual-channel method (PZTs 2 and 4). (C) Accuracy and loss curves of the multichannel method (PZTs 2–4). (D) Confusion
matrix of the single-channel method (PZT2). (E) Confusion matrix of the dual-channel method (PZTs 2 and 4). (F) Confusion matrix of the multichannel method
(PZTs 2–4).
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The Generality and Repeatability of the
Method
In specimen A, the proposed method can monitor the bolt looseness
with high accuracy. In order to verify the generality of themethod, the
process described in Experimental Setup, Results (i.e., data collection,
feature extraction, model training, verification, and testing) was
carried out and repeated 10 times for specimens B and C. The
average recognition accuracy is summarized in Table 3. The results
reveal that the proposedmethod has good classification performance,
and the improved CBAMCNNmodel can reach a testing accuracy of

over 95.78% in all three different specimens. However, the testing
accuracy of the 1DCNN model is below 93.64%.

DISCUSSION

Since a single monitoring index used traditionally in active
sensing cannot quantify the bolt looseness, a method that
analyzes data from multichannel active sensing with a CNN
improved with the CBAM (i.e., a channel and spatial attention
mechanism) was proposed to quantitatively monitor bolt
looseness. Experimental results obtained from the three
different specimens demonstrated that the method can
quantify bolt looseness with an accuracy of more than 95.78%.

Single monitoring indices, such as the peak value of a time
reversal signal (Tao et al., 2016) and normalized coda wave energy
(Hei et al., 2020), are unable to provide true quantitative monitoring
due to the dispersion of the single indices. On the other hand,
through powerful feature extraction and classification abilities, the
trained 1DCNN model can quantitatively monitor the state of bolt
looseness. However, because the stress wave signal obtained using
the piezoelectric active sensing method is complicated and irregular,

FIGURE 13 | Training/validation process of the CBAMCNN and the confusionmatrix of the test dataset. (A) Accuracy and loss curves of the single-channel method
(PZT2). (B) Accuracy and loss curves of the dual-channel method (PZTs 3 and 4). (C) Accuracy and loss curves of the multichannel method (PZTs 2–4). (D) Confusion
matrix of the single-channel method (PZT2). (E) Confusion matrix of the dual-channel method (PZTs 3 and 4). (F) Confusion matrix of the multichannel method
(PZTs 2–4).

TABLE 3 | Mean recognition accuracy for three different specimens.

Specimen Model Mean
recognition accuracy (%)

A 1DCNN 91.07
CBAMCNN 97.78

B 1DCNN 93.64
CBAMCNN 95.78

C 1DCNN 92.85
CBAMCNN 96.85
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it is particularly difficult to obtain satisfactory results by directly
training the original signal through a 1DCNN. Therefore, in order to
improve monitoring performance, the method presented in this
article still requires extraction of bolt looseness features in advance,
which is relatively time-consuming.

In addition, the reason why the multichannel active sensing
method performs better than the dual-channel and single-channel
scenarios can be summarized as follows. Multichannel active sensing
canmonitor the bolt looseness inmultiple different locations and gain
comprehensive information about the condition of the bolted
connection. Moreover, the CBAM is a lightweight and efficient
attention mechanism. The CBAM consists of both channel
attention and spatial attention mechanisms. The attention
mechanism is mainly used to adjust the weights (i.e., Ms and Mc)
of parameters that play a key role in the classification task. If a
parameter of the input vector plays a key role in the classification task,
the CBAM can automatically generate a larger weight to multiply the
original input vector, which enables themodel to focus on the features
that are helpful to recognition tasks and ignore features that decrease
with recognition accuracy (Ban et al., 2020). In this study, the channel
attentionmodule helps the CNN to focus on important features, while
the spatial attention mechanism highlights the position of the
significant features. Therefore, the channel and spatial attention
mechanisms enhance the model’s recognition accuracy and
improve the robustness of the model.

CONCLUSION AND FUTURE WORK

This study proposed a multichannel monitoring method that
integrates piezoelectric active sensing with deep learning for the
quantitative monitoring of the bolt looseness. Features extracted
from the stress waves from each channel include signal energy
(time domain), the maximum value of the average periodogram
(frequency domain), and three-layer wavelet packet
decomposition energy (time frequency). A baseline 1DCNN
model and an improved model (i.e., the CBAMCNN) are
employed to recognize bolt looseness states (i.e., torque levels).
The experimental results show that the combination of the
convolutional neural network and multichannel active sensing
can achieve quantitative assessment of the bolt connection status
and performs better than single-channel and dual-channel
scenarios. Moreover, the baseline model recognition accuracy
improved after employing the spatial channel attention
mechanism. The main contributions of this article are as
follows: 1) the method is the first attempt to combine

piezoelectric active sensing and convolutional neural networks
to monitor bolt looseness quantitatively; 2) multichannel
monitoring, which utilizes three sensors, characterizes bolt
looseness from different perspectives and performs better than
the single-channel and the dual-channel scenarios; and 3) the
CBAM improved the model, and its excellent performance is
verified by a laboratory-scale experiment.

The method proposed in this article is powerful for
monitoring single-bolt looseness. However, the mechanism for
monitoring the looseness of multiple bolts is more complicated.
In future research, the authors would like to adopt the multi-
bolted steel plate to carry out corresponding research and look for
better ways to improve recognition accuracy. In view of the
problem that the training data are not easy to obtain in actual
engineering, the method of transfer learning can be employed to
improve this problem, which can make the model adapt to the
actual situation after the model is trained on the data obtained in
the laboratory. Of course, this is only a feasible research idea, and
a large number of experimental studies are needed to promote
practical engineering applications. Otherwise, numerical
simulation of stress wave propagation and the influence of the
boundary conditions on the accuracy of looseness recognition
will be further explored in the future.
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